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Abstract

We present a derivation of Hawking radiation through tunneling mechanism for a general class of asymptotically flat, spherically symmetric
spacetimes. The tunneling rate Γ ∼ exp(�S) arises as a consequence of the first law of thermodynamics, T dS = dE + P dV . Therefore, this
approach demonstrates how tunneling is intimately connected with the first law of thermodynamics through the principle of conservation of
energy. The analysis is also generally applicable to any reasonable theory of gravity so long as the first law of thermodynamics for horizons holds
in the form, T dS = dE + P dV .
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

Understanding Hawking radiation is one of the key issues
in any effort to unify gravity with quantum rules. In the last
few decades, we have witnessed several independent attempts
to comprehend the fact that black holes radiates and therefore
behaves like a perfect thermal system. The original deriva-
tion of Hawking radiation [1] involves the calculation of the
Bogolyubov coefficients between asymptotic in and out states
in a collapsing geometry. Another different approach uses the
Euclidean quantum gravity techniques [2]. In that case, the ther-
mal nature of horizons arises from the periodicity in Euclidean
time needed to get rid of the conical singularity.

There exists another popular and may be more physically
motivated approach for Hawking radiation based on quantum
tunneling. Recently, it has been demonstrated that such a inter-
pretation can really work rigorously by adopting a semiclassical
method for tunneling [3,4]. The main ingredient of this work is
the consideration of energy conservation in tunneling of a thin
shell from the hole, motivated by some earlier work [5]. An
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added advantage of tunneling approach is its simplicity and as
a result, it can be easily extended to different cases [6,7]. In
all situations, the tunneling approach works perfectly, giving
physically meaningful results. Virtually all the known solutions
of the general relativity with horizons, have been investigated
and the results seem to be in favor of tunneling interpretation.
Despite this, there is no general approach for the tunneling of
matter from a horizon which is independent of solution and
the main motivation of this Letter is to show that such a gen-
eralization is indeed possible. Another important result which
comes out in this context is the relationship of tunneling with
the first law of thermodynamics for spacetime horizons. In fact
this is observed in some earlier work [8] but again, no general-
ized demonstration exists. Our Letter will address this issue and
explore the relationship of tunneling and first law of thermody-
namics in a general spherically symmetric setting.

2. Formalism

We will consider a static, spherically symmetric horizon, in
an asymptotically flat spacetime described by the metric:

(1)ds2 = −f (r) dt2
s + 1

f (r)
dr2 + r2 dΩ2.
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We assume this metric is the solution of field equation for a
general matter described by an energy–momentum tensor T

μ
ν .

We will also assume that the function f (r) has a simple zero
at r = a, and f ′(a) is finite, so that spacetime has a hori-
zon at r = a and periodicity in Euclidean time allows us to
associate a temperature with the horizon as T = f ′(a)/4π .
(Even for spacetimes with multi-horizons, this prescription is
locally valid for each horizon surface.) In order to generalize
the tunneling formalism for such a general spherically sym-
metric setup, one need to tackle two key issues. The first is,
how to apply energy conservation in such a general setup, and
secondly, how to write the general form of the first law of ther-
modynamics in such a situation. The first one is tricker because
the concept of energy in general relativity is difficult to define.
One has to depend on some heuristic arguments to apply en-
ergy conservation for a general setup. The answer to the second
issue already exists in a different approach to understand the
dynamics of gravity and thermodynamics [9]. Following that
methodology, it is possible to show that in a general spheri-
cally symmetric background the Einstein’s equations evaluated
on the horizons can be cast into a form

(2)T dS = dEh + P dV

where S is the entropy associated with the horizon at r = a,
Eh is its energy and P is the radial pressure which is equal to
T r

r (a). The expression of energy Eh is equal to a/2 which is the
irreducible mass of the hole (Eh is also equal to the Misner–
Sharp energy of the horizon) and V = 4πa3/3 is the relevant
volume for our analysis. In spite of superficial similarity, Eq. (2)
is different from the conventional first law of black hole thermo-
dynamics [10], due to the presence of P dV term. The validity
of this expression can be seen, for example, in the case of
Reissner–Nordstrom black hole for which P �= 0. If a charge-
less particle of mass dM is dropped into a Reissner–Nordstrom
blackhole, then an elementary calculation shows that the en-
ergy defined above as Eh ≡ a/2 changes by dEh = (da/2) =
(1/2)[a/(a − M)]dM �= dM while it is dEh + P dV which is
precisely equal to dM making sure T dS = dM . So we need
the P dV term to get T dS = dM when a chargeless particle
is dropped into a Reissner–Nordstrom black hole. More gener-
ally, if da arises due to changes dM and dQ, it is easy to show
that Eq. (2) gives T dS = dM − (Q/a)dQ where the second
term arises from the electrostatic contribution from the horizon
surface charge. Dynamically, Eq. (2) is best interpreted as the
energy balance under infinitesimal virtual displacements of the
horizon normal to itself and therefore must be linked with en-
ergy conservation and thus to the tunneling process.

This result can be formally interpreted by noting that in stan-
dard thermodynamics, we consider two equilibrium states of a
system differing infinitesimally in the extensive variables like
entropy, energy, and volume by dS, dEh and dV while having
same values for the intensive variables like temperature (T ) and
pressure (P ). Then, the first law of thermodynamics asserts that
T dS = P dV + dEh for these states. In a similar way, Eq. (2)
can be interpreted as a connection between two quasi-static
equilibrium states where both of them are spherically symmet-
ric solutions of Einstein equations with the radius of horizon
differing by da while having same source Tμν and tempera-
ture T = f ′(a)/4π . This formalism does not care what causes
the change of the horizon radius and therefore much more for-
mal and generally applicable. More recently, this approach has
been extended to the general class of Lovelock gravity [11],
stationary Kerr like and time dependent spherically symmetric
spacetimes [12] as well as for the FRW class of metrics [13].
This approach suggests that the relevant energy of the horizon
which enters into the first law of thermodynamics under the
change of the horizon radius is Eh = a/2. Since, first law of
thermodynamics is basically a statement of the conservation of
energy, Eh = a/2 should be the appropriate notion of energy of
the horizon in the tunneling process. Now, to describe across-
horizon phenomena like tunneling, it is necessary to choose
coordinates which, unlike Schwarzschild like coordinates, are
not singular at the horizon. A particularly suitable choice is ob-
tained by introducing Painlevé type of coordinates where the
metric is given by

(3)ds2 = −f dt2 ± 2
√

1 − f dt dr + dr2 + r2 dΩ2

where the plus (minus) sign denotes the spacetime line element
of the out-going (incoming) particles across the horizon. We
want to consider the tunneling of matter across the horizon. By
treating the matter as a sort of De-Broglie S-wave, its trajectory
can be approximately determined as [4,14],

(4)ṙ = ± f

2
√

1 − f
≈ ±κ(r − a)

where κ is the surface gravity of the horizon at r = a. The imag-
inary part of the action for an s-wave outgoing positive energy
particle which crosses the horizon outwards from ri to rf can
be expressed as

(5)ImS = Im

rf∫
ri

pr dr = Im

rf∫
ri

pr∫
0

dp′
r dr.

We multiply and divide the integrand by the two sides of Hamil-
ton’s equation ṙ = + dH

dpr

∣∣
r
, change variable from momentum to

energy, and switch the order of integration to obtain

(6)ImS = Im

rf∫ ∫
ri

dr

ṙ
dH.

Now, using Eq. (4) and performing the radial integral with ap-
propriate contour prescription, one immediately finds that, for
outgoing case [3],

(7)ImS = −
∫

dH
2T

,

where T = κ/2π , the Hawking temperature associated with the
horizon. The next task is to find the correct Hamiltonian to eval-
uate this integral.

For this, we appeal to energy conservation to guess the form
of H.

We first note that since there is no explicit time dependence,
the Hamiltonian should be equal to the total energy of the
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system. To find an expression for the total energy, we again
note that, the horizon separates the spacetime into two parts,
which can be labelled as inside and outside. Our previous argu-
ments [9] show that the energy associated with the horizon is
Eh = a/2. Also, for matter with T

μ
ν as the energy–momentum

tensor, the contribution from the matter field in the outside re-
gion should be

(8)Em = −
∫
Σ

T μ
ν ξν dΣμ,

where the integration is over the 3-surface Σ which extends
from the horizon to infinity. (The negative sign merely reflects
the fact that in our convention −T t

t is the energy density of the
matter.) Hence the total energy of the spacetime should be

ET = Eh + Em

(9)= a

2
−

∫
Σ

T μ
ν ξν dΣμ.

For our particular case, ξν = (1,0,0,0). Then the energy ex-
pression reduces to,

ET = a

2
−

∞∫
r=a

T t
t 4πr2 dr

(10)= a

2
−

∞∫
r=a

T r
r 4πr2 dr.

In the second step, we have used the fact that, for the metric in
Eq. (3), Gt

t = Gr
r .

Now, in order to show that the expression of ET is indeed the
energy of the spacetime, we evaluate it for two separate cases.
First, for the trivial case of Schwarzschild black hole for which
T

μ
ν = 0 and a = 2M , which gives ET = M as desired. Next,

for the Reissner–Nordstrom black hole, we have,

(11)T μ
ν = Q2

8πr4
(−1,−1,1,1) and Eh = M − Q2

2a
.

It is possible to provide a simple explanation of the energy ex-
pression Eh. Consider any general r > a and then we can write,
for Reissner–Nordstrom black hole,

(12)1 − 2M

r
+ Q2

r2
= 1 − 2μ(r)

r
, where μ(r) = M − Q2

2r
.

Hence, the quantity μ(r) = M − Q2/2r can be interpreted as
the mass energy inside the sphere of radius r and for r = a, we
have μ(a) = Eh validating the case for Eh as the energy of the
horizon. Substituting this into Eq. (10), it is easy to show that
even in this case ET = M .

As a result of tunneling across the horizon, some matter ei-
ther tunnels out or in across the horizon. Hence, the parameters
which fix the radius of the horizon (mass, charge, etc.) change
and that leads to a change in the radius of the horizon. In fact,
the only physical change occurring due to the process of tunnel-
ing is in the radius of the horizon. We suppose, due to tunneling
the radius changes from a to a + δa (note that δa is positive
for incoming shell and negative for outgoing shell). Both Eh

and Em and as a result ET depends of a. Therefore, let the en-
ergy ET changes to Ei

T (a) to E
f
T (a + δa) and the difference

E
f
T − Ei

T can be attributed to the shell. So, by energy conser-
vation, we can immediately write,

dH = E
f
T (a + δa) − Ei

T (a)

= δa

2
−

( ∞∫
a+δa

−
∞∫

a

)
T r

r 4πr2 dr

= δa

2
+ T r

r (a)4πa2δa

(13)= dEh + P dV.

Substituting this in Eq. (7), we ultimately get,

(14)ImS = −
∫

dEh + P dV

2T
= −

∫
dS

2
,

where we have used the first law of thermodynamics as in
Eq. (2).

Written in this form, one can also see an immediate gen-
eralization of this approach, at least in spherical symmetry, to
any theory of gravity for which a suitable generalization of a/2,
the Misner–Sharp energy, can be motivated (note that the P dV

term generalizes in a natural way, i.e., with dV interpreted as
the areal volume). Indeed, such an expression for energy ex-
ists for the Lanczos–Lovelock Lagrangians [11,15]. Replacing
a/2 with that expression, one can explicitly show that we get
the correct result; specifically, we obtain the correct scaling
of entropy (which is no longer proportional to area) for the
Lanczos–Lovelock Lagrangians.

Another interesting point which comes in this regard is that,
entire analysis is totally local. In fact, all contributions from
the spatial infinity cancels out in the second step of Eq. (13).
Hence, in principle this approach is extendable to spacetimes
having multiple horizons. Now, the semi classical tunneling rate
is given by

(15)Γ ∼ e−2 ImS = e

∫ Sf
Si

dS = e�S,

where �S = Sf − Si . This is the well-known result obtained
in [3] for a general, asymptotically flat, spherically symmetric
background.

Now, we would like to discuss the case for the class of met-
rics in which grrgts ts �= −1. The spacetime metric is given by,

(16)ds2 = −f (r) dt2
s + 1

g(r)
dr2 + r2 dΩ2.

The horizon is given by a simple zero of the function f (r) at
r = a. Temperature associated with this horizon can be shown
to be T = √

f ′(a)g′(a)/4π . The fact that r = a is a null sur-
face, and requiring the regularity of Ricci scalar at r = a, fur-
ther impose two conditions on g(r) at r = a. (a) g(a) = 0 and
(b) f ′(a) = g′(a). Using these, the temperature associated with
the horizon at r = a becomes T = g′(a)/4π . Using these con-
ditions, and writing the metric in the Painlevé form, one can
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show that [12,17] the energy–momentum tensor, on the hori-
zon, again has the form,

(17)T t
t

∣∣
r=a

= T r
r

∣∣
r=a

; T θ
θ

∣∣
r=a

= T
φ
φ

∣∣
r=a

(where, as earlier, t is the Painlevé time coordinate). It can be
shown that [9] the relevant energy of the horizon, Eh, is again
a/2, so that the first equality in Eq. (10) still holds. Proceeding
as before, using energy conservation, we can write,

dH = E
f
T (a + δa) − Ei

T (a)

= δa

2
−

( ∞∫
a+δa

−
∞∫

a

)
T t

t 4πr2 dr

= δa

2
+ T t

t (a)4πa2δa

= δa

2
+ T r

r (a)4πa2δa

(18)= dEh + P dV,

where we have used Eq. (17) in the fourth line. The remaining
steps are identical as before, and give the same tunneling rate,
Γ ∼ exp(�S).

Hence, we find that, for a general spherically symmetric
case, the derivation of this result requires only local physics.
There was neither an appeal to Euclideanization nor any need
to invoke an explicit collapse phase. The simple facts that tun-
neling changes the horizon radius and energy conservation, are
enough to find the semi classical tunneling rate.

Another striking feature which naturally appears from this
analysis is the relationship between tunneling and the first law
of thermodynamics. The tunneling rate is ultimately found to
be,

Γ ∼ e
∫ dEh+P dV

T

(19)∼ e�S.

In order to obtain the second expression from the first, we have
to apply the generalized first law T dS = dEh+P dV . This fact
clearly shows that tunneling interpretation of black hole radia-
tion is intimately related with the first law of thermodynamics.
This is also expected because the basic input behind both tun-
neling and the first law is same, namely the conservation of
energy.

We would also like to point out the importance of the as-
sumption of spherical symmetry in our calculation. The two
main ingredients which depend on this assumption are:

1. The fact that Gt
t = Gr

r on the horizon, which ultimately al-
lows us to write the P dV term. This equality can be seen
as a result of the equality of grr and gtt , and their first
derivatives, on the horizon, for the metric Eq. (16). But,
it is also possible to show that this result is valid even for
non-spherically symmetric case, near the Killing horizon of
any stationary but non-static (and non-extremal) black hole
spacetime [16]. In that case, the near horizon structure of
the Einstein tensor, and hence that of T

μ
ν , admits a block

diagonal representation, in which T t
t = T r

r (with the time
coordinate interpreted appropriately). Hence, this assump-
tion is not specific to spherical symmetry.

2. The quantities dEh and P dV have a natural interpretation
in spherical symmetry and it is difficult to construct analo-
gous quantities in non-spherically symmetric case. But, at
least for spacetimes with a timelike killing vector, there is
a notion of volume [19] and it may help to generalize our
arguments for non-spherical situation.

But the fact that this generalized approach works for spherical
symmetry is intriguing enough, and it may be possible that this
can also be extended to non-spherically symmetric situations,
by interpreting various quantities appropriately.

3. Conclusion

Our analysis generalizes the tunneling approach of Hawking
radiation for a general spherically symmetric and asymptoti-
cally flat set up. The basic inputs that go into the calculation
is the energy function in Eq. (10) and application of energy
conservation. With these two inputs and also using Eq. (2),
one immediately recovers the results of [3] in this general con-
text. This shows the validity of tunneling process for a general
spherically symmetric horizon and also its relation with the
first law of thermodynamics. In fact in our analysis, the result
Γ ∼ exp(�S) comes out as a natural consequence of the first
law T dS = dEh + P dV , and therefore suggests an intimate
dependence on each other through the principle of conservation
of energy.

Note added

While completing this work, we came across Ref. [18], which also reaches
the same conclusion regarding the relationship of tunneling and the first law
of thermodynamics through a totally different approach. In fact, unlike [18],
our method is independent of the theory of gravity and makes no assumption of
entropy being proportional to area. Another crucial difference is the presence
of the P dV term in our analysis. Hence, the approach presented here is more
generally applicable as long as the first law of thermodynamics holds in the
form T dS = dEh + P dV .
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