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Abstract

Let A be a convex cone ofn × n matrices. In this paper, we present a necessary and suf-
ficient condition forA to contain matrices with a constant regular inertia, based on a version
of the Lyapunov equation. The condition involves only the normalized extreme points ofA.
This extends a previous paper by the authors, where a robust stability criterion forA was
obtained. © 2000 Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

The verification of Hurwitz stability of a convex setA of complexn × n matri-
ces, robust stability in engineering terminology, is known to be of interest, see e.g.
[1,5–8,14,16–18]. Specifically, let{A1, . . . , Ap} be the extreme points of a convex
setA. Note thatp need not be finite or even countable. It is well known that the
stability of the extreme points is not sufficient in general to guarantee robust stability.
Some of the results in this area can be found in [5].

∗ Corresponding author.
E-mail addresses:nir@ime.unicamp.br (N. Cohen), izchak@ee.bgu.ac.il (I. Lewkowicz).

1 The research of this author is supported by the CNPq grant 300019/96-3.

0024-3795/00/$ - see front matter( 2000 Published by Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 4 - 3 7 9 5 ( 0 0 ) 0 0 1 2 6 - 9



24 N. Cohen, I. Lewkowicz / Linear Algebra and its Applications 318 (2000) 23–33

A similar situation occurs when one wishes to check the constancy of inertia,
or the absence of singular matrices, throughout this convex set. These verification
problems are all known to be NP-hard with respect to the matrix sizen, see e.g.
[14–17] for more details. The dependence on the numberp is of a more subtle nature,
see e.g. [4, Theorem 4]. See also [12], where a full rank convex hull ofp rectangular
matrices, was characterized.

The casep = 2, i.e. a pair of matricesA,B, is classical: non-singularity amounts
to A−1B having no (real) non-positive eigenvalues; while robust stability amounts
to LA(H)−1LB(H) having the same property [5]. Here,LA(H) is the Lyapunov
operator on the space of Hermitian matrices, defined byLA(H) := HA + A∗H. The
case of constant inertia can be studied using similar ideas, although the complete
result there is somewhat more involved [6].

The casep > 2 is much more complicated, and for obvious reasons cannot be
treated in a similar fashion. The natural approach used in the engineering robust
stability literature is to cover the given setA by a finite system of neighborhoods
Aj , such that eachAj has a common Lyapunov factorHj, which in the case of
robust stability should be, under our conventions, negative definite, see [18].

We refer to these methods as thefinite coverage ofA approach, since the whole
convex setA is involved in the process, rather than its extreme points.

An essentially different approach was proposed by the authors in [1]. Extending
a result of Johnson [10], the authors have obtained a robust stability verification
procedure which uses only{A1, . . . , Ap}, the extreme matrices inA, and which we
shall therefore call theextreme points method.

In this paper, we extend the extreme points method for the case of constantreg-
ular inertia, i.e. no imaginary eigenvalues, and describe some of its computational
advantages. The extension, given in Section 2, is quite straightforward. Some com-
putational aspects are briefly presented in Section 3, and in Section 4, we discuss
various cases in which the verification of fixed inertia can be reduced to the verifica-
tion of non-singularity. In particular, we show that this is the case for every convex
invertiblecone, i.e. convex coneC such that whenever det(A) /= 0 for someA ∈ C,

it implies thatA−1 ∈ C as well, see [2,3,13]. We make several comments on the
practical sides of non-singularity verification in such cones.

2. The extreme points approach

Throughout this paper, a matrix implies a complexn × n matrix and a vector, a
complexn-vector. We shall denote byH the set of Hermitian matrices and byP its
subset of positive definite ones.A∗ will denote the complex conjugate transpose of
a matrixA. The inertia ofA is a triple(ν, δ, π), in which ν, δ, π record the number
of eigenvalues with negative, zero, and positive real part, respectively. In particular,
the inertia is calledregular if there is no imaginary eigenvalue, namely ifδ = 0, and
anti-stable ifπ = n.
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Our starting point is the following criterion for regular inertia of a single matrix
A ∈ Cn×n.

Theorem 1. A has regular inertia if and only if for every non-zero vector x there
exists a matrixH = H(x) ∈ H such that

Re(x∗HAx) > 0. (1)

Proof. Assume thatA has regular inertia. According to the Inertia Theorem (see e.g.
[9, Theorem 2.4.10]),

(HA + A∗H) ∈ P, (2)

is satisfied by some (non-singular)H ∈ H. Multiplying on the left and right by
x∗ and x, respectively, (1) is obtained. Conversely, assume thatA does not have
regular inertia, namely there exists a non-zero vectorx and a real scalarr so that
Ax = irx. Then, for allH ∈ H one has that 2 Re(x∗HAx) = x∗(HA + A∗H)x =
x∗Hx(ir − ir) = 0, violating (1). �

According to the Inertia Theorem, ifA andH satisfy (2) then they have the same
inertia. If for exampleA is stable (i.e. has inertia(n, 0, 0)) one can use this fact to
guarantee a solutionH of (2) which is negative definite. Here, (2) reduces to the
classical Lyapunov equation. A similar simplification occurs ifA is anti-stable (i.e.
has positive inertia), in which caseH ∈ P.

Theorem 1 for the stable case, withH in (1) negative definite, appeared originally
in [10, Theorem 1], see also [9, Theorem 2.4.11]. Theorem 1 here offers a twofold
extension, first the inertia of the matrixA needs to be regular only, and secondH may
be singular. The latter fact guarantees that for givenA andx, the set of allH ∈ H
satisfying (1), is convex.

In order to discuss the robust version of Theorem 1, valid for general sets of
matrices, we find it convenient to introduce the following notation: for each set of
matricesA and each non-zero vectorx,

(i) H(A) will denote the set of allH ∈ H for which (2) holds for allA ∈ A.

(ii) H(A, x) will denote the set of allH ∈ H for which (1) holds for allA ∈ A.

By definition,

H(A) =
⋂
x /=0

H(A, x).

Hence, clearly the conditionH(A) /= ∅ implies thatH(A, x) /= ∅ for all x /= 0,

but the converse need not be true, see Example 7. From a combination of the Inertia
Theorem and Theorem 1, it follows that wheneverA is a singleton, the converse
holds as well. (Another case will be given towards the end of the next section.)

In the anti-stable case, due to the simplificationH ∈ P discussed earlier, instead
of H(A) andH(A, x) one may use the smaller setsP(A) = P ∩ H(A) and
P(A, x) = P ∩ H(A, x).
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The following robust version of Theorem 1 appeared as in [1, Theorem 2],
extending a former result in [10] fromp = 2 to p arbitrary.

Theorem 2. Let E ⊂ Cn×n be a compact set of matrices and letA be the convex
hull ofE. Then, the following are equivalent:
(i) All matrices inA are anti-stable.
(ii) P(A, x) /= ∅ for every non-zero vectorx.

(iii) P(E, x) /= ∅ for every non-zero vectorx.

On the face of it, the problem of characterizing constant regular inertia is much
harder than that of preserving stability. This intuition may be supported by comparing
between Theorems 4.1 and 4.2 in [6]. Nevertheless, it turns out that Theorem 2 can
be easily extended from positive inertias to general regular inertias.

Theorem 3. Let E ⊂ Cn×n be a compact set of matrices and letA be the convex
hull ofE. Then, the following are equivalent:
(i) All matrices inA have the same regular inertia.
(ii) H(A, x) /= ∅ for every non-zero vectorx.

(iii) H(E, x) /= ∅ for every non-zero vectorx.

The proof of Theorem 3 is identical to the proof of Theorem 2, which can be
found in [1], and will be omitted here. The only change required in this proof is
the use of the full power of Theorem 1, for a general inertia, whereas only negative
inertia is required in Theorem 2.

In practice, how can Theorem 3 be used algorithmically? Here (1) is adopted as
a starting point and one strives to construct atest setH1, . . . , Hm ∈ H, and a finite
coveringX1, . . . ,Xm of the unit sphere inCn such thatHj ∈ H(E,Xj ) for all
j = 1, . . . ,m. In the sequel, we shall refer to the minimal suchmas the “complexity
of the extreme points method”.

A word of caution concerning the use of Theorem 3: even when all matrices in
the setA are real, the vectorx in H(A, x), should vary over the whole unit sphere
in Cn. This and other aspects of the extreme points approach, are illustrated below
for a case wheren = 2 andp = 3.

Example 4. Consider the setE = {E1, E2, E3}, where

E1 =
(

1 0
−1 −2

)
, E2 =

(
4 17
0 −2

)
, E3 =

(
2 −7
0 −1

)
.

Direct calculation shows thata1E1 + a2E2 + a3E3 has inertia(1, 0, 1) for all ak >
0,
∑3

k=1 ak = 1. In other words, the convex setA generated by these three matrices
has constant regular inertia. We shall show that the complexitym of the extreme
points method in this case ism = 2 using the test set
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H1 = diag

{
1,

−145

16

}
, H2 = diag

{
1,

−127

16

}
.

First, we check the vectorx = (0
z

)
, 0 /= z ∈ C. All expressions of the form

Re(x∗HjEkx), wherek = 1, . . . , 2, 3 andj = 1, 2 are indeed positive.
Any other complex vectorx

(
z1
z2

)
, z1 /= 0, may be scaled to the formx(z) := (1

z

)
.

Since scaling preserves the sign of Re(x∗HAx), it does not affect our procedure.
The functionpjk(z) := x(z)∗HjEkx(z) is a real quadratic expression inz. The set
of all z ∈ C for whichpjk(z) > 0 will be denoted byCjk. Define the sets

D :=
⋃

j=1,2




⋂
k=1,...,3

Cjk


 .

Condition (iii) in Theorem 3 is equivalent toD coinciding with the whole complex
plane.

Due to the quadratic nature of the functionspjk(z), eachCjk turns out to be the
complement of a closed disc of some radius. This includes some limit cases when the
radius is zero or infinite; namely,Cjk may be the empty set, or the whole complex
plane, or the complement of a single point. In our example, we duly compute these
six sets:

p11(z) = 145

4

(∣∣∣∣z + 1

4

∣∣∣∣
2

− 17

42145

)
,

p12(z) = 145

4

(∣∣∣∣z + 68

145

∣∣∣∣
2

+ 42

1452

)
,

p13(z) = 145

8

(∣∣∣∣z − 56

145

∣∣∣∣
2

+ 4294

1452

)
,

p21(z) = 127

4

(∣∣∣∣z + 1

4

∣∣∣∣
2

+ 1

42127

)
,

p22(z) = 127

4

(∣∣∣∣z + 68

127

∣∣∣∣
2

− 4235

1272

)
,

p23(z) = 127

8

(∣∣∣∣z − 56

127

∣∣∣∣
2

+ 4258

1272

)
.

In other words, ifB(a, r) is the closed complex disc of centera and radiusr, and
B(a, r)c is its complement inC, we have

C11 = B

(
−1

4
,

√
17

4
√

145

)c

, C22 = B

(
−68

127
,

4
√

35

127

)c

.
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Since each of the other four sets is equal to the whole plane,D = C11 ∪ C22. Note
now that, if we denoteQ1 := {z : Re(z) < (−1/4)(1 + √

17/145) ≈ −0.3356} and
Q2 := {z : Re(z) > (4/127)(

√
35− 17) ≈ −0.3491}, then on the one handQ1 ⊂

C11 and Q2 ⊂ C22; on the other hand,C = Q1 ∪ Q2, thus the construction is
complete.

This calculation shows that the complexity for the extreme points method in
Example 4 ism 6 2. From Example 7 it will turn out that indeedm = 2.

3. Computational aspects

Recall that in the extreme points method, described in the previous section, one
is searching for a test setH1, . . . , Hm ∈ H and a coveringX1, . . . ,Xm of the unit
sphere inCn such thatHj ∈ H(E,Xj ) for all j = 1, . . . ,m.

In contrast, adopting (2) as an alternative starting point for proving constant in-
ertia, one would wish to construct a test setH ′

1, . . . , H
′
l ∈ H together with a finite

coveringA1, . . . ,Al of A such thatH ′
j ∈ H(Aj ) for all j = 1, . . . , l. We shall

refer to the minimal suchl as the “complexity of the finite coverage ofA method”.
Unfortunately, there is no transparent connection betweenl on the one hand andn
andp on the other. The simplest, if not most efficient, way to obtain a valid test set
is by repeated bisection ofA, as suggested by [18] in the case of a stable interval
matrix.

The complexity of both methods is exactly 1 whenH(A) /= ∅. In general, the
two approaches may differ quite substantially, and a comprehensive comparison be-
tween their complexities is not available. The constant inertia verification problem is
known to be NP-hard (see e.g. [14,15,17]), and so in both approaches the complexity
has exponential growth in terms ofn, the size of the matrices involved. In practice,
however, one can often get good clues as to how to construct a sensible test set of
relatively small complexity.

It appears that the extreme points method has several advantages forn large. First,
the verification is restricted to thep extreme points ofA, which are typically a given
finite collection, rather than to the full setA. Secondly, there is no need to check
the positive definiteness of a large number of matrices, which is extremely time
consuming.

The detailed discussion in [1, Section III] (albeit restricted to the stable case)
points at an additional important advantage of the extreme points method: further
reduction of complexity, due to passing from matrix multiplication to vector inner
products. This is presented next.

For givenAk (k = 1, . . . , p) andxwith ‖x‖ = 1, define the vectorsyk := Akx. If
we fix H ∈ H we can also defineh := Hx and observe thatx∗h is real. Moreover,
if H belongs toH(E, x), then Re(h∗yk) > 0. Conversely, given a vectorh such
that x∗h is real and Re(h∗yk) > 0, it is easy to constructH ∈ H for which h =
Hx. Namely, takeH ∈ H so thatH = rhh∗ + H̃ , wherer ∈ R is appropriately
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chosen andH̃ x = 0. Consequently,H ∈ H(E, x). (In the special case of stability
the condition wasx∗h < 0.)

Moreover, if anh with these properties has been found, one can find a whole
neighborhoodX of x for which mink=1,...,p Re(x∗Hyk) > 0. The complexity of our
procedure depends on the ability to find a covering of the unit sphere inCn by a
small number of such neighborhoods.

OnceX = X1 ∪ · · · ∪ Xj has been calculated this way, a new unit vectorxj+1 6∈
X has to be selected, and the process repeated, creating the new neighborhoodXj+1,
etc. A flow chart of the entire procedure would be (fork = 1, . . . , p):

(1) Start: setj = 0, X = ∅ fix ε > 0 and normalizeAk −→ 1
‖Ak‖Ak.

(2) j −→ j + 1.

(3) Choosex = xj 6∈ X, where‖x‖ = 1.

(4) Denoteyk := Akx andη(h) := mink=1,...,p Re(h∗yk), whereh ∈ Cn, ‖h‖ 6 1.

(5) Findηj := maxh∗x∈Rη(h).

(6) If ηj < ε stop (up to the prescribed precision), the setA does not have a fixed
regular inertia.
Otherwise, lethj be a maximizer ofηj = η(hj ).

(7) Construct a matrixHj ∈ H so thathj = Hjx. There is a neighborhoodXj of xj

on the unit sphere inCn, so that mink=1,...,p Re(x∗HjAkx) > ε for all x ∈ Xj .

(8) X −→ X ∪ Xj .

(9) If X does not cover the entire unit sphere, repeat the process from (2).
Otherwise, setj = m and stop. All matrices in the setA share the same regular
inertia.
This can be proved through the Hermitian matricesH1, . . . , Hm.

Now, there are two remarks in order. First note that inH there aren2 real parameters,
while in h there are only 2n real parameters. Moreover, the search is over all feasible
h vectors, which form aconvexsubset of the closed unit ball inCn. Thus, at the
critical optimization stage, (4) and (5), the problem is simplified. Second, we do not
know yet how to efficiently choose in step (3)xj 6∈ X for the next iteration. In fact,
similar to the finite coverage ofA method, unfortunately we cannot produce an a
priori upper bound (based on the parametersn andp) on m, the number of setsXj

required to cover the unit sphere inCn.

In addition to the above, the structure of the setA can often be exploited in
order to further alleviate the computational burden of the test. For example, from [2,
Theorem 4.2] it follows that, ifA is a convex hull of a pair of Hermitian matrices,
thenH(A) /= ∅ if and only ifH(A, x) /= ∅ for all x /= 0. In other words, a minimal
test set, if it exists, has sizem = 1. This is based on a result of Johnson and Rodman
[11].

We conclude this section by pointing out that, since positive scaling preserves in-
ertia, without loss of generality, we may restrict our discussion to convexcones. Con-
sequently, this involves technical modifications such as roughly makingE a compact
set of normalized extreme points of a convex cone.
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4. Can we check non-singularity instead?

If a given convex set of matrices,A, has the constant regular inertia property, all
the matrices inA are necessarily non-singular. The converse statement is false in
general, although it does hold for some sets of interest, such as convex sets of Her-
mitian matrices, or more generally, matrices with real eigenvalues (see [7,8,14,16],
for relevant material).

Another class of sets for which the converse is automatically guaranteed is the
class ofinvertibleconvex cones, i.e. convex conesC such thatA ∈ C and det(A) /= 0
implies A−1 ∈ C. Cones of this type were studied in [2], where they were called
convex invertible cones, orcic for short. See also [3,13].

Proposition 5 [2, Proposition 2.6]. For a cicC of complex matrices, the following
properties are equivalent:
(i) C contains no singular matrices.
(ii) No matrix inC has imaginary eigenvalues.
(iii) All the matrices inC have the same regular inertia.

The set ofcics is rich, and contains many examples of interest, for example,
the sets of upper triangular, Hermitian, diagonal, or positive definite matrices. The
Lyapunov equation itself defines a matrixcic LH . Namely, for a fixedH ∈ H we
define

LH := {A ∈ Cn×n : HA + A∗H ∈ P}.
Note thatL±I are the sets of dissipative and accretive matrices.

Using this terminology, the finite coverage method for establishing robust inertia
amounts to covering a given setA by a finite union of convex setsAj , where
Aj := LHj ∩ A for j = 1, . . . , l. In order to decrease the numberl, the setsAj

should be made as large as possible. It turns out that the largest such sets are of the
formLH .

Proposition 6 [2, Observation 3.2, Proposition 3.7; 13, Theorem 7.1(i)–(iii )]. For
an arbitraryH ∈ H the following is true:
(i) LH is a cic.
(ii) inertia(A)= inertia(H) for all A ∈ LH .

(iii) LH is a maximal non-singular convex cone open inCn×n.

We remark that in [13, Proposition 9] a result similar to Proposition 6 is given
in the context of the matrixRiccati equation: For a pair ofn × n matricesHa,Hb

so that(Ha + Hb) is non-singular, a setRHa,Hb of 2n × 2n Hamiltonian matrices is
defined. These Hamiltonians are associated with Riccati equations sharingHa and
−Hb as a common pair of Hermitian solution.RHa,Hb turns out to be a maximalcic
with inertia= (n, 0, n).
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According to Proposition 5, verifying constant inertia for a givencic of matrices
C is reduced to checking that all the matrices inC are not singular. Just like the
verification of constant inertia, the verification of non-singularity in convex sets of
matrices is NP-hard [15]; however, there are interesting simplifications. For example,
Polyak and Rohn [15] show that if an interval matrix contains a singular element
then one of its edges contains a singular element. Hollot and Bartlett [8] show that
an interval matrix with real eigenvalues only is robustly stable if and only if all its
corner matrices are stable; and Rohn [16] shows that only 22n corner matrices need
be checked in this case, rather than the entire set of 2n2

corner matrices.
For a setM of n × n matrices, denote byC(M) (resp. conv(M)) the smallest

cic (resp. convex cone) which containsM. Using Theorem 3 on the setM, one can
guarantee the constant inertia of conv(M), but not necessarily ofC(M), which is
typically larger.

Example 7. Consider the setE from Example 4 and its subsetM = {E1, E2}. As
we have shown in that example,H(E, x) /= ∅ for every non-zero vectorx, im-
plying constant inertia(1, 0, 1) throughout conv(M). However, the matrix(E1 +
4E−1

2 ) which belongs toC(M), is stable. Hence, the inertia inC(M) cannot be
constant.

Recall that by Proposition 5 acic has constant regular inertia if it is a subset
of LH for some non-singular Hermitian matrixH. Thus,C(M) in not a subset of
anyLH . This amounts toH(C(M)) being empty. By [2, Proposition 3.9(i)] we
conclude thatH(M) = H(C(M)) = ∅. This implies that the numberm calculated
in Example 4 is larger than 1, hencem = 2.

The normalizedextreme points ofC(M) are typically a continuum, rather than
a discrete set, like for instance the extreme points of an interval matrix or the nor-
malized extreme points of a polygonal convex cone. As a result, the verification of
non-singularity on general cics is problematic. It would therefore be nice to identify
cics which are polygonal, i.e. have a finite set of (normalized) extreme
points.

Recall also that ifM is an arbitrary set of matrices, typicallyR+ · conv(M,M−1)

is apropersubset ofC(M) : For example, ifA = diag{3 + i4, 4 + i3} then, on the
one hand(αA + βA−1) 6∈ R2×2 for all α, β ∈ R, but on the other handI ∈ C(A).

Similarly, if B = diag{2, 3, 4}, then for allα, β ∈ R the matrix(αB + βB−1) has at
least one non-unit diagonal element butI ∈ C(B). In this respect, the case of real
2 × 2 matrices is of special interest.

Observation 8. LetM be a set of real2 × 2 matrices. Then the following are true:
(i) If det(A) has the same(non-zero) sign for every matrixA ∈ conv(M), then

A−1 ∈ conv(M−1).

(ii) If conv(M,M−1) has constant regular inertia, then C(M) = R+ · conv
(M,M−1) and this cic is non-singular.
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Proof. First note that ifA = ∑
k αkEk for someEk ∈ C2×2 andαk ∈ C, then clear-

ly, adj(A) = ∑
k αk adj(Ek) and hence the relation,

A−1 =
∑

k

αk
det(Ek)

det(A)
E−1

k , (3)

holds whenever all the inverses involved do exist.
In caseαk > 0 andM := {E1, E2, . . .} ⊂ R2×2 is so that all matrices in conv(M)

have determinant with same sign, then for allk, the quantityαk(det(Ek)/det(A)) in
(3) is positive, so (i) is established.

A closer scrutiny of (3) reveals that ifC := bB + aA−1, whereA,B are 2×
2 matrices anda, b ∈ C, all arbitrary, then, whenever all the inverses involved do
exist, C−1 = b̂B−1 + âA, with b̂ := b(det(B)/det(C)) and â := a/det(C)det(A).

Now, since by assumption conv(M,M−1) has constant regular inertia, the coeffi-
cientsâ, b̂ are real and positive, whenevera andb are. Namely, the convex cone
R+ · conv(M,M−1) is closed under inversion, thus (ii) is established and the proof
is complete. �
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