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The pointwise convergence problem of the rectangular partial sums of a certain
type of double trigonometric series is considered. This type of series obeys certain
conditions on the finite-order differences of its coefficients. We prove that if the
Césaro sums of the double series converge unrestrictedly, then so do its partial
sums. It is pointed out that the converse of the last statement may not hold for the
same kind of double trigonometric series. As a corollary, it is shown that the double
Fourier series of the mentioned type converges unrestrictedly almost everywhere.
Generalizations of the above results to the restricted case are also established. These

results generalize the theorems of Chen. ¢ 1993 Academic Press, Inc.

1. INTRODUCTION

Let T° be the torus, defined by 7= {(x,y)eR’: —n<x,y<n}.

Consider the double trigonometric series
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where {c,: —o <j, k <20} is a double sequence of complex numbers. The

partial sums s
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(x, v) and the Césaro sums a,,,(x, v) of (1.1) are defined as

(1.2)

(L3)

R.O.C.
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If there exists an fe L,(T?) such that

Cik =(_2‘:[-)‘2J ) j ﬂf(x, yye TR gy dy (-0 <j k<o), (14)
then (1.1) is said to be the double Fourier series of f, and the c,
(—oc <, k < oo) are called the Fourier coefficients of f. In this case, we will
frequently write s,,(f;x,») and o,,(/f; x, ) instead of s,,(x,y) and
a,..{x, y), respectively.

Let EcT? and {g,,:mn>=0} be a double sequence of functions
defined on E. We say that g, converges uniformly on E in the unrestricted
sense if there is a complex-valued function g defined on E such that g,
converges to g uniformly on E as min(m, n) tends to infinity. In contrast,
we say that g,,, converges uniformly on E in the restricted sense if there is
a complex-valued function g defined on £ such that

lim  g,.(x, y)=g(x,y) uniformly on E (1.5)
ag<min<h

for all 0 <a<b < . Here (1.5) means that for every ¢£> 0, there exists a
positive integer N such that |g,.(x,y)—g(x,y)<e for all mn=0
satisfying min{m, n) > N and a <m/n< b, and for all (x, y)e E. We also say
that g,,.(xo, ¥o) converges unrestrictedly (or restrictedly) to g(x,, ¥o) if 2,n
converges uniformly on E to g in the unrestricted (or restricted) sense,
where E= {(x,, ¥o)}. Conventionally we say that (1.1) has the mentioned
property if (1.2) does.

During the past thirty years, the almost everywhere convergence
problem of the single Fourier series has been quickly developed. A typical
resuit in this direction is that the Fourier series of fe L,(T) converges
almost everywhere. A natural question arises: Does this hold for the double
Fourier series of fe L,(T?)? Unfortunately, Fefferman [3] gave a negative
answer to the question. He constructed a continuous function fon 72 such
that s,,(f; x, ) diverges everywhere as min(m, n)— 0. Hence, it is
meaningful to find a new class of integrable functions f on T* for which
Sl fi X, v) converge unrestrictedly almost everywhere. In [6],- Moricz and
Waterman proved that if the c¢; (—~o <j, k<) are the Fourier
coefficients of some fe L,(T?) and there exists a 1 < 4, < 2 such that

4

hm Z ldlocikiz()’ (MWI)
hi—s 7,
lim Y |do cul =0, (MW2)

Ul 0,
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o 1 [im] o

fim —————— : J <K,

o [im]—m+1 mzzm “lk};x i cul <K (MW3)
- 1 [an] e
fim S okl Y 14yl <K (MW4)

n— o [in]—-n+1 Ik

| =n J= -

for all 1 </ <4,, where X is a finite constant not depending on A, then

(1.1) converges unrestrictedly to fa.e.if | log™ |fle L (T?); (U)
(1.1) converges restrictedly to fa.e. if fe L,(T?). (R)

(Notice that 4, Cu=Cu—Ciprks Aot Cu=Cu—Cinirr Ay Cp=Cp—
Cikr1—Ciarx T o nsrs)

In this paper we establish the conclusions (U) and (R) under similar but
different conditions from (MW1)-(MW4). Our conditions are

ed

lim fm Y max el =0, (A1)
Allm—o, 7 m< < im
lim Bm Y max |eul =0, (A2)
/ll]n«o'szgocnslklsin !

o o fim]
im Gm Y Y 147cul =0, (A3)
Altm—o 7 il =m :

- A [An])
imm Y Y 4%cl =0, (Ad)
Mmoo 0T

where p and ¢ are nonnegative integers, and 44 c;, and 44 c, are the pth
difference of ¢ for the j-index and the gth difference of c; for the k-index,
respectively. We note that our result generalizes [2, Corollary 27].

It is well known that, for the one-dimensional case, the pointwise
convergence of a trigonometric series automatically implies that of its
Césaro sums. In this paper, we show by an example that the corresponding
statement may not be true for double trigonometric series even under the
assumptions of (Al)-(A4). Simultaneously, we prove that the converse
holds for those double trigonometric series with the conditions (A1)-(A4).
This generalizes [2, Theorem 1]. As a corollary, the result mentioned in
the last paragraph follows from this.

We also show that (R) is valid even under weaker conditions, (B1)-(B4),
which involve the concept of restricted limit superior as defined in
Section 3.

The organization of the paper is the following: In Section 2, we prove
that under the conditions (A1)-(A4), the unrestricted convergence of o,,,
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implies that of s,,,. The method of summation by parts as was introduced
in [2] is used in our proofs. In Section 3, we introduce the concept of
restricted limit superior and then extend the result in Section 2 to the
restricted case. We conclude in Section 4 with an application of the results
in the above two sections to the pointwise convergence problem of double
Fourier series.

2. UNRESTRICTED SUMMABILITY

It is a well-known fact that the pointwise convergence of a single tri-
gonometric series automatically implies that of its Césaro sums. However,
the corresponding statement may not be true for double trigonometric
series, in genmeral. For instance, let {x,, y,)e T2 Consider the double
sequence {c;: —oo <j, k < oo} defined by

Cp=(—1fe Tk (j>1,k=0,1),

=0 (otherwise).

By a routine calculation, we find that such a double sequence satisfies
(A1)-(A4), and s,,,(x,, ¥o) converges unrestrictedly to 0. However, from

1 i 1 1
Umn(xo,}'o)=mz <1+§+-~-+;) (m,nz1),

J=1

we see that a,,,(x,, y¢) diverges as min(m, n) — oc. This example illustrates
that even under the conditions (A1)-(A4), the unrestricted convergence of
5., does not guarantee that of ¢,,,. It is a surprising fact that the converse
of the mentioned statement is true under the assumptions of (A1)-(A4). In
this section, we establish this fact.

Let {cy: —oo <j,k<oo} be a double sequence of complex numbers,
and (x,y)eT% For m=0, and k=0, +1, +2, ..., define
S (X YY) = 3, cpeVTHEN, (2.1)
lil<m
(x, ) Ly (x, ) (2.2)
¢ X, yP)=—— (X, V). .
mik) Y m+ 1j=os/(k) Y

By an elementary calculation, we obtain

amlk)(xi .V)= Z <l '_m':_l l)c_jkei”**-k}) (m203k=07 ils i—_zs )a

ljl<m

(2.3)
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S,,,,,(.Y, )’) = Z Smlkl(x’ .V) (m» n 2 0)’ (24)
ki <n
Gl X, 1))=Y (1 —J&> G X, 1) (m, n=0). (2.5)
mn LR W n + 1 mik) -

For >0, define 47 ¢;, by the following recursive relations: for j>0 and
k=0, +1, +2, ..,
0 , 0 . —
4y Cp = Cs V¢ 6= g,
t .. _ . . r . — N
Al(lk—'clk—(ul,k* Al‘ ik =C jeTC G ke

A¥cp=A147 ' ep), Ay ¢ i =AU4T e ) (x=2).

It is easy to see that for j>0, k=0, +1, +2, ., and a =0,

o A L
A?C,A»:Cik*<l>(’1+l,k+<2>C,+2.k— e+ (=1) (Oz)C,H_A-,
x o e
A?C j.k—"—(' Lk“(])(’ ; l,k+(2>c ;o2k T +(—1) (a)c jo-xke

Similarly, 43 ¢, is defined in the same way as 47 ¢, by interchanging the
role of j and k. The purpose of this section is to establish the following
result, which extends [2, Theorem 1] from single trigonometric series to
double trigonometric series.

THEOREM 1. Let {c,: —ov <j,k <o} be a double sequence of complex
numbers such that (A1)-(A4) hold for some p and q. Suppose Ec T?
satisfies

xo=inf{[x[: (x, y)e E} #0,
yo=inf{|yl: {x, y)e E} #0.

If 6, converges uniformly on E in the unrestricted sense, then so does s,,,.
Moreover, the condition x,#0 can be eliminated for the case p=0.
Similarly, the condition y,#0 is not required for the case ¢ =0.

Remark. Theorem 1 applies to many particular cases. Before proving
the theorem, let us investigate these applications. The first case we want to
investigate is that in which

(i) cp=a,b, (—0<jk<x), a,=0 except perhaps for a finite
number of j, {b;:~ow<k<oo} is a null sequence, and
lim,  lim, , , ¥ 1495,] =0 for some nonnegative integer g,
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where 475, denotes the gth difference of 4,. Obviously, such a double
sequence satisfies (A1)}-(A4). Therefore, Theorem | can be applied to any
double trigonometric series of type (i), in particular to any double
trigonometric series of the type

cp=ab, (—c<j k<o), a=0 except perhaps for a
finite number of j, and {b,: —cc<k<oc} is a null
sequence of types (i) to (vii) described in [2, pp. 292-294].

If we choose ag=1 and a;=0 for all j#0, then Theorem 1 reduces to
the situation of [2, Theorem1]. Hence, the theorem generalizes
[2, Theorem 1].

The second case we want to investigate is the f{ollowing type:

(it) {cy: —occ <j, k<oc} is a lacunary double sequence satisfying
(Al) and (A2).

The notion of a lacunary sequence was introduced by Hadamard in the
study of the “over-convergence” problem of a power series (cf. [1, 2] for
the definition of a lacunary sequence). We extend this concept to a double
sequence as follows: {c,: —o0<j k<oo} is said to be a lacunary
double sequence if there is a y>1 such that for each —oc<j<oc,
{cx: —oo <k < oo} is a lacunary sequence with a degree of lacunarity >y,
and for each —ow <k < o0, {c,: —0 <j< oo} is a lacunary sequence with
a degree of lacunarity >7. From the definition, we find that for all m, n > 1
and for all 2 with 1 <A<y,

P [im] L
Z Y ]c,k|<2( Y max ch,(|>

= -x {jl=m 7%m<|/!$/.m

and

x [an] ox
LS ted<2( 3 max jeul)
j=—o lkl=n o n<|k|<an
From here, we see that (A3) and (A4) follow from (Al) and (A2),
respectively. Hence, Theorem | can apply to such a case, in particular to
the case
. {in]
lim Iim Y ol =0 and cx=0  forall j#k.

it n—- x> k] = n

Proof of Theorem 1. For simplicity we frequently omit (x, y) in the
SUmSs as s,,,(x, ), 6,,.(x, ¥), etc. Also, as in [2], we write 4, for [Am], and
A, for [An]. We have

Smn_0mn=21(m’n)+22(ms n), (26)
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where
Z](mvn)z Z (Sm(k)ﬁam(k))’
jk{<n
and
1
Zz(man)';m lklam(k]'

lkl<n

We show that s,,—o0,, converges uniformly on E to zero in the
unrestricted sense. To do this, we first estimate 2,(m, n). Fix 4> 1. Using
(2.5) forg,,;, and o,,, we get

—n

n

ps
G 0msD lké" K| ik

Ap k
I (L

kl=n+1

a

min " O =

Multiplying both sides by (4, + 1)/(2, — n) and then transposing, we obtain

A+ 1 .
Zl(m’ n)z;tn_n(o-m,i,,_amn)_ZZI(m7 A, A)y (27)

where

A+l A k
sz(m,”,/v)-_-;— Z (1 H)”m(k»-

"l_n|k|=n+l }"1+1
It follows from (2.3) that

|221(m’ n, )“)l

j G e e 1.4 .
y <1 x_IL) Y LT___l__leke'(Jx-rk,\‘l
I&1

i< m m+1) 5., Ai,—n
<3| X a'%“l_;n‘ﬂcfke’“ - (28)
<m ki =n+1 n
As in [2], we define EX(y) and E* (v) for n>0 as
ei(n+ Ly n ) 1
Exty) = 2ie" 7 sin(y/2) EO et 2ie"7 sin(y/2)’ (2.9)

E* (y)=EX(—y). (2.10)
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Fix j. Using summation by parts, we get

L L PN

Wl EF() — EX_ (7))

Ml 41—k o
-—.——~|—|(A§c,k)Ei-“(y)+¢(J.n,/-;_v),

k=n+1 A"—
where
¢(}v n, ;";y)zl —n Z C/.k+lEl:(y)‘Cj,n+lE:(y)'
n k=n+1
For (x, y)e E, we have
]

n, Ay < —— max | < Wy, n, A),
I$(), » Sln(}’o/z)n+1<ksin+1 |C/k| oy )

where

i
Y(j n A)=— max (€l
olJ ) SIN{ Yo /2) n+1<ikl<aut wl

By (2.9), (2.11), and (2.12) we get

i A+ 1 — |k .
Y, e

k=n+1

Ay — N
1

“ A"n + 1 - ‘k'
€ fol
2sin(yq/2)

L

k=n+1

(Aé (‘j/\') e"k,l' + l1’0(.}‘7 n, ;’-)

Forx=0,1,2,..,49—1, define

1
Y (jnA)=—— A5 ¢yl
Lin 4) Sm(yO/Z)an/?;st‘M.l 3 Cil
Set
e 1 .
Y(jyn A)= ), e V. A)

T (2sin(yo/2))*

589

(2.1

(2.12)

(2.13)
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Notice that if ¢=0, then P(/, n, 4) is defined to be 0 and the condition
»o#0 is not required. Replace ¢, in (2.13) by 4} cu, 43 ¢y, ete. Then

& ;{'n+l—{k| iky
S ¢, e™

k:;%»l /J‘n~n (ik
! & A1~k o o
g'—'.—_"_'—_ —_—— v ik o n, A
2sin(y4/2) k={\;+1 Ay — (43 cu) e+ ¥ol)on, 2)
1 ‘n y + 1-— Ik' R -
s————.————————; o A;[ ()lkr\
EonCa | 2, o )
1 . ‘
+ 2 Siﬂ( y /2) ([Il(.]s n, /~) + (II()(], n, j.)
Yo
< -
1 & A+ 1 — k] - .
S0 —_— Afi . iky y 3 ,j.
(2 sin(yq/2))¢ k:z":H fp— (43 cy)e™ +¥(j,n 4)
1 ‘n ' )
Z |49 ¢l + Y, n, 4). (2.14)

ST
(2 Sln()'o/z))q k=n

Go through the procedure from (2.11) to (2.14), with slight modification,
for

& in+l_‘k‘ kv

k=n+1

and then add the result to (2.14). We finally obtain

l -
n A+ 1—k .
E n l l C;‘k elkvl

L

1 2
Y 14gcul + 2P n, A). (2.15)

| =n

g—.—"—”—"
(2sin{yo/2))

Therefore, by (A2), (A4), (2.8), and (2.15) we find that to each ¢ > 0, there
corresponds a 4 > 0 such that the following holds:

For every 42 with O0<A—1<d, there exists a positive
integer N, for which |X,(m, n, 2)| <¢ for all n= N, all
m=0, and all (x, y)e E. (2.16)
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From now on, the convergence involved is considered in the unrestricted
sense. For each fixed 4> 1,

A, + 1

Ap— R

(6,,,,—0,,)—0 uniformly on E. (2.17)

This follows from the assumption on g,,,. From (2.7), (2.16), and (2.17) we
find that

Zy(m,n)—-0 uniformly on E. (2.18)

Next, we estimate X (m, n). Fix 4> 1. With the help of (2.3), we find that

At 1
Sm(l\'i_o-m(ki: - m (a).,,,tk)—amik))
m T
Am b ;
. Z Am +1- |]l C_kei(j.\‘+k,ri
J J :
Jil=m+1 Am— M
This implies that
Zym,n)y=2%(m,n, A)—2,(m, n, 1), (2.19)
where
+1
- m
E”(m, n, /.) = —— Z (0',1,,,1/() - Uml-’())ﬁ
Am —m |kl <n
and
- . .
. " A+ =] e+ ko
Zolmon i)y=3 Y Ay Cipe'Ix TR,
kl<n (ji=m+1  Pm

Using (2.5) for ¢, , and ¢,,,, we obtain

Ui.mn —Opn = z (U)~m[k) - U’n”‘l)

kl<n

_—— [k| (G,,06) = Omixy)
n+1 .72,

Multiplying both sides by (4,, + 1)/(4,, —m) and then transposing, we get

) ot 1
e i G —Emn). (220)
Ap—m ™ An,—m

2 (myn A)=



592 CHEN AND HSIEH
Obviously, we have

A, 41
U —a

Am—m

(65,0, —Cmn) =0 uniformly on E. (2.21)

By (2.18) we find that

A:"l + 1

; (X5(A,,, n)—2,5(m,n))—0 uniformly on E. (2.22)
i — M

Combining (2.21) with (2.22), we find that for each fixed i > 1,
2myn, A)y—0 uniformly on E. (2.23)

Go through the procedure from (2.11) to (2.15) with slight modification,
and then we get

I g
Sama i< Y | ¥ et
lkisnl]jl=m+1

1 im
€ A ¢,
(2 sin(x0/2))" Lo 2 14

lklsn [jl=m

L ix
cjke
A, —m

+2 Y ¥*mk 1), (2.24)
Ikl <n
where
Wk, )= S k1),
L0 (2sin(xg/2))*
and
Yx(m, k,),)——l——— max [A7 ¢l

" Sin(Xg/2) b U</l < dma s

Notice that if p =0, then ¥*(m, k, 1) is defined to be 0 and the condition
x, # 0 is not required. By (A1) and (A3), we find that to each ¢> 0 there
corresponds a J > 0 such that the following holds:

For every 4 with 0<A—1<4, there exists a positive
integer M, for which |2',(m, n, A)] <¢ for all m= M, all
n20, and all (x, y)e E. (2.25)

From (2.19), (2.23), and (2.25), we infer that X,(m, n) converges to 0
uniformly on E. With the help of (2.6), the desired result follows.
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3. RESTRICTED SUMMABILITY

Let {d,: —o0 <j, k<o } be a double sequence of extended real num-
bers. For 0 <a < b < o, we define the concept of restricted limit superior
as

lim d4d,,= inf ( sup d,).
asmin<h asminsb a<jik
- X% m,n>Q izm.k

It is easy to see that for any p>0,

lim d,,=lim ( sup dy)
asmin<h n—-x a<jk<gbh
mn— x iznpkz=n
This tells us that the restricted limit superior of the double sequence
{dy: —2 <j, k<o) is completely determined by those 4, with j and k
large enough. Using this, we can extend Theorem 1 in the following way:

THEOREM 2. Let {c,: —0 <j, k< oc} be a double sequence of complex
numbers such that for all 0 <a<b< o,

lim Iim Y ( max |c,])=0, (B1)
Aill u,f.,r,"fjhlklé’l m<|[j] € im
lim lim ( max |cul)=0, (B2)
All ugm,‘ngh‘.< n<tk|<in

o — srsm

and there exist two nonnegative integers p and q, depending on a and b, such
that

[7m]

lf’imu<lrlnrf1:<b z z‘ (47 cul =0, (B3)
A S ks jl=m

N [An]
lim lim Y ¥ l45cul=0. (B4)
AlLa<mme? ji<m tki=n

Let E be as in Theorem 1. If a,,, converges uniformly on E in the restricted
sense, then so does s,,,. Moreover, the condition x,# 0 can be eliminated for
the case p=0. Similarly, the condition y,#0 is not required for the case
g=0.

Remark. 1t is evident that (Bl)-(B4) are weaker than (Al)-(A4).
Hence, Theorem 2 pgeneralizes Theorem 1| for the case of restricted
convergence. As explained in the remark of Theorem |, we see that
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Theorem 2 can apply to any of the cases (i) to (ii) stated there. Besides
these applications, Theorem 2 can also apply to the case

(i) cp=ab, (—o<j k<) [j*a,=0(1) (|j| > ) for some
a>1, and kb, =O(1) (Jk| = 0).

The reason for this is as follows: for m,n=3, A>1l,and (A—1)m=1, we

have
[Am]) [Am ]
L3 ted=( T wd)('3 fal)
(kf<n [jl=m [k(<n fil=m
< M(logn)(i—1)ym' *,
and

AR > al)( 5 )

jjlsm |ki=n [jl<m tkl=n

1
<M1 *42 *4+3 *4 --~)(;+10g).),

where M is an absolute constant. From these estimates, we find that
(B1)-(B4) are satisfied. A special example of case (iii) is as follows:
¢ =1/(j%k) for all j, k=1, and ¢, =0 for other cases. We know that
Theorem 2 is applicable to this example. However, for p>0, m>1, and
4> 1, we have

24 [4m] x [im]
Y2 At =% ¥ 14507k = +o.
k= o |jl=m k=1 j=m

This leads to the conclusion that (A3) fails. Thus, Theorem 1 can not work
on this example.

Proof of Theorem 2. Let 0 <a< fi <o be fixed. We claim that

lim  (0,,—$,.)=0 uniformly on E.
xsmin< ff
m.on - f

Following (2.8)-(2.15), we find that to each ¢ > 0, there corresponds a 6 >0
such that the following holds:

For every A with 0<4—1 <4, there exists a positive
integer N, for which |2,,(m, n, i) <e¢ for all m and n
satisfying n > N; and a <m/n <28, and for all (x, y)e E.

This 1s obtained by applying (B2) with a=o/2, b=2f, and (B4) with a = «,
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b =2f to the inequalities (2.8) and (2.15). From now on, &, is assumed to
converge uniformly on £ in the restricted sense. Then for each fixed i > 1,
(2.17) is true in the restricted sense. With the help of (2.7), we find that

lim Zym n)=0 uniformly on E. (*)
x<<min<2ff

Next, we consider the term X (m, n). Fix 1 <1< 2. It follows from the
assumption on ¢, that

o+ 1

] ~Gp) =0 uniformly on E
A — M

(a).,,,n

in the restricted sense. From (*), we know that

. At 1
lim “
asmnsf A, —
L —

(£y(4,,, n)—Zo(m,n))=0  uniformly on E.

By (2.20), we infer that for each fixed 1 <i<2,

lim X (mn i)=0 uniformly on E.
x<min<f
nion— X

Apply (Bl) with a=2, b=2f, and (B3) with a=u, b= to (2.24), and we
find that to each £¢>0, there corresponds @ § >0 such that the following
holds:

For every 1 with O0<i—1<¢, there exists a positive
integer M, for which |Z',(m,n, 1) <e for all m and n
satisfying m 2 M, and a <m/n< B, and for all (x, y)e E.

With the help of (2.19), we infer that

lim  X,(m n)=0 uniformly on E.
r<min<fi

From (2.6), the desired result follows.

4. APPLICATIONS TO DOUBLE FOURIER SERIES

To apply our preceding theorems to the pointwise convergence problem
of double Fourier series, we need the following lemma, which was
established in [4, 5]. (See also [7, Vol. 2, pp. 308-309].)
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Lemma 3. Let fe L(T?) and (1.1) be its double Fourier series. Then
0, f: X, ¥) converges restrictedly 10 f(x, y) a.e. In addition, if | f|log* |f]e
L(T?), then a,,(f. x.y) converges unrestrictedly to f(x, y} a.e.

With the help of this lemma, Theorems | and 2 have the following
consequences:

THeoREM 4. (U) Let |fllog* |f1e L (T?) and (1.1) be the double
Fourier series of f. If (A1)}-(A4) hold for some p and g, then s, (f, x, )
converges unrestrictedly to f(x, y) ae.

(R) Let fe L (T?)and (1.1) be its double Fourier series. If (B))-(B4)
hold, then s, (. x, y) converges restrictedly to f(x, y) ae.

Remark. As explained in the Remark after Theorem 1, we see that
Theorem 4(U) can be applied to either of the cases (i), (ii) stated there.
Hence, this theorem generalizes [2, Corollary 2]. In the following, we will
present an example to which Theorem 4(U) can apply, but Moéricz and
Waterman'’s result is not applicable. This example is constructed in such a
way that (1.1) is the double Fourier series of some fe L,(T?), ¢, =0 for
j<0or k#0, and

[Aw)m]

GO = 1< T Y A} eud <5 G0~ 1) (&)
n — o ”-:n'

for all w=1,2,3, .., where A(w)=1+2 ". The construction is given as
follows: Pick up a sequence {w,:s>=1} of positive integers such that to
each positive integer w there corresponds infinitely many s with w,=w.
Choose an increasing sequence {m,: s> 1} of positive integers such that for
all s> 1,

dm +1<m,, and (Alw,)— 1) m, =%

Define the double sequence {c,: —x </, k <o} as follows: if j is an odd
integer with m_ <j< A(w,) m, for some s, then

Cio= (Aw)y—1)" 112 m, 1 2(»«,‘)““2"1;, t (4.2)

and ¢y =0 for other cases. Then

o
)3
j=- % k

X

Z -

= —%

l()/klzS i ('1(“'3')_ l) lms Z(A(“'s)’ns—m,\"*- 1)
s=1

ox
<2 5 i<+
s=1

This implies that the ¢, (—oc <, k<o) are the Fourier coefficients of
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some function fin L,(7?). (Notice that this implies | f} log* | f] € L (T?).)
Next, we claim that (4.1) holds for all w=1,2,... Let w be any given
positive integer. Consider those m with m,<m < A(w,) m, for some s. Then
Awym<4dm,. If w, = w, it follows from (4.2) that

[A{nw)m}l 4 [A(w,)m.]
Z 'A:C_/'0'< Z IA:C/0|: Z 'A:Cj0|
j=m Jj=m, f=m,
<(Aw) =) m A(w)ymo—m + 1)
< (Aw)— 124572 (4.3)

If w, < w, it follows from (4.2) that

[A(w)m]
z {4 ciol <(Aw)—1)" m Aw)ym—m+ 1)

J=m

ST (Aw)—1)"2 45 2 (4.4)

oW

The inequalities (4.3) and (4.4) give the conclusion that if m,<m<
A(w,)m,, then
[Atwim)

DIY. hN s%(}v(n'}—l)"’z%-s'z. (4.5)

J=m

Consider those m with A(w,)m,<m<m,,,. Then (4.2) gives

[Alw)m] [Awym, ]
. 152 -
Z M:C_;O‘S(A(W,\H)"l) ml Z 141 €50l
j=m j=m .,

By (4.5), we obtain

[Atwym) 3 R
T 141l S5 G0 =14 205+ 1) 2

j=m

From the above discussion, we find that if m <m<m_, ,, then

[Alw)m] 3 ‘
Y4l l <5 ) = 1) 4252

Jj=m
From here, we infer that

_ [awim)
im ) [4]c,l<

m— x
J=m

[ S5 A RVS]

(Alw)—1)12 (4.6)

409 172 2-20
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On the other hand, for w,=w, we have

[A(w)my] R )
Y Aol 2 (Aw)=1) m ] ([Aw) m ]~ m,)
j=m,

> (Aw)—N'2—s 2

Since there exists infinitely many s with w,=w,

{A(w)m]

Iim Y |4]celz(Gw)—1D'"2 (4.7)

n— .
- j=m

Combining (4.6) with (4.7), we find that (4.1) holds. For w=1,2,.., we
have

1 [A(wym] o€

[2(‘1‘)m]_m+1 Uzm !Jlk:z‘:x |A”Clk|
2m [A(w)m)
>— e
G —Dm+1 & i

Applying (4.1) to this inequality, we find that

1 [A(w)em]) o

YUY el = Gwy—1) 2

[jl=m k= x

i
e TAym=m+ 1

Since (A(w)— 1)~ "2 diverges to infinity as w — o0, we find that (MW3) is
not satisfied. Consequently, Moricz and Waterman's result can not apply
to this case. In contrast, (A1), (A2), and (A4) with g =0 hold. This follows
from the definition of the double sequence. From (4.1), we conclude that
(A3) holds for p= 1. Hence, Theorem 4(U) can apply to this example.

As explained in the Remark after Theorem 2, we see that Theorem 4(R)
can be applied to any of the cases (i) to (iii), which are stated in the
Remarks after Theorems 1 and 2. A special example of case (ii1) is as
follows: ¢, = 1/(j*k) (j>0, k odd), and ¢, =0 for other cases. We have

. A
Y X leulP<em,
J= o k= x

which implies that (1.1) is the double Fourier series of some fe L,(T?).
Hence, Theorem 4(R) can apply to this example. However, for p >0, m 2 1,
and A> 1, we have

x {am] oo [am]

Y X Aieul=% X 1400 N2%k+1) )=+

k= - |jl=m k=0 j=m
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This leads to the conclusion that (A3) fails. For j= 1. we have

Es "

S o Muedz Y (U iI=U+D) Dik+1) = 4o,

k= x fo=1

which gives the conclusion that (MW3) fails. From the above discussion,
we find that neither Theorem 4(U) nor Moricz and Waterman’s result is
applicable to this example.
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