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Let ~~,JO<rCp be a family of Banach spaces satisfying, if 0 6 r, < rl <p, 
(i) Fr, 2 F,,; (ii) 1 f Ir, < 1 f jr2 CfE F,,); and (iii) v(r) = In(l f I,) is a convex 
function. Let G, be a Banach space and Y be a Giteaux differentiable mapping, 
and suppose that Y’(x)@‘,,) is dense in G,. Under appropriate assumptions, the 
equation .7(x) = 0 has a solution in F, for 0 < r <p. The results extend the Inverse 
Function Theorem of J. Moser to the class of GiIteaux differentiable operators. 

Let X and Y be Banach spaces and Sr a (Frechet) differentiable operator 
from X to Y. When the operator y’(x) has a bounded inverse, Newton’s 
method-the “rapidly converging” method of the title- provides an 
iteration scheme for solving the equation y(x) = 0. The existence of such a 
solution, which essentially derives from the Contraction Mapping Principle, 
gives rise to the standard Inverse Function Theorem which has been of such 
profound importance in the study of nonlinear differential equations. 

Despite the broad scope of applicability of these ideas, the requirement 
that y’(x) have a bounded inverse imposes a rather severe limitation. 
Indeed, it frequently happens that Sr (and hence ST’(x)) maps from a space 
of functions with n derivatives to a space of functions with n - m derivatives, 
and thus, after a finite number of steps, X’(x)-’ may not even be defined. 
In order to circumvent such difficulties, J. Moser in 1966 [7] formulated an 
Inverse Function Theorem in the context of a scale of Banach spaces (for 
example, the Sobolev spaces H,,,). Moser modified Newton’s method, 
solving the equations X’(x) h = -y(x) only approximately in order to 
preverve the smoothness of h, and he showed that Newton’s method was 
sufficiently regular to still yield a solution to the equation F(x) = 0. 

In this paper we propose to extend Moser’s now classic work in two ways. 
First, while Moser considered only continuously Frechet differentiable 
operators X, we will allow Sr to be GIteaux differentiable. Second, we 
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improve on some of Moser’s technical assumptions, eliminating a quadratic 
estimate and obtaining solutions in a broader range of spaces. 

Besides the above extensions, we feel that our methods are of independent 
interest. As in the earlier papers [8] and [9], we employ the following 
maximal principle of H. Brezis and F. E. Browder (Corollary 3 of [2]): 

PROPOSITION B. Let (E, d, <) be a complete, partially ordered metric 
space and let v: E -+ [0, m) be an arbitrary function. Suppose: 

(1) Y(x)= (yEE:y 2.x) is closedfor each xEE; 

(2) x < y and x # y imply v(x) > w(y); and 

(3) any nondecreasing sequence has compact closure. Then there is an 
X E E for which P(2) = {R}. 

Proposition B, which is independent of the axiom of choice, is general 
enough to embrace a range of other maximal principles, including Ekeland’s 
famous theorem [4]. As with the Contraction Mapping Principle in the case 
of the standard Inverse Function Theorem, the Brezis-Browder principle 
provides a unified technique for proving such theorems for Ghteaux differen- 
tiable operators. 

We now turn to our results. Our assumptions, which are extracted from 
[ 71, are rather technical in character and so we list them separately here 
before stating our results. Throughout, we assume that {(F,, ]a ]r)}O<r<p is a 
family of Banach spaces satisfying: 

(4) for 0 < r, < r2 <P, F,., 2 F,.,; 

(5) for alIfE F,, Iflo < Ifl,; and 

(6) for each r E (0,~) there is a constant C, such that 

Iflr < c, IfIt-” Ltyp (.f E r;,). 

The survey article [5] describes a wide range of spaces satisfying the above 
conditions. Note that (4)-(6) imply that 1. Ip imposes a finer topology on F, 
than does 1. II. We will also assume that (G,, ]I. ]I& and (G,, I] .I],) are 
Banach spaces with G, 2 G,. We will consider nonlinear operators s’ from 
F, to G,. In the applications considered in [7], it usually is the case that 
Sr(F,) c F,- i , so that the range spaces of F have the same structure as 
those of the domain; however, we will require no explicit relationship to exist 
between II 4, and ll4,. 

Within the above framework, we make the following additional 
hypotheses. 

(HI) Sr has closed graph in Fr x G, (0 < r <p). 

(H2) Sr is Gdteaws dznrentiable. By this, we mean that, for each 
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f-p there exists a (possibly nonlinear) mapping s”(f): Fp + G, 
satisfying, for h E FP, 

ti~llr-‘(;T(f+Yh)-a)-~‘(f)hIlo=O. 

(Note that, while T’(f) need not be linear, F’(f) is homogeneous, i.e., 
F’(f) ah = c@‘(f) h for all a.) 

(H3) There is an A4 > 1 such that, for all K > 1, if 1 f IP < K then 
Ils’(f >Il, G MK 

(H4) There are constants p > 0 and C > 0 such that, for each E > 0, 
for each K > 0, for each g E G, and each f E FP with 1) gll, < K and 
1 f I,, <K, there is an f, E FP satisfying: 

(4 IFYf )(fJ -silo G E’K II gllo; 
04 If&G E-‘K II do; and 
(c> Ifh G c Il~‘(f )(fe>llo* 

If (H4) holds, then Moser says the equation F’(J) h = g admits approx- 
imate solutions of order ,u. Note that (c) does not imply that R’(f) is 
injective, since (c) applies only to f, in the smaller subspace FP. 

THEOREM 1. Suppose hypotheses (Hl) through (H4) hold, and suppose 
there is an fO E FP for which 

I&F(f& <$(l +p)-(‘+“)“M-‘K;““ 

where K, = max{M I fOlp, l}. If 

O<r <p(l +P))’ (7) 

then the equation F(f) = 0 has a solution in F,. 

If IIF(JO)l10 satisfies a slightly sharper estimate, we can obtain a solution 
for the remaining values of r: 

THEOREM 2. Suppose hypotheses (HI) through (H4) hold and wpose 
there is an f, E FP for which, for some r E (O,p], 

IISr(f&, < ,~*p(l +p)-(2@+1)‘“(rM)-1 K;“” 

where K, = max{M I fOlp, 1 }. If 

~(1 +P)-’ < r<p 

then the equation s’(f) = 0 has a solution in F,. 

(8) 
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Proof of Theorem 1. Choose j3 E (0, 1) so small that 

IIS(fo)llo <p2 (~)“+‘“’ M-‘K;“” 

M- ‘K- I/U 0 . 

Then with A=(1 --/I)(1 +,u-’ and q=/?+l=(l +/?p)(l +,u-’ < 1, one 
sees that 

WKo/4”’ Il~(fo>llo G~u(l - 9). (9) 

Next set E={(f,s,K)EF,x[O,oo)X[K,,co):Mlfl,<K} (note that 
(f,, 0, K,) E E) and define a metric d on E by d((f, , s, , K 1), V; , s2, K,)) = 
max{ls, - ~~1, IK, -K,l, If, -f21p, IIF -~df2)llo}. Since F has closed 
graph, (E, d) is a complete metric space. Define v/: E -+ IO, 03) by 
t,~(f, s, K) = ilsT(f)llo; again (Hl) implies that w  is continuous. 

Next we fix r satisfying (7) and define an ordering “5” on E by saying 
(f,. s,, K,) 5 (fi, s2, K,) if and only if 

(10) Sl Gss,; 

(11) Ilmfi) -3vzIIo < ((1 + 4M1 - ~>m~(fiIlo - Ilnmllo)~ 
(12) I13%)llo G II-;TVAlo w(-(1 - W2 - Q): 
(13) K2 = K, ewCut1 - q)ts, - SAL 

(14) lfi -f,I, < A-“’ lI~(fi)lloK?‘t’)‘U 1;: eMAl - qN - s,)) & 
and 

(15) Ifi -“f Ir G A II~(f,No KI”+ ‘v”~ ./g: w{(f - s,)(l - 4) 
lcu+ l)dP- llI& 

where A > 0 is a constant depending on r to be determined later. 
It is clear that “2’ is reflexive and anti-symmetric, and that the relations 

(10) through (13) are transitive as well. To see that (14) is transitive, we 
apply (12) and (13); suppose that dfi.~t,K,)~tfi,~2,K2) and 
(fi 9 s2 l K2) 5 (.A, s3, K3). Then 

lh-hl.Gj:‘n”“ll~l/,~llo~~t1~‘Y~~~~~~~-~~~~-~2~/~~ 

< 
I 
;;l”’ Il~(f,)llo e-(l-‘J)(S2-S,K~+l)h 

e(p+‘)(l-g)(s*-sl) exp{p(l - q)(t - sJ} dt 

= 
i 
f:i-ll” IIF(fJlo KY”)‘” exp{@(l - q)(t -si)} dt. 
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Combining this with (14) and the triangle inequality gives that (14) is tran- 
sitive. In exactly the same fashion one shows that (15) is transitive as well, 
and thus “9 is a partial order. 

Now set B = YdfO, 0, K,) = {(f, s, K) E E: df s, K) ;L (J,,, 0, K,)}. In 
view of (4) through (6), convergence in 1. IP implies convergence in 1. lr, and 
thus it follows readily that Y(f, s,K) is a closed subset of ,?? for each 
(f, s, K) E E. Also, in view of (13) and (14), if (fi , s i , K,) 5 df2, s2, K,) and 
dfl,s1,K,)f(fZ,s2,K2), then slfs2, ad thus, by (13 IYV;,S,,K,)> 
w(f2, sl, K,). We will show that F(J) = 0 has a solution for some fE F, 
which is a limit (in F,) of elements in E”; suppose for contradiction, that 
F(J) # 0 for all suchJ 

In order to apply the Brezis-Browder principle, all that remains is to show 
that, if {(f,,, s,, K,)} is a nondecreasing sequence in I?, then {(f,, s”, K,)} 
has compact closure. By (12) and (13) 

llsr(f,% < II~UJllo f+‘-q)s~ 
and 

K, = Koe”l-4)sn, 

Applying these relations to (15) gives, for n < m, 

If, -f,I, <A Il.F(fo)ll,, e-‘l-q’“nK~+““‘p 

exptdp + l)tl - s> 5 P-l) 

I 
S” 

ew ) 0 -Ml - 4) [ 
wl)r-l 1 I dt 

S” 
p \ 

I 
SIP8 

exp W - 4) 
1 
@+ltl 1 I & 

S” P \ * 
By (lo), {se) is a nondecreasing sequence, and, by (7), @ t 1) rp-’ < 1. 
Consequently, { f,} is a Cauchy sequence in F, in both the cases s, + co and 
s, + s < co as n + co; denote by f, the limit of {f,} in Fr. By (12), 
( $Fdf,)llO} is a nonincreasing sequence in [0, co), and thus convergent; (11) 
then implies that {F(jJ} is a Cauchy sequence in G,. In view of (Hl) and 
(12)9 

Il~(fmIlo = lim Il~(fnIlo < lim II~dfo)l10 e-(l-q)sn. 

Now if {s,,} is unbounded, F&J = 0, contrary to our earlier assumption; 
hence {s,} T s, < co as n-t co. This implies that {K,} converges to 
K, = KOeP(l-U)Sm and that {f,} is a Cauchy sequence in I;,, i.e., {f,} 
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converges in $, to f,. We have shown that {(f,, s,,, K,)} is a convergent 
sequence in (E, d), more than was required. 

Consequently, there is an (i 5, K) E E for which Ydf, S; g) = { @, 5, K)}; 
we will now use (H4) to derive a contradiction to this conclusion. In (H4), 
take K = K, E = (J/E)““, g = -Y@) and f =$ (Since K > 1 and 
IfI, < FM-‘, it follows from (H3) that (1 -s’-($)/I, < E.) Corresponding to 
these choices, select fEE Fp so that (a), (b) and (c) of (H4) hold. Next, 
choose r > 0 so small that 

where p > 0 is the number chosen in the first line of the proof. Set 
); we will show that (f +, s+, K+) 2 
(f, S; K), this is the desired con- 

tradiction. 
In view of (16) and our choice of E, 

This implies via the triangle inequality that 

IlX(f + 1 - s’(.nllll 4 (1 + 67) r IlnmI 

and 

llfl(f + II0 G (1 - (1 - 4) 4) Il-s”t.mo * 

The latter inequality implies 1) F(f ‘)I[,, < )I F(f)ll,, e-(‘-9)(si-s) while 
combining the two inequalities gives 

Ip-(f ‘) -@)llo < 5 wT.TIlo - Il~df’)ll0)* 

Consequently (lo), (11) and (12) hold. 
For (13), we need to verify that M If + IP < K+ = ~e”(‘-9’f. Applying (b) 

of (H4) and our choice of E gives 

MIf+I,~~M(lfl,+rIf,l,) 
<~++I-c(“+‘w-“u p-(J’)llo 
= K( 1 + &4P”rl- “@ IIRdi;)llJ. 
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Thus M If’ IP <K+ if M(@)““ IlR(& <~(l -4). But, applying (12) 
and (13), 

M(E/A)l’U IlsT(Jl)llo < MK~‘“e(‘-4’FA3,- lh IIF(fo)llo e-“-q’” 

<Pu(l - 4) 

by (9). Thus (13) holds. 
For (14), 

If’ -Jlp=rI~lp~~(L+l)‘~~-“u Ilqf>llo 

< ~@L+l~I’p’ 
I 

II< ,$T - (f )[I0 ew”“+@’ dt 
0 

I 

s+ 
= $ut I)h-I/u IIqf)llo e’(l-9”‘-s) dt 

s 

and so (14) holds. 
Finally, we verify (15) and determine the constant A. Note that, by 

(W(a), II~~‘(.j%fE) -t L~(.?>Ilo < &‘I? Ilc~(f>llo and thus ll~‘(f>(fJl < 
(1 + sLIK) ll~~(f)Il, = (1 + 1) IICF(f>Il. Also, by (7) (U + 1) rp-’ < 1 and 
so, since 0 <r< 1. 

<<l’exp i(l- l)(l -4) [ ‘;l)r- 1] 1 dt. 
0 

Applying these observations gives 

IJ-f+I,=~lf,l,~~C,lf,lbP-‘““l~~l~’~ 

< <C,(C ((~‘(~)(~~)((0)(P-r)‘p(K(u+ ‘)‘UL -I’u Ipq)llo)“~ 

< C,(C( 1 + /I) II~(f)llo)(P-‘)‘P(K(” + I)‘@J - I’@ IIY-(J)llo)r’P 

(t - W - 4) ‘+?l dt 
P Ii 

where 

‘4 = C,(C(l + L)p+-r)‘P rr’pu exp I--(I-q)[‘+pl)*-111. 

Thus (f+,s+,K+)Z(J;S;@, and the proof of Theorem 1 is complete. 
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The proof of Theorem 2 follows along the same lines as Theorem 1; we 
omit many of the details. 

Proof of Theorem 2. We may choose p > 0 so small and 
6 E (O,pp(r + pr)-‘) so large that 

Then with L and q defined as in Theorem 1, we see that 

Il;“ui)llo ww)“~ < 41 - 4). (17) 

Also, in view of (8), 6 <,u. 
With (E, d) and w  defined as in Theorem 1, define a partial order “S” on 

E by saying (fi,s,,K,)<(f,,s,,K,) if and only if (IO), (11) and (12) hold 
and 

(18) K, = K, exp(d(l - q)(s, - sl)); 

(19) 
and 

If, -&I, < 1-l Il~~Cf,)ll,, K!“+““ .fr; ew(&l - qN--,))df: 

(20) If, - fil, < A ll.~(f,)llo K~uf’)r’np .fS; exp{(t - s,) (1 -9) 
I(41 +fiu>rYw- 111 df. 

In exactly the same fashion as before one shows that “5” is a partial order. 
Assumptions (1) and (2) of Proposition B also hold exactly as before; for 
assumption (3), let ((f, , s,, K,)} be a nondecreasing sequence in i?. If we 
can show {f, ) is a Cauchy sequence in Fr, the remainder of the verification 
of (3) will follow as before. However, by (12) and (17), for m > n, 

JSyexp !~(l -q) [ “L1jr - 111 dt, 

and {f,} is a Cauchy sequence in F, since, by our choice of 6, 
&I + l)rCup)-’ < 1. 

Thus, by Proposition B, there is an <$, 5, K) E l? which is maximal; we 
obtain a contradiction by selecting f, as in Theorem 1. Assumptions (lo), 
(11) and (12) follow exactly as before; for (18): 

MIf+I,~M(IJI,+rIf,l,) 
<Ku + &ww”” IIq.ml> 
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and M]f+],<K+ if M(~/1)“‘IISr~)llo~6(1-q). Applying (12) and 
(18) and using the fact that S < ,u, 

e-“-q’r<6(1 -4) 

by (17), and thus (18) holds. Relations (19) and (20) follow exactly as in 
Theorem 1, and so Theorem 2 is verified. 

The constant A of (20) will be 

A = C,(C( 1 + L))(P-r)‘p A -r’P exp]-(l-q)[“~‘)‘-l]~ 

in Theorem 2. 

Remarks. (i) Since the solution f obtained in Theorem 1 must lie in 
P(fO, 0, K,), it follows that 

and thus we need to assume only that F is defined on a ball B(&, R) where 
R is sufliciently large. A similar remark applies to Theorem 2. 

(ii) W. Kirk and J. Caristi [6] and Kirk and D. Downing [3] obtain 
mapping theorems for Gateaux differentiable operators ST: X + Y under the 
assumption that F’(x)(X) is dense in Y for each x and .F(X) is closed. The 
hypothesis (H4) enables us to weaken their assumption on the range ofjr. 

(iii) In [ 1 ] M. Altman obtains results similar in character to the 
above. His proofs rely on transfinite induction. We remark that, while (5) is 
not explicitly assumed in [ 11, it appears to be necessary to the argument (in 
particular, to derive Eq. (3.28), p. 136 of [ 11). 

(iv) We have used the Brezis-Browder principle in order to avoid 
transfinite induction; the above proof carries over, essentially without 
change, if one uses Zorn’s Lemma instead. 

(v) While our argument is not constructive, it is a consequence of our 
proof that there exists a nondecreasing sequence {(f,, s,, K,)) which 
converges to a solution of Sru) = 0. Unfortunately, the proof does not 
suggest how to select this sequence even when F’(x) is injective. 

(vi) In [7] it is assumed that .F admits the estimate 

Ils’df+~~-~df~-~‘~f~~~~llo~~I~l~-41~l,4 
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for some /I E (0, 1); this estimate is not required by our approach. Also, 
solutions are obtained in [7] in F, only for r < p suffkiently small, in 
contrast to our theorems. 

(vii) As we observed in [8] and [9], theorems of the above type can 
be formulated in the context of “normal solvability.” This reformulation is 
routine, and we leave it to the interested reader. 
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