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Let E be a compact subset of the open unit disc A and let IP be the Hardy space 
of analytic functions f on A for which 1 f 14 has a harmonic majorant. We determine 
the value of the Kolmogorov, Gel’fand, and linear n-widths in LP(E, p) of the 
restriction to E of the unit ball of Hq when p < q or when 1 <q <p < m and E is 
“small.” 0 1991 Academic Press, Inc. 

INTRODUCTION 

Let d be the open unit disc in the complex plane, E a compact subset 
of A, and p a positive measure on E. In this paper we establish the precise 
value of the n-width of the unit ball of the Hardy space Hq in the space 
LP(E, ,u) in the case when 1 <p < q < cc and in certain cases when 
1~ q <p < co. These results extend results of Fisher and Micchelli for the 
cases q=co, 1 <p< co, and p = q=2 (see [FMl; FM2], respectively). 
When p < q, E is the circle (z: Iz/ = r>, and p is restricted to a special class 
of measures, the value of the width was obtained by 0. G. Parfenov [Pa]. 

In Section 1 we establish our notation, give all the requisite definitions, 
and state and prove the main theorem. We conclude in Section 2 with 
several results concerning the more difficult case when 1 d 4 <p d 00. 

SECTION 1 

Let X be a Banach space and A a (convex, compact, centrally sym- 
metric) subset of X. 

The Kolmogorov n-width of A in X is defined by 

d,(A, X) := inf sup inf i/S-- ,011, 
X,, f=A gcxn 

where X, runs over all n dimensional subspaces of X. 
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The Gel’fand n-width of A in X is defined by 

d”(A, X) := inf sup I/XII, 
L” xsL”nA 

where L” runs over all subspaces of codimension n. 
The linear n-width of A in X is defined by 

6,(A, X) :=inf sup l/f-- T,f/l, 
Tn Y-EA 

where T, varies over all linear operators of rank n which map X into itself. 
Much information on n-widths is in the book by A. Pinkus [Pi]. 
We shall take A to be the restriction to the compact set E of the closed 

unit ball A, of the Hardy space Hq. We say that sampling is optimal for A, 
if there are points zi, . . . . z, in d, Lp functions ci, . . . . c, on E, and a linear 
operator T, of the form 

(Tnf)(z)= i dz)f(zd, feHq 
k=l 

such that 

UA,> W = sup Ilf- TJ-II LP. 

(Repetitions among the points zi, . . . . z, are allowed with the usual under- 
standing that if zj is repeated k times, the values of f at zi are the 
consecutive derivatives off at zi of order zero through k - 1.) 

The values of the n-widths are expressed in terms of Blaschke products. 
A Blaschke product of degree n is an analytic function B on A of the form 

B(z) = Iz fi (z - aj)/( 1 - Cjz), 
j=l 

al, . . . . a,EA, 111 = 1. 

We denote the collection of all Blaschke products of degree n or less by 93,. 
The proof of our main theorem depends in an essential way on the 

following extremal problem: for 1 <p, q < co, and a measure p on E define 

6(P, 4; cl) := SUPi llgll uywlllgllm: gE HqI. (1) 

It is evident that solutions to (1) exist and that any solution is an outer 
function (division by a nonconstant inner factor would not affect the Hq 
norm while strictly increasing the LP(E, p) norm). We shall call a solution 
g of (1) normalized if g has Hq norm one and is positive at the origin. 
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PROPOSITION 1. Let g be a normalized solution of (1). Then 

8’ lg(eie)lq = 5, jg(w)lp P(eie; w) dp(w) 

for ali 6, where P(e”; w) is the Poisson kernel for w at eis and 6 is short for 

d(P> 4; P). 

ProoJ: Let v be a real harmonic function on A which is continuous on 
the closed unit disc and E a small positive or negative number. Then 

UP 

6 
i 

/Tjgjqe’qUdB)l’q>jl lg\pe’p’dp] 
E 

where T is the unit circle {eie: 0 < 6 d 2n >. After expanding the exponential 
terms and using the binomial theorem and the fact that g is a normalize 
solution to (I), we obtain 

@ 
s 
T I g(e”)lq v(eie) d6’ 

= s E Ig(w)l” v(w) &(w) 
= fE Ill” fT v(eie)P(eie; w) do da(w) 

Since v is an arbitrary continuous function on T, this gives (2). 

We shall be able to give the n-width in the case when p < q or when p > q 
and E is sufficiently “small” in the following sense. 

DEFINITION. The hyperbolic radius of a compact set E in the unit 
d is the infimum of all those numbers r such that there is a conformal 
mapping 4p of d onto A such that 0(E) Zies inside a circle of radius r 
centered at the origin. 

PROPOSITION 2. Suppose that 1 <p <q < co; then there is but one nor- 
malized solution of (1). Moreover, the same concZusion holds if I d q < p < CO 
provided that the hyperbolic radius rO of E satisfies 

arctan(2r,/( 1 - rt)) < qz/2p. 
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ProoJ Let g, and g, be two normalized solutions of (1). Then 

= s I gl(wYg2(w)Ip I gAw)l p P(eie; w) 44~) E 
:! 

S, I gAw)I p PC@? w) 44w). 

The measure dp(w) = Ig,(w)lp P(eie; w) d,u(w)/fE Jg,(w)Ip P(e”; w) dp(w) is 
a probability measure so the above equality gives (for each 0) 

Since g, and g, are any two normalized solutions, (3) holds with the roles 
of g, and g, interchanged. Moreover, g,/g, = exp(u + iv), so that (3), and 
its counterpart with g, and g, interchanged, can be rephrased as 

and 

sup u(P) < {p/q} sup u(w) 
T WEE 

- i$ u(eie) < - {p/q} Jif, u(w). 

When we add these two inequalities we obtain 

sup u(e’“) - inf u(e”) < (p/q} { sup U(W) - inf 24(w)>. (4) 
T T WEE WEE 

If q up, this clearly implies (by the maximum principle) that u is a 
constant; that is, g, is a constant multiple of g,. This constant must be 1 
since g, and g, are both normalized. 

If q <p, then we have to work a little harder. Assume that u is not iden- 
ticaly constant. Adding a constant to u and then multiplying by a positive 
scalar clearly does not change (4). Hence, we may suppose that - 1~ u < 1 
on T and that the left-hand side of (4) is equal to 2. The following lemma 
is now needed. 

LEMMA. Suppose that u is a real-valued harmonic function on A satisfying 
- 1 d u < 1. If the hyperbolic radius of E is r, then 

sup {U(W) - u(g)> d (4/rc) arctan(2r/(l-r’)). 
w,isE 

ProoJ Clearly the problem is conformally invariant, so there is no loss 
in assuming that E lies within the disc of radius r centered at the origin. We 
shall use the maximum principle and the Poisson integral formula for u: 
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sup {u(i) - t@)> 6 sup{u({)- U(W) : ![I = lwl = Y) 
W,SEE 

<sup 
i 

(1/2r~) [ lP(e”; c) - P(e”; w)l & : /<I = lwi = r 
I 

= (l/271) S IP(e”; r) - P(e”; -r)l de 

= (4/7c) arctan(2r/( 1 - r2)). 

This concludes the proof of the lemma. 

We apply the conclusion of the lemma to (4). Thus, if 
arctan(2r/( 1 - r2)) < xq/2p, then once again we obtain a contradiction. T 
establishes that u is identically constant and bence that g, = g,. The proof 
of uniqueness is complete. 1 

Our main result is this. 

THEOREM 1. Suppose that 1 <p < q < cc or that the hyperbolic radius rO 
of E satisfies 

arctan(2r,/( 1 - rg)) < nq/2p. 

Then 
d,(A,, Lp) = d”(A,, Lp) = 6,(A,, Lp) = inf sup IlgJ311Lr. 

BE!& gtA, 

Moreover, sampling is optimal for A,. 

Proof. There is an odd continuous mapping G of the sphere S2n+1 into 
~8~. This mapping was first used in [FM] and is simple to define: let 
z,,, . . . . z, be n + 1 distinct points of A; for each iz + 1-tuple w = (w,, ...9 w,) 
of complex numbers whose moduli sum to 1, the Pick-Nevalinna theorem 
guarantees that there is a unique positive scalar p and a unique Blaschke 
product B of degree at most n with pB(zj) = wj, j = 0, . . . . n. (A proof of t 
Pick-Nevalinna theorem can be found, for instance, in [F].) The map G is 
then defined by a(w) = B. 

We now use the map o and Proposition 2 to establish the lower bound. 
For each Blaschke product B of degree n or less, let g, be the unique 
normalized solution of (1) with respect to the measure lBIP dp~ Let z be the 
mapping from the sphere S2n+ ’ into A, defined by 

e) = 4x1 g,(x), XES2n+1. 

Then z is an odd mapping from the sphere S2”+’ into A,; further, z is 
continuous into the weak topology on Hq. In particular, the mapping r is 
continuous from S2” + ’ into Lp(E, p). 
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We now apply standard arguments involving Borsuk’s theorem to prove 
that 

To obtain the lower bound for the Gel’fand n-width, let Zr, . . . . I, be n con- 
tinuous linear functionals on Lp. The mapping x ++ { Zj(z(x))} is continuous 
and odd from S2” + 1 into C”. From Borsuk’s theorem we conclude that this 
map has a zero; that is, that there is a BE Sn such that Z,(Bg,) = 0, 
j= 1, . . . . n. Hence, 

sup{ llfll : lj(.f) = 0 andfed,} b ll&sll > inf sup ll@ll,. 
BE& gaAq 

When we minimize over all choices of 1 Ir . . . . I, we obtain the desired lower 
bound for the Gel’fand width. The lower bound for the Kolmogorov width 
is established in this way. Let X, be any IZ dimensional subspace of LP(E, p) 
and let yl, . . . . yn be a basis for X,. We shall assume that p > 1; the case 
p = 1 follow s b y a limit argument. Each function f~ A, has a unique best 
approximation from X, and this best approximation varies continuously 
with J: In particular, this is true of the functions z(x) as x varies over 
S2n+1. Let the best approximation to z(x) be C ci(x) yj. The n-tuple 
{cj(x)} is a continuous, odd function of x and hence by Brosuk’s theorem, 
there is a choice of x which makes all the c, simultaneously equal to zero. 
That is, there is a Blaschke product B, such that the best approximation 
to Bog, from X, is zero. This then gives 

sup inf Ilf-hll 2 inf llBogBo-~ll = IIBOgsOll 2 inf llBgs/l. 
feAy hex,, hsX, BEO” 

This is the lower bound for the Kolmogorov n-width. 
We shall next establish (for all p and q) the upper bound 

d,(A,, Lp) < inf sup IlgBllu. 
BE%” gsAq 

(6) 

This will complete the proof of Theorem 1 since 6, exceeds both d” and d,, 
(see [Pi]). To see (6) we shall use Theorem 3 of [MR]. Let B be any 
Blaschke product of degree it with zeros at zr, ..,, z,. Using the notation of 
[MR], let X= Hq, K= A,, Z= Lp(E, p), Uf = the restriction off to the 
compact set E, Y = C”, and I(f) = (f(z,), . . . . f(z,)). Let G be defined by 

G(a 1 y . . . . a,)(z) = i akBk(z), (al, -., a,) E C”, 
k=l 
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where B, is a constant multiple of the Blaschke product with zeros at zj7 
j# k, the constant being chosen so that k(~k) = 1. According to 
Theorem 3 of [MR], 

~uP{lIfI/,:f~~, andf(z,)=Q, k= 1, . . ..n> 

=i~fsup(/lJ’-A(Z(/‘))lI :feA,l, 

where A ranges over all transformations from C” into L*(E, p). Moreover, 
G is an optimal algorithm; that is, 

SUP{ llfll Lp :fe A, and f (zk) = 0, k = 1, . . . . U> 

= SUP{lIf- Wu”))ll 1I-E AJ. m 

The left-hand side of (7) is exactly 

SUP{ll&ll x-f,; 

while the right-hand side of (7) is surely at least as large as the linear 
n-width of A, in Lp(E, p), We may now take the infimum over all Blaschke 
products of degree IZ to obtain the desired inequality. 1 

EXAMPLE 1. We use Theorem 1 to determine the n-width of A, in EP 
when E is the circle IzI = r, dp = de, and q >p or arctan(2r/(l -v*)) < 
rcq/2p. In (5) take B(z) =zn; we know that the normalized extremal g 
from (1) must be unique and it follows from the choices of E, p, and 
that g must also be rotation invariant. Therefore, it must be that g(z) is 
identically equal to 1. Hence, 

On the other hand, 

d, = d” = 6, < Y”. 

d,=d”=6,= inf sup ilBg/> inf ljBll=rn 
BE!&, SEA, BE%, 

since it is not hard to establish that among all Blaschke products of degree 
y1 or less, B(z) = zn has the minimal Lp norm over (1~1 = r> with respect to 
de. This result for d” and 6, when p < 4 was obtained by 0. Parfenov [Pa]. 

Remark. Suppose that p is a measure on A whose support is not com- 
pact but nonetheless the restriction operator which maps I-J4 into Lp(p) is 
compact. Examples of such measures are not disrupt to construct. In this 
case, we can again ask for the values of the n-widths of the unit ball of 
in L*. The analysis given above (when p < q) carries over immediate1 
this more general case and, of course, the answer is exactly the same. 
case p = q then follows by a limit argument. 

640:67!1-9 
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SECTION 2. THE CASE l<q<p< cc 

This section has several results, most of which are examples which show 
that the situation when q <p and E is not hyperbolically small is quite 
different from the other case. 

EXAMPLE 2. Uniqueness of solutions of (1) may fail when q <p. To see 
this, take E to be the circle Jz/ = r and take dp to be de. If the normalized 
solution to (1) were unique, it would have to be g(z) = 1 since it would be 
rotation invariant. Thus the value of 6 would be 1. On the other hand, if 
we take any a # 0 in the unit disc and set 

f(z)= [(l- lal2)/(1 -az)2]“4 

then flies in the unit sphere of Hq. Hence, because p > q and because f is 
not constant, the L* norm off on the unit circle with respect to dt9 is 
strictly larger than 1. Thus, the Lp norm off on the circle of radius r with 
respect to d&’ is larger than 1, when r is near enough to 1. This contra- 
diction establishes that uniqueness cannot hold. 

On the other hand, Osipenko and Stessin in [OSl] prove that when 
q = 2, p = co, E is the circle of radius r, and p is Lebesgue measure, then 
the Gel’fand and linear widths coincide and are equal to 

r"/( 1 - r2)lj2, 

It is not hard to show in this case that this is in turn equal to 

inf SUP ll&ll,. 
BE%, gtsAZ 

However, this happy coincidence of the answer for the case q>p with the 
case q <p seems to be more of an accident than a rule. We begin with the 
following result which is valid for all compact sets E. 

THEOREM 2. Let E be a compact set and p a positive measure on E. Then 

d”(A2, L”) = 6,(A,, L”)= inf sup l/(1 - 1~1’) - i 
g,,...,gn =eE i 

]gj(z)12 (8) 
j=l 

where g,, . . . . g, vary over all sets of n orthonormal functions in H2. 

Proof. For any particular set of n orthonormal functions, we note that 

1 l/Cl- Iz12)- f lgj(z)12 
1 

= Ks(z, z), 
j=l 
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where Ks(z, w) is the reproducing kernel for w E A with respect to S, the 
orthogonal complement of the linear span of g,, . . . . g,. (For each fixed 
w E A, K,( ~, w) is a member of S; K,(z, w) is an analytic function of z and 
also of .yV.) To establish the lower bound for 8, let S be a subs 
of codimension n and let g,, . . . . g, be an orthonormal ba 
orthogonal complement of S in H*. Then for f E ia 

sup sup If(z)I 2 sup sup {K&> ~)llKs(W, w))“* 
feS zsE weE rtE 

3 sup (K,(w, w)}l’*~ 
WEE 

After taking the infimum over all such subspaces S, e¶uivaiently, over 
all orthonormal sets g,, . . . . g,, this gives the lower bound. Since 
If( G VW9 w2 f or all f~ A, n S and ali z E d, we also obtam the 
right-hand side of (8) as an upper bound of 8. 

The upper bound for 6, is obtained by noting that any orthonormal set 
g,, ~.., g, gives a rank n operator from Hz to L” by the simple formula 

(Tnf)(z) = i: gjtz) C' fgi dt3 
j=l 

<sup {K,(z, z)}l’2. 
ZEE 

With Theorem 2 proved, we consider the following example. 

ExamLE 3. We compute the Gel’fand l-width of the unit ball of 
in L”(E, ,u) where E is the interval C-r, r], O-=z r 6 l/2, and & is dx. 
A computation establishes that 

inf sup /B(z)j/(l- Izj*)“*=r/(f --y2)‘12~ 
Beb, zeE 

On the other hand, the function g(z) = (1 - ~“)‘/“/(I - r2z2) has M* morm 
one and some simple calculus (here is where you use P d l/2) shows that 

sup {(l- jzl*)-‘- /g(z)l’} <r/(1 -?)l’2. 
ZEE 

This shows that formula (5) of Theorem 1 does not always hold in the case 
when q <p. 
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EXAMPLE 4. Even when E is the circle IzI = Y and L+ = d13, formula (5) 
of Theorem 1 may not hold. Fix q, 1 d q < 2, and take p = co. Let 

~(z)=((1-Tz)-1-1z)2’q/((1-r2))-r2)1’q, 

Then it is not overly hard to establish that CJJ lies in the unit sphere of Hq 
and that cp satisfies the integral identity for each gE Hq 

s 2n @(e”) Iq(eie)lqp2 g(P) dfl= cl g(r) + c2g’(0), 
0 

where c1 and c2 are two constants. It follows from [OS21 that cp is a 
solution of the extremal problem 

y := sup{ If(r)1 : f~ A, andf’(0) = 0} 

and hence ~=((l-?-r---r ) . 2 r/q We take the subspace M of Hq of 
codimension one determined by 

Then surely 
M= {f~ Hq :f’(O) = O}. 

For r near enough to 1, this last quantity is strictly smaller than 
r/( 1 - r2p which is the value of 

inf SUP II&II m. 
Lie!& gsAq 

Hence, formula (5) of Theorem 1 cannot hold here. 
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