
doi: 10.1016/j.procs.2016.05.464

Inclusive Cost Attribution for Cache Use Profiling

Josef Weidendorfer and Jens Breitbart

Department of Informatics, Technical University of Munich, Germany
{Josef.Weidendorfer|j.breitbart}@tum.de

Abstract
For performance analysis tools to be useful, they need to show the relation of detected bot-
tlenecks to source code. To this end, it often makes sense to use the instruction triggering a
problematic event. However for cache line utilization, information on usage is only available
at eviction time, but may be better attributed to the instruction which loaded the line. Such
attribution is impossible with current processor hardware. Callgrind, a cache simulator part of
the open-source Valgrind tool, can do this. However, it only provides Self Costs. In this paper,
we extend the cost attribution of cache use metrics to inclusive costs which helps for top-down
analysis of complex workloads. The technique can be used for all event types where collected
metrics should to be attributed to instructions executing earlier in a program run to be useful.

Keywords: Performance Analysis, Cache Simulation, Cost Attribution

1 Introduction

If programmers want to tune their applications, performance analysis tools are crucial for
understanding the sources of bottlenecks. The usefulness of such tools heavily depends on their
ability to correctly relate events, which are responsible for a given bottleneck, to the source code.
While it still may be difficult to find the right modifications reducing the bottleneck, the correct
relation as well as an estimation of how much performance can be improved is essential to not
waste time on irrelevant optimizations. Due to the large gap between processor and memory
performance, it nowadays is essential for good performance to exploit caches. Depending on
the application, it may be possible to improve the performance of an application by a factor
of 10 just by improving access locality by changing the order in which memory is accessed,
or by changing the layout of data structures. More concretely, caches are exploited well when
temporal and spatial locality of accesses is high. A metric for the first is the average number of
times a cache lines was accessed while residing in cache, and a metric for the latter (in regard
to current block-based cache designs) is the number of bytes accessed within a line before it got
evicted.

Performance counters in current processors provide cache miss counters as well as infor-
mation about the memory access which triggered a cache miss. Together with the number of

Procedia Computer Science

Volume 80, 2016, Pages 1439–1449

ICCS 2016. The International Conference on Computational
Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

1439

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82218316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.464&domain=pdf

accesses done by the program, we can calculate the above metric for temporal locality. However,
relation of low locality to source is difficult. Let us assume two data structures frequently ac-
cessed in an interleaved manner, one larger than the cache and accessed in a streaming fashion,
the other easily fitting into cache. As the streamed access will evict both data, cache misses
happen on both accesses to the high and the low locality data structure. Thus, the cache miss
numbers with their relation to source lines is misleading as only the streaming accesses show
the bad behavior. If we instead measure a locality metric per cache line, and relate that to the
instruction which loaded the line into cache, the tool would show bad locality only for accesses
to the stream in our example (touching data of cache lines only once before eviction). While
such an attribution technique cannot be implemented with hardware measurement, Callgrind
[16] — a cache simulator based on the runtime instrumentation framework Valgrind [13] —
provides this feature when switching on the optional cache use analysis [17]. It uses the locality
metrics given above. However, as we want to highlight bad behavior, low locality should show
up on top. Thus, the metrics actually used are the reciprocal of the access count before eviction,
and the number of unused bytes at eviction time.

Just pin-pointing at the source lines with bad performance often is not good enough in
complex codes, especially when this happens in library functions which cannot be modified,
or when the functions themselves are so small that modifications make no sense. In this case,
for an analysis tool to be able to tell about the call chains to the bad performing functions
often is essential for a tools’ usefullness. For example, functions up the call chain may be called
unnecessary often, or the order of calls may be changed to result in better cache behavior.
To be able to spot the call chains relevant for performance, inclusive cost attribution is used:
whenever a metric is attributed to an instruction in a function, this metric also is propagated up
the call chain as inclusive cost of functions. This way, main gets 100% of all metrics collected as
its inclusive cost. Users of the profiling tool are guided by inclusive costs in a top-down fashion
via the relevant call chains. They can easily spot where modifications are needed/useful, that
is, on the relevant call chains involving their own written functions before diving into 3rd-party
library code.

While the above mentioned cache use metric in Callgrind is very useful for analysis, it does
not provide inclusive costs, rendering the metrics difficult to use in complex codes. In this paper,
we extend the collection technique for inclusive costs used in Callgrind to include metrics which
are only available long after an instruction was executed that should get the metrics attributed.
We call these back-dating metrics in contrast to immediate metrics which directly are available
at the same time the instruction is executed which should get the metrics attributed. Cache
use metrics are examples of back-dating metrics while FLOP count, load/store operations or
cache misses are immediate metrics. We show the resulting overhead of cache use analysis with
our new attribution technique, both in simulator runtime and memory overhead.

The paper is structured as follows: in the next section, we explain the current collection
technique in Callgrind and show the difficulty of getting inclusive costs of cache use metrics.
In Sect. 3, we describe our novel strategy. In Sect. 4, overhead numbers are given, and before
conclusion, we provide some related work.

2 Inclusive Cost Collection in Callgrind

Callgrind uses instrumentation of binary code at runtime. Before a piece of machine code is exe-
cuted for its first time, an instrumentation pass injects measurement code into the original code.
This instrumented version is executed instead of the original code and is stored into a so-called
code cache. Any further request for executing the original code will be redirected to the previ-

Inclusive Cost Attribution Weidendorfer, Breitbart

1440

ously instrumented version in the code cache. Re-instrumentation may happen on eviction as
the code cache has limited size. The technique is very similar to Just-In-Time Compilers, which
translate higher-level code piece-wise (often already pre-compiled into architecture-independent
byte code) into machine code directly before it is to be executed for the first time. The in-
strumentation pass detects instructions accessing memory, function calls and returns. For each
instruction which potentially has a cost, Callgrind allocates space for corresponding counters.
For example, memory load instructions get counters for the number of loads and the number of
cache misses for each cache level of the simulated processor model. Further, the instrumenta-
tion pass injects calls into handlers which then forward runtime events to the cache simulator
or maintain a stack of currently active calls. At every point in time, Callgrind knows the exact
call chain from main1. We note that there is a separate call stack for every thread running as
part of the application. Inclusive costs are not maintained per function, but per call arc, ie.
per (calleri, callee) tuple. Here, a calleri is an instruction address of a call instruction inside
a function caller and callee is the called function. Whenever a specific call arc is traversed for
the first time within a thread, a call-arc object including space for the inclusive costs “below
this call arc” is allocated. The entries of the call stack maintained by Callgrind actually consist
mainly of pointers to such call arc objects. The structure for a call arc object is called JCC for
“jump cost center” 2.

In the introduction, we already provided a rough idea of how inclusive costs can be collected.
We want to aggregate event costs such as the number of last level cache misses. Whenever an
event (here a last level cache miss) happens, we increment (adding a cost of “1” for this event)
a cost counter keyed by the instruction address of the instruction whose execution triggered the
event3. Such cost counters aggregate Self costs, that is, costs triggered by the execution of the
instruction. The distinction to inclusive cost gets clearer on the function level: self costs of a
function are the sum of all self costs of instructions belonging to this function, while inclusive
costs of a function are the self cost of the functin plus the sum of inclusive costs of called
functions (a recursive definition).

For events such as floating point operations, execution of load/store actions, memory ac-
cesses, or cache misses, the cost is directly available when the instruction triggering the cost
is executed (i.e. immediate metrics according to the definition in the introduction). Thus, to
update any inclusive costs of functions for the cost stemming from execution of an instruction,
we have to maintain the current call chain down from main to the function which includes the
instruction executed and propagate the new generated cost to all inclusive cost counters up the
call chain. We can do this directly after updating the self cost counter.

However, this strategy is slow. The length of the call chain from main (that is, the call stack
maintained by Callgrind) down to the currently executed function can be long. But traversing
this chain whenever an event is happening actually is unnecessary. Instead, we can create a new
counter for each call into a function, aggregating all self cost within this function. When exiting
the function, we propagate these aggregated self costs up the call chain. The cost counter per
function invocation can be part of an entry of the call stack. We call this strategy “inclusive
cost aggregation method 1”.

We can refine this method: there is no need to traverse the full call chain whenever a
function exit happens. Instead, we only update the inclusive cost for the call arc we return

1Actually not main but the function that is started with the first instruction executed in a binary, including
runtime linker and shared library initializations.

2Actually, caller and callee which identify call arc objects can be more than functions. They may represent
more detailed calling contexts identifying call chains up to a given length themselves. However, this is not
relevant to the discussion in this paper.

3The cost counter further is keyed by the current thread number.

Inclusive Cost Attribution Weidendorfer, Breitbart

1441

Figure 1: Inclusive cost aggregation method 3. To get inclusive cost for a function invocation,
we take the difference of values from a global cost counter at start and end.

from. Further, we add the cost counter of the called function to the cost counter of the calling
function on return. This results in automatic propagation of inclusive costs at function exits.
We note that in this lazy scheme the inclusive costs are only correct at program termination.
We call this strategy “inclusive cost aggregation method 2”.

There is a much simpler way. We do not even have to propagate inclusive costs. Instead,
we use a thread-global cost counter which is incremented whenever a self cost counter is incre-
mented. When a function is entered, we remember the value of this global counter, and push
both a pointer to the corresponding call-arc object and this value on our call stack. On return-
ing from the function, we calculate the difference of the current value of the global counter and
the remembered value. This gives us the inclusive cost of the function invocation, consisting
of all events which happened between entering and leaving the function. It is enough to add
this difference to the inclusive cost counter of the call arc object which represents the call to
the function. This is shown in Figure 1. Against a time axis, a monotonically increasing global
cost counter for misses is shown. We show calls and returns of functions X and Y with Y being
called nested from X. It is obvious that the inclusive cost of X can be determined without
requiring the inclusive cost of Y. We call this strategy “inclusive cost aggregation method 3”.
This actually is used in Callgrind.

The Difficulty with Back-Dating Metrics

Both collection methods 2 and 3 only work with immediate metrics. In regard to method 2,
the cost counter for the invocation of a function may already be destroyed and propagated
at the time a metric is generated for an instruction which executed as part of that function
invocation. Regarding method 3, we could have a global counter for back-dating metrics. But
we will get increments of this counter for instructions which were executed in the past, mixing
up the increments for different functions. There is no way to get back meaningful inclusive
costs per function.

Method 1 actually would work, but is hopeless inefficient. Further, as the current call chain
from main at instruction execution time probably is different from the call chain at metrics
generation for this instruction, we have to remember the set of active functions in the call chain
for each instruction executed, as we need this set of functions for adding the cost when the
metric becomes available.

Inclusive Cost Attribution Weidendorfer, Breitbart

1442

Figure 2: Snapshot of the back-dating tree of one thread with one signal handler running. The
signal handler starts a new isolated back-dating tree, resulting in two active nodes for this
scenario. Active nodes are not pruned.

3 Inclusive Cost for Back-Dating Metrics

In this section, we describe the strategy for inclusive cost aggregation for back-dating metrics,
based on the quite inefficient idea from the last section. We need to remember the state of
the call chain from main for all instructions where we may have metrics generated afterwards.
With the cache use metrics as example, this means that we need to remember the chain of call
arcs for every instruction which loaded a cache line that is not evicted yet.

We use a reference counted tree to store all relevant parts of the call chain, being a partial
call tree. A node represents a function that was called from a specific other function within the
observed program. Thus, each node can be related to an call arc object (JCC), and actually has a
reference to the corresponding JCC. Nodes exist at least as long as there are cache lines residing
in the cache simulator which got loaded from instructions in the corresponding function. Such
cache lines get associated with corresponding nodes. Each node has cost counters which lazily
collect metrics from associated cache lines as they get evicted. Only leafs can be pruned. Then,
the cost counters are propagated to the parent node as well as to the cost counters of the related
JCC. Each thread (and each signal handler within a thread) has its own tree. In each tree, one
node is marked as being the active node reflecting the currently executing function within this
thread (or signal handler). Active nodes are not allowed to be cleaned up. In alignment with
the purpose of supporting the back-dating of metrics, we call such a tree in the following a
back-dating tree.

Our back-dating tree is constructed by adding a new node to our tree as child of the current
active node (if not already existing). The new node becomes the active node. For every return
observed, we go back to the parent and set it to be the active node4. For every cache line that
is loaded by an instruction, we increase a reference counter within the active node by one. The
cache simulator associates the cache lines by storing a pointer to that tree node. Whenever a
cache line is evicted, we accumulate the metric collected for this cache line to the cost counters
in the tree node and reduce the reference counter by one.

4Actually, the implementation is more complex, as the simulator and call/return observation can be turned
on and off during the runtime of the simulation, which requires us to be able to deal with ’missing’ parents.

Inclusive Cost Attribution Weidendorfer, Breitbart

1443

Once the reference counter reaches zero, i.e. all cache lines loaded during the execution of
that function have been evicted, the node becomes a candidate for pruning. However, only
leafs are actually pruned and must not be an active node. If the node is to be pruned, the
aggregated costs are both propagated to the parent node and the related JCC, and the node
is deleted. This algorithm is applied recursively. That is, we check the parent of the deleted
node. If that is not the active node, it is a leaf node, and no cache lines are associated with it,
we prune it as well.

Signals and signal handlers have to be handled carefully. As they are called asynchronously
to program execution, Callgrind makes sure they do not show up as being called from the
function currently running. Instead, called signal handlers get new roots of isolated call graphs.
To this end, whenever a signal handler is called, we also need to create a new isolated root node
of a new back-dating tree. Thus, we maintain potentially multiple trees per thread, as even
within a signal handler, another signal handler may be called.

Figure 2 shows a snapshot of a back-dating tree of one thread with a signal handler currently
running.

In theory the tree can increase (almost) infinite, but our practical results suggest the size of
the tree is within the order of the largest cache size currently simulated for most applications.
Compared to method 1 the back-dating tree provides an efficient way to compute the inclusive
costs without the need to traverse the call chain.

4 Example and Overhead Evaluation

HYDRO is an application proxy benchmark that is been used to benchmark European Tier-0
HPC systems. HYDRO serves as a proxy for RAMSES5 [15], which is a Computational Fluid
Dynamics application developed by the astrophysics division in CEA Saclay. HYDRO contains
all performance relevant algorithms and communication patterns of the original application,
but it is simplified and trimmed down to only about 1500 lines of code (compared to about
150,000 lines of code of the original RAMSES). Subsequently, HYDRO was ported to various
programming languages and parallel programming models including Fortran, C /C++, OpenMP,
MPI, hybrid MPI/OpenMP, CUDA, OpenCL and OpenACC [10]. Our experiments are based
on the OpenMP C99 implementation. Hydro is available at GitHub6.

In the following, we used the input configuration input 500x500 center.nml provided with
HYDRO but set the number of iterations to 10. While our inclusive collection technique works
well with multi-threaded code, there is no benefit to use more than 1 thread as Valgrind (and
thus, Callgrind) does not run multiple threads simultaneously. A single MPI task is used. The
code was compiled with GCC 5.2.1 with -O3 -march=corei7-avx and OpenMP enabled on
Ubuntu 15.10. The runtime numbers are measured on an Intel Core i7-3740QM CPU with
nominal clock frequency of 2.7 GHz. This CPU has four cores with Hyperthreading and Turbo-
boost enabled. Cache sizes of core-private caches are 32 kB (both L1 data and instruction
cache) and 256 kB for L2. The shared L3 cache is 6 MB. Associativity of L1/L2 is 8 and 12 for
L3 cache.

The 10 iterations of this configuration natively take 1.12s to run. Callgrind (from Valgrind
3.11.0) with cache simulation requires 110 seconds, showing a slowdown of 98x. Switching
on cache use analysis with the original Callgrind without inclusive cost collection requires 154
seconds, adding 40% to the simulation with resulting slowdown of 137x. This is expected, as for
every access to a cache line, we have to update an access counter and a byte usage mask. The

5http://www.itp.uzh.ch/~teyssier/ramses/RAMSES.html
6https://github.com/jbreitbart/Hydro

Inclusive Cost Attribution Weidendorfer, Breitbart

1444

Figure 3: Top-down visualization of the “Spatial Loss for L1” metric of Callgrinds cache use
analysis for HYDRO.

extension for inclusive cost collection presented in this paper makes the HYDRO run taking
168 seconds, adding around 9% of runtime.

Statistics output shows that the back-dating tree structure used for inclusive cost collection
in this run has an average tree size of 217 nodes with 987 being the maximum. The latter
approximates the number of distinct functions executed which is 997. This includes not only
functions within HYDRO, but also all functions in shared libraries which got executed during
the run. Further we note that 1142 distinct call arc objects (JCCs) were allocated.

Callgrind simulates a 2-level cache hierarchy, with size/associativity parameters defaulting to
the parameters of the L1 and last-level caches of the real hardware, respectively. Thus, Callgrind
uses 32 KB and 6 MB sizes with associativities 8 and 12, respectively. The short HYDRO run
does around 2.5 billion accesses, resulting in 97 million L1 misses and 69 million last-level misses,
that is 6.2 GB of data transfer into L1 and 4.4 GB into last-level cache from main memory; due
to read-for-ownership transactions, every write miss also is a read miss — the numbers are only
in direction to the core. Cache use results show that from the 4.4 GB data loaded from main
memory into L3 cache, only 17 MB were never actually used. However, from the 6.6 GB of data
loaded into L1, 1.2 GB (19 %) are never accessed (this metric is called SpLoss1 in Callgrind,
i.e. Spatial Loss of L1 cache). Fig. 3 shows the top-down visualization of SpLoss1 in our
GUI visualization (KCachegrind). As both the relevant functions updateConservativeVars

and gatherConservativeVars use OpenMP, GCC’s OpenMP implementation adds a call to
GOMP parallel in between these functions and the OpenMP loop bodies extracted into separate
functions. We use “–fn-skip=GOMP parallel” to remove this function from the visualization.
This works by attributing costs of functions not to be shown to the caller.

Inclusive Cost Attribution Weidendorfer, Breitbart

1445

Here is the code extract of one of the identified functions with the high “spatial loss”
(conservar.c, lines 103-111):

#define IHU(i,j,v) ((i)+Hnxt*((j)+Hnyt*(v)))

...

103 #pragma omp parallel for private(j,s)

104 for(s=0;s<slices;s++) {

105 for(j=Hjmin;j<Hjmax;j++) {

106 u[ID][s][j]=uold[IHU(rowcol+s,j,ID)];

107 u[IU][s][j]=uold[IHU(rowcol+s,j,IV)];

108 u[IV][s][j]=uold[IHU(rowcol+s,j,IU)];

109 u[IP][s][j]=uold[IHU(rowcol+s,j,IP)];

110 }

111 }

This nested loop actually does a transposition of four matrices. From Callgrind results,
we see that the loops relate to the input size 500x500; lines 106–109 are executed 500 ∗ 500
times. These transpositions cannot exploit the L1 cache. All loads are misses, and only use 8
bytes from a 64 byte cache line before it gets evicted. The optimization is beyond the scope of
this paper, but loop blocking (that is, transpose sub-blocks which can fully use L1 cache lines)
probably increases the performance.

It may be that the issue detected by Callgrind’s cache use analysis is hidden by main memory
latency in our case (with a size of 500x500) and that such an optimization does not really result
in much improvement. However, we note that for larger input sizes, the transposition may
not fit into L2. The traffic for the shared L3 may result in poor scaling of the code within a
multi-core chip.

Further Overhead Results

In the following, we give some kind of worst-case scenario of the additional memory requirements
of the back-dating tree. The memory consumption at a given point in time depends on the
number of nodes in the call graph trees of the active threads. In the worst case, each loaded
cache line may be referenced by another leaf node, and call chains only may share a common
root. Thus, the memory consumption depends on (1) the size of the cache (more exactly, the
number of cache lines) and (2) an application characteristic which tells about how much various
call chains differ from each other.

To present a realistic worst case, we run the initialization phase of Mozilla Firefox 44.0 with
Callgrind’s extended cache use analysis; we waited until the program window showed up with
a page involving a search field, and we closed the window afterwards. This results in almost
80 thousand functions being executed in over 60 threads. The average of summing up the
size of all required back-dating trees is 37625 nodes, with the maximum being 89486 nodes for
all trees. The maximum almost matches the number of cache lines in the L3 cache, which is
6MB/64 = 98304. We conclude that the number of cache lines in the largest cache configuration
of the simulated architecture seems to be some kind of upper bound for the number of nodes in
the back-dating trees. As said before, one could create an almost infinite tree by for example
carefully constructing function calls that do hardly any loads from main memory into cache.

Inclusive Cost Attribution Weidendorfer, Breitbart

1446

5 Related Work

Alternative Inclusive Cost Collection Methods

When programmers add their own profiling to their source code, either using time or per-
formance counters with PAPI [12], they usually read the cost counters before and after an
interesting piece of code and print out the difference. This is exactly what Callgrind does with
immediate metrics. However, reading cost counters actually can be very time consuming if
done with high frequency. This is bad when we want to profile the runtime behavior because
measurement error is in the same order as the measurement overhead. With manual profiling,
such problems are easily seen and worked around. However for a generic tool, it is difficult to
estimate the measurement overhead from inserted measurement code, as it is not known how
often given code will be executed. For example, simply add cost counter reads at start and end
of every function already may result in the doubled runtime, rendering results invalid.

Sampling by e.g. only looking at every n-th event instead of every event is better7. We can
get the distribution of events over program instructions in a statistical way, which approximates
the real self costs regarding to that event. Overhead is tunable; for more exact results, we just
have to run the sampling for a longer time. A drawback is that we do not get inclusive costs.
For that, we can propagate every single sample up a maintained call chain. Indeed, most
sampling profilers such as the Linux Perf Events[5] can do that. However on every sample, the
tool typically back-traces the stack frames which takes quite some time and therefore, samples
should not be done with high frequency to keep the overhead below a given threshold. There
are ways to reduce the stack back-tracing overhead. For example, the HPC Toolkit [14] replaces
return addresses to own trampoline code at sample points for lower overhead. Further, it uses
sophisticated binary analysis to get a higher quality of back-traces.

The older GProf [7] uses a different approach: it just collects self costs by sampling, and
uses minimalistic instrumentation at function entries to collect enough information for heuristic
offline propagation of self costs. However, the resulting approximated inclusive costs can go
wrong, and even the minimalistic instrumentation can have a high overhead for small functions.
Callgrind has no issue with overhead, as all costs come from a simulated machine model. For
back-dating metrics, we actually could use the approach from GProf, heuristically propagating
self costs. However, the inclusive costs collection method for immediate metrics are exact in
contrast to any heuristic. We do not want to mix such different result qualities, as this would
be very difficult for a user to understand.

We note that to the best of our knowledge, for real measurement tools, it currently is
impossible to collect back-dating metrics at all with available hardware.

Cache Simulation

Architecture simulation is used in the design process for processor hardware, such as Sim-
pleScalar [3] and Gem5 [2]. For this purpose, cycle-accurate simulation using an exact machine
model is important. However, this results in huge slowdown factors which are prohibitive for
using them as performance analysis tools by application programmers, even with sophisticated
techniques such as interval simulation in Sniper [4]. To reduce simulation time, it may be fine
to only simulate a processor component. This especially is the case for caches whose good ex-
ploitation can easily make a difference in the order of a magnitude. An example for simulation
of complex cache designs is CMP$im [9], which is used to study novel replacement policies.
Examples for earlier proposed cache simulators are SIGMA [6] or MICA [8].

7Aliasing effects still have to be taken into account.

Inclusive Cost Attribution Weidendorfer, Breitbart

1447

For performance studies, simulators with simple cache models are usually enough. This way,
MemSpy [11] analyses memory access behavior related to data structures, and SIP [1] provides
metrics for spatial locality. SIP only calculates metrics at one cache level. These simulators are
quite similar to Callgrind. However, most are academic projects not as useable and stable as
the tools found in the Valgrind project.

We do not know of any cache simulators (including the mentioned ones) which collect back-
dating metrics.

6 Conclusion

In this paper, we presented our extension to Callgrind for collecting exact inclusive costs for
cache use metrics. These metrics reflect temporal and spatial locality behavior of accesses to
cache lines and are collected at cache line eviction time. Callgrind relates these metrics to the
instruction which loaded the cache lines. We classify such metrics as back-dating metrics as
they get attributed to an instruction executed earlier in time. The presented technique which
uses a partial call tree produces additional overhead of around 9% with neglectable memory
overhead for an example HPC code. The extension makes a top-down approach to cache use
analysis possible and thus improves usability. It will be merged into the next Valgrind release.

As cache use is about access behavior to data structures, we will research options to add attri-
bution of cache use metrics to data structures. However, being another dimension of attribution
of metrics related to memory accesses, this will also need an extension of the visualization.

References

[1] E. Berg and E. Hagersten. SIP: Performance tuning through source code interdependence. In Pro-
ceedings of the 8th International Euro-Par Conference (Euro-Par 2002), pages 177–186, Paderborn,
Germany, August 2002.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, T. Hower,
D. R. an d Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood. The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[3] D. Burger, T. M. Austin, and S. W. Keckler. Recent extensions to the simplescalar tool suite.
SIGMETRICS Perform. Eval. Rev., 31(4):4–7, Mar. 2004.

[4] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulation. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’11, pages 52:1–52:12, New
York, NY, USA, 2011. ACM.

[5] A. C. de Melo. The new Linux perf tools. Presentation at Linux Kongress 2010, Sep 2010.

[6] L. DeRose, K. Ekanadham, J. K. Hollingsworth, and S. Sbaraglia. SIGMA: A simulator infras-
tructure to guide memory analysis. In Proceedings of SC 2002, Baltimore, MD, November 2002.

[7] S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof: A call graph execution profiler.
SIGPLAN Not., 39(4):49–57, Apr. 2004.

[8] H. C. Hsiao and C. T. King. MICA: A memory and interconnect simulation environment for
cache-based architectures. In Proceedings of the 33rd IEEE Annual Simulation Symposium (SS
2000), pages 317–325, April 2000.

[9] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: A Pin-based on-the-fly multi-core
cache simulator. In Proc. Fourth Annual Workshop on Modeling, Benchmarking and Simulation
(MoBS), pages 28–36, Beijing, China, June 2008.

Inclusive Cost Attribution Weidendorfer, Breitbart

1448

[10] P.-F. Lavallée, G. C. de Verdière, P. Wautelet, D. Lecas, and J.-M. Dupays. Porting and op-
timizing HYDRO to new platforms and programming paradigms lessons learnt. http://www.

prace-project.eu/IMG/pdf/porting_and_optimizing_hydro_to_new_platforms.pdf, 2012.

[11] M. Martonosi, A. Gupta, and T. E. Anderson. MemSpy: Analyzing memory system bottlenecks
in programs. In Measurement and Modeling of Computer Systems, pages 1–12, 1992.

[12] P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A portable interface to hardware performance
counters. In In Proceedings of the Department of Defense HPCMP Users Group Conference, pages
7–10, 1999.

[13] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary instrumen-
tation. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’07, pages 89–100, New York, NY, USA, 2007. ACM.

[14] N. R. Tallent, J. M. Mellor-Crummey, and M. W. Fagan. Binary analysis for measurement and
attribution of program performance. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’09, New York, NY, USA, 2009. ACM.

[15] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement-a new high resolution
code called ramses. Astronomy & Astrophysics, 385(1):337–364, 2002.

[16] J. Weidendorfer, M. Kowarschik, and C. Trinitis. A tool suite for simulation based analysis of
memory access behavior. In ICCS 2004: 4th International Conference on Computational Science,
volume 3038 of LNCS, pages 440–447. Springer, 2004.

[17] J. Weidendorfer and C. Trinitis. Collecting and exploiting cache-reuse metrics. In ICCS 2005:
5th International Conference on Computational Science, volume 3515 of LNCS, pages 191–198.
Springer, May 2005.

Inclusive Cost Attribution Weidendorfer, Breitbart

1449

