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1. Introduction

For a positive integer n, N denotes the set {1,2,...,n}. The set of all n x n complex matrices is

denoted by C"*™ and R"*" denotes the set of all n x n real matrices throughout.
Let A = (a;;) and B = (b;;) be two real n x n matrices. Then, A > B(> B) if a;; > b;j(> b;;) for all
1<i<n,1<j<n. If O is the null matrix and A> O(> 0), we say that A is a nonnegative (positive)

* This project is granted financial support from Shanghai Science and Technology Committee (No. 062112065) and Shanghai
Priority Academic Discipline Foundation and PhD Program Scholarship Fund of ECNU 2009(PHD2009).

* Corresponding author.
E-mail address: glchen@math.ecnu.edu.cn (G. Chen).

0024-3795/$ - see front matter © 2009 On behalf European Society
doi:10.1016/j.1aa.2009.03.049


https://core.ac.uk/display/82218275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/00243795

Q. Liu, G. Chen / Linear Algebra and its Applications 431 (2009) 974-984 975

matrix. The spectral radius of A is denoted by p (A). If A is a nonnegative matrix, the Perron-Frobenius
theorem guarantees that p(A) € o (A), where o (A) denotes the spectrum of A.
Forn>2,ann x nA € C"™" is reducible if there exists an n x n permutation matrix P such that

Tap_ |A11 A12
PAP_[ ; szz],

where Ay jisanr x rsubmatrixandA,isan(n —r) x (n — r) submatrix, where 1 <r < n.Ifnosuch
permutation matrix exists, then A is irreducible. If Aisa 1 x 1 complex matrix, then A is irreducible if
its single entry is nonzero, and reducible otherwise.

Let A be an irreducible nonnegative matrix. It is well known that there exists a positive vector u
such that Au = p(A)u, u being called right Perron eigenvector of A.

The Hadamard product of A € C"*™ and B € C"*" is defined by A o B = (a;b;j) € C"*".

In [3, p. 358], there is a simple estimate for o (A o B): if A,B € R"™*",A>0, and B> O, then p(A o
B) < p(A) p(B). From Exercise [3, p. 358], we know this inequality can be very weak by taking B = J,
the matrix of all ones. For example, If A = I, B = J, then we have

p(AoB)=pA) =1L pA)pB) =n

when n is very large. But also clearly show that equality can occur (letA = Iand B = I).
Recently, Fang [4] gave an upper bound for p (A o B), that is,

p(AoB)< 1211,82(“{201',1171',1' + p(@A)p(B) — a;ip(B) — bijp(A)} (1)

which is shaper than the bound p (A) o (B) in [3, p. 358].

For two nonnegative matrices A, B, we will give a new upper bound for p(A o B) in Section 2.
The bound is shaper than the bound p(A)p(B) in [3, p. 358] and the bound max; <;<n{2a;;b;; +
p(A)p(B) — aijp(B) — bijp(A)} in[4].

The set Z, C R™" is defined by

Zy ={A=(a) € RV a;;<0 ifi #j,i,j=1,...,n}

the simple sign patten of the matrices in Z, has many striking consequences. Let A = (a;;) € Z, and
suppose A = ol — Pwitha € Rand P > 0. Then o — p(P) is an eigenvalue of A, every eigenvalue of A
lies in the disc {z € C : |z — | < p(P)}, and hence every eigenvalue A of A satisfies ReA > o — p(P).
In particular, A is an M-matrix if and only if « > p(P). If A is an M-matrix, one may always write
A=yl —Pwithy =max{a;:i=1,...,n},P =yl —A>O0; necessarily, y > p(P).

If A = (aij) € Z,, and if we denote min{Re(X) : A € o (A)} by T(A). Basic for our purpose are the
following simple facts (see Problem 16, 19 and 28 in Section 2.5 of [3]):

(i) T(A) € o (A); T(A) is called the minimum eigenvalue of A.
(ii) IfA, B € Z,, and A > B, then 7 (A) > T (B).
(iii) If A € Z,, then p(A~") is the Perron eigenvalue of the nonnegative matrix A~!, and t(4) =
1 . e .
S@h isa positive real eigenvalue of A.
Let A be an irreducible nonsingular M-matrix. It is well known that there exists a positive vector u
such that Au = 7 (A)u, u being called right Perron eigenvector of A.
Let A € C"*", B € C"*". The Fan product of A and B is denoted by A%B = C = (¢;;) € C"*" and is
defined by
Cii = —afJ-b,-J, if i :,é j,
W) agibiy, ifi=j.
IfA, B € Z, are M-matrices, then so is A% B. In [3, p. 359], a lower bound for 7 (A% B) was given: Let
A, B € Z, be M-matrices. Then A~! o B~! >(A%B) ', and hence 7 (A%B) > 7 (A)7 (B). Fang [4] gave a
sharper lower bound for T (A% B), that is,

T(A%B)> min {a;7(B) + byt (A) — T(A)T (B}, @
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For two nonsingular M-matrices A and B, we will give a new lower bound for 7 (A% B) in Section 3.
2. Inequalities for the Hadamard product of nonnegative matrices

In this section, we will give an upper bound for p (A o B). In order to prove our results, we first give
some Lemmas.

Lemma1[1]. Let A € R™*" be given. Then either A is irreducible or there exists a permutation P such that

Rin Rz -+ Rim

I O Ry -+ Rom

P'AP = | . . . o (3)
0 0 -+ Rmm

where each square submatrix Rj;, 1 <j < m, is either irreducible or a 1 x 1 null matrix.

Remark 1. Eq. (3) is said to be the normal form of a reducible matrix A. Clearly, the eigenvalues of A
are the eigenvalues of the square submatrices R;j, 1 <j <m (cf. [5]).

Lemma2[1].LetA € R"*" be a nonnegative matrix. If A is a principal submatrix of A, then p (Ax) < p(A).
If, in addition, A is irreducible and Ay # A, then p(Ax) < p(A).

Lemma 3 [2]. Let A = (a;j) € R"*" be a nonnegative matrix. Then

1 2
p(A) < max 5 ) % +ajj+ | @i —a)*+4Y ax Y gk
i#] k#i k)
Lemma 4 [3]. Let A,B € C"™" and if D € C"*" and E € C"*" are diagonal, then
D(A o B)E = (DAE) o B = (DA) o (BE) = (AE) o (DB) = A o (DBE).

Theorem 4. IfA,B € R"™*",A> 0, and B > O, then
1
p(AoB) <max {ai'ibi,i + ajjbj; + [(ai,ibi,i — ajjb; )’
i#j 2
1
+4(p(A) — a;)(0(B) — biy)(p(A) — aj;)(p(B) — ij)] : } . (4)

Proof. It is clear that (4) holds with equality forn = 1.
We next assume that n > 2.
If A o Bis irreducible, then A and B are irreducible. From Lemma 2, we have

p(A) —ai; >0 VieN (5)
and
p(B) —bij >0 VieN. (6)

Since A = (a;j), B = (b;;) are nonnegative irreducible, then there exists two positive vectors u, v
such that Au = p(A)u, Bv = p(B)v. Thus, we have

aj; + Z k]

= ) 7
j#i Ui

and
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bi; + Z (8)

j#i Vi

DefineU = diag(uy,...,uy),V = diag(vq, ...,
matrices. Let A = (d;;) = U~'AU and B = (b;;) = V~'BV, then we have

vp). We know that U and V are nonsingular diagonal

a 12U . A1,nlUn
L1 uq uq
az,1u; a9 . A2,nlUn
-~ A -1 uz " uz
A=(ay) =U AU=| | : _ -
an,1U1 an2uU2 a
Uun Uun nn
b bi2v2 ... biawa
L1 Vi Vi
baavq b .. bava
2 n -1 V2 22 ' V2
B=(bjj) =V~ BV =
bn,1 )41 bn,2V2 . b
Ve vy n,n

It is easy to show that A and B are nonnegative irreducible matrices, and all the row sums of A are
equal to p(A) and all the row sums of B are equal to p(B).
Also let W = VU, then W is nonsingular. From Lemma 4, we have
(VU " (AoB)(VU) =U""WVT1AoB)WU=U"TAoc (VTIBV)U
= (UTTAU) o (V"1BV) = A0 B.

Thus, we have that p(A o B) = ,o(A o B) L
We next consider the spectral radius p(A o B) of A o B. For nonnegative irreducible matrices A, B,

from Definition of the Hadamard product of A and B, (5)-(8) and Lemma 3, we have

A

L 1, ~ .
p(AoB) <max - {ai.ibi,i + aj;bj;
i#j 2

1
3
+ |:(ai,ibi,i — Gjjbi)* + 4 Gixbix Y aj,kbj,k:|

ki k#j

1
= rlnij( 3 [a,;ib,',i + ajjbj;

1

2
ai kug bigvi 3 aj kUi bjrvi

uy v

|:(a,,b“—a“b“) +4)°
k+#i Ui Vi k+£j

1 2
< r'nij( 5 {a,-,,-bi,i + a;jbj; + |:(Cli,ib,"i — ajbj;)

1
aj Uk bikvk aj Uk bixvic \ |
+4(Z 2 ) (Z o ZT )}

kti Wi g k] Iy

1
= max — [a,;ibi,i + ajjbj; + [(ai,ib,;i - aijjJ)2
i#j 2
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D=

400 (A) — aip) (p(B) — bip) (0(A) — aij) (o (B) — biy)] } 9)

IfA o Bisreducible. We denote by D = (d;;) then x npermutation matrixwithdi, = dy3 =--- =
dp—1,n = dp1 = 1, the remaining d;; zero, then both A + tD and B + tD are nonnegative irreducible
matrices for any chosen positive real number t. Now we substitute A + tD and B + tD for A and B,
respectively in the previous case, and then letting t — 0, the result follows by continuity.

Using ideas of the proof of Theorem 4, we give new proofs of inequality in [3, Observation 5.7.4]
and inequality (1) in [4].

For inequality p (A o B) < p(A)p(B).

From the proof of Theorem 4, we know that p(Ao B) = p (A o B). Then we have

AoB) = p(AoB)< i jbij < bij = p(A)p(B).
p(AoB) = p(AoB) lrgiagn];au i lrgiagn;au lrgggn]; ij = pA)p(B)

For inequality p (A o B) < max1 <i<n{2a;ibii + p(A)p(B) — aiip(B) — biip(A)}.
Similar to the proof of Theorem 4, we have

p(AoB) = ,O(A oB)< 1m]ax Zaubu = lmax (a,;ibi,,- + Z aiJ‘B,‘J‘) .
SIS j#i
From (7) and (8), we have
p(AoB) <  max (ai,ibi,i + ngéiai‘jai‘i)
< max. (aiibii + i Qi X bu)
= lmax (aiibi; + (p(A) — ai;)(p(B) — bi;))
= ]mai(n{zallbll + p(A)p(B) — aip(B) — bijp(A)}. U

Remark 2. Fang [4] has shown that the upper bound in (1) for p(A o B) is sharper than the bound
p(A)p(B). We next give a simple comparison between the upper bound in (1) and the upper bound in
(4). Without loss of generality, fori # j, assume that

2aibi; + p(A)p(B) — a;ip(B) — biip(A) > 2a;ibj; + p(A)p(B) — ajjp(B) — bjjp(A).  (10)
Thus, we can write (10) equivalently as

ajibi; + (p(A) — ai;)(p(B) — bi;) > ajjb;jj + (0(A) — aj;)(o(B) — bj;). (11)
From (4), we have
1
2

aj;bi; +a;;bj; + |:(ai,ibi,i — ajjbjj)* + 4(p(A) — aiy)(p(B) — bi;)(p(A) — aj;)(p(B) — j‘/‘)j|

< ajibii + ajjbjj + [(ai,ibi,i — aj;bjj)* + 4(p(A)

D=

— ;i) (p(B) — bij) (0 (A) — aii) (p(B) — bij) + aiibi; — aijjJ)]
= ajbi; + ajibj; + |:(ai,ibi,i — ajjbjj)* + 4(p(A) — ai)*(p(B) — b;j)*

1
2

+4(p(A) — a;)(0(B) — bii)(ai;bi; — aj‘/‘bj‘i)j|

= a;;bi; + ajjbj; + [(ai,ibi,i — ajjbjj + 2(p(A) — a;i)(p(B) — bi,i))z]7
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= ai;bii + aj;bj; + aiibi; — ajjbj; + 2(p(A) — aii) (p(B) — bi;)

= 2a;ibi; + 2(p(A) — a;;)(p(B) — by), (12)

Thus, from (4) and (12), we have

p(AoB) <max ! {ai.ibi,i + ajjbj; + [(ai,ibi,i — ajjbjj)*
i#j 2
+4(p(A) — a;i)(p(B) — bij)(p(A) — a;j)(p(B) — bjj)} ]

< max % (2abi; + 2(p(A) — ai) (p(B) — bi))

1<i<n

= max_ {aiibii + (p(A) — ai;)(p(B) — biy)}

= max {2a;bi; + p(A)p(B) — a;ip(B) — biip(A)}.

1<i<n

Hence, the bound in (4) is sharper than the known one p(A)p (B) in [3] and the bound maxi <j<n
{2aiibi; + p(A)p(B) — aiip(B) — bijp(A)}in [4].

Consider the example in Introduction. Let A = I, B = ], it is easy to show that p(A o B) = 1 and
1
p(AoB) <max {ai,ibi.i +ayjbj + [(auibii — ajsby)?
1
+4(p(A) — a;j)(p(B) — bi)(p(A) — ;) (p(B) — bjj)]2 } =1

We next give another example to validate our results.

Example 1. Consider two 4 x 4 nonnegative matrices

4 1 0 2 11 1 1
1 005 1 1 11 1 1
A=1o 1 4 os5|" B=]1 1 1 1
1 05 0 4 11 1 1

Itis easy toshowthat p(A o B) = p(A) = 5.7339.By calculation, we have that p (A) p (B) = 22.9336.
According to inequalities (1) and (4), we have

p(AoB) < 19554{2ai,fbi,i + p(A)p(B) — aijp(B) — biip(A)} = 17.1017,

and
1 2
p(AoB) < max ai;bii + aj;bj; + [(ai,ibi,i — aj;bjj)
1
+4(p(A) — aij)(p(B) — bii)(p(A) — ;) (p(B) — ij)] ’ } = 11.6478.
From Theorem 4 we can obtain the following corollary:

Corollary 5. Let A, B be two n x n nonnegative matrices. Then we have

|det(A o B)| <[p(A o B)]"
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1
<max — {aub,',,- + ajjbj; + I:(aj‘ibi'j — ajJ'ij')z
i#j 20

+4(p(A) — aij)(p(B) — bij)(p(A) — a;jj)(p(B) — bjj)]z}

< max. {2aibii + p(A)p(B) — aiip(B) — biip (A)}" <(p(A)p(B)".

3. Inequalities for the Fan product of M-matrices
In this Section, we will give a lower bound for 7 (A%B).

Lemma 5. Let A, B be two nonsingular M-matrices and if D and E are two positive diagonal matrices, then
D(A%B)E = (DAE)%B = (DA)% (BE) = (AE)% (DB) = A% (DBE).

Proof. Lemma 5 follows from Definition of Fan product. [

Theorem 7. Let A = (a;j), B = (b;j) € R*™*" be two nonsingular M-matrices. Then
o1
‘L'(A*B) > min — {ai,ibu + aijjJ — [(ai,ib,‘,,‘ — ajjbjj)z
i#j 2
1
+4(aii — T(A))(bij — T(B))(aj; — T(A))(bjj — T(B))] ? } (13)

Proof. It is quite evident that (13) holds with equality forn = 1.
We next assume that n > 2.
If A% B is irreducible, then A and B are irreducible. Since A — t(A)I and B — t(B)I are singular
irreducible M-matrices, Theorem 6.4.16 of [1] yields that
ai;i—t(A) >0 VieN (14)
and
bii—t(B) >0 VieN. (15)

Since A = (a;j), B = (b;j) are irreducible nonsingular M-matrices, then there exists two positive
vectors u, v such that Au = 7 (A)u, Bv = t(B)v. Thus, we have

|a. .|u.
G — Y —— =1(A) (16)
jEi U
and
b. s
bij— Y | ”_I L =1(B). (17)
j#i Vi
Define U = dzag(u1, Coou), V= ag(v1, ..., vp). Then we have that U and V are nonsingular
diagonal matrices. LetA = (al ) =U""AUandB = (bij) = V=BV, then we have
a1,2u2 A1,nln
a.l 1 T e T
axauy a3 . a2,nlin
A= (a@j) =U0""A0 = " ) . 2o,
apaty an2U2 Ann

Up Up
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b biava . binvn
L1 Vi Vi
bz b banvn
B n YA WAV2 V2 22 v2
B:(bu):V AV =
bravy bnava . b
Vo Vo n.n

It is easy to show that A | and B are also irreducible nonsingular M-matrices.
Also let W = VU, then W is nonsingular. From Lemma 6, we have

(VU)""(A%B)(VU) =U0""V"1(AXB)\VU = U 1Ak (V~1BV))U
= (U'AU) % (V"'BV) = A%B.
Thus, we have that T (A%B) = 7(A%B).

981

_Wenext consider the minimum eigenvalue 7 (A% B) of A% B. For irreducible nonsingular M-matrices
A, B, let A € o (A%B) satisfy T(A%B) = A, then we have that 0 < A < a;;b;;, Vi € N. From Definition
of the Fan product of A and B, (14)-(17) and Theorem 1.23 of [5], there is a pair (i, j) of positive integers

withi # jsuch that
A — aiibiil|A — ajsbjgl < Y | — Gikbik dol- ajxbjkl.
K#i K#j
Thus, fori # j, we have
|(h — aiibi) (A — ajjbip)| < > ldibigel Y 1dbjxl
k£i k%]

|aj e |uk i k| v |aj e [ug b k| vi
SR I

kti Uik Viokzp Wk Vi

= (aj; — T(A))(bi; — T(B))(ajj — T(A))(bjj — T(B)).

From inequality (18) and 0 < A < a;;b;;, Vi € N, we have
(A — aibii)) (A — ajjbj;) <(a;;i — T(A))(bij — T(B))(ajj — T(A))(bjj — T(B)).
Thus, from inequality (19), we have
1 2
A= 5 aiibii + ajjbj; — [(a,-,,-bi,i — aj;b;j)
1
+4(a;; — t(A))(bij — T(B))(ajj — T(A)(bjj — T(B))] : } .
That is
1
T(A%B) > 5 iai'ibi'i + ajjbj; — [(ai',-b,-,i — aijjJ)z
1
+4(aj; — ©(A))(bii — T(B))(gjj — T(A)(bjj — T(B))} 2 }
1 )
>min - aiibii + ajjbjj — [(ai,ibi'i — ajjbjj)

+4(a;; — (A))(bii — T(B))(aj; — T(A)(bj; — f(B))} ? } .

If A% B is reducible. It is well known that a matrix in Z, is a nonsingular M-matrix if and only if all
its leading principal minors are positive (see condition (E17) of Theorem 6.2.3 of [1]). If we denote by
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D = (d;j) the n x n permutation matrix withdy, = dy3 = - -+ = dy_1n = dy1 = 1, the remaining
d;; zero, then both A — tD and B — tD are irreducible nonsingular M-matrices for any chosen positive
real number t, sufficiently small such that all the leading principal minors of both A — tD and B — tD
are positive. Now we substitute A — tD and B — tD for A and B, respectively in the previous case, and
then letting t — 0, the result follows by continuity.

Using ideas of the proof of Theorem 7, we next give a new proof of inequality (2) in [4].

Let A € o (A% B) satisfy T (A%B) = A.Similar to the proof of Theorem 7, by theorem of Gerschgorin,
we have

aj g bigvg

A —aybil <) | — ————1.

ki Ui Vi
Thus, we have

ajibij — A < Z M Z

k+i Wogxi Vi
Hence, we have

ik |vk

= (a;; — t(A))(bi; — T(B)).

A > ajibi; (a,,—r(A))(b,,—r(B))
= ayt(B) + byT(A) ~ TATE) > min {ayT(B) +byr) —TWTB)]. O

Remark 3. Fang [4] has shown that the lower bound in (2) for T (A%B) is sharper than the bound
T(A)T(B). We next give a simple comparison between the lower bound in (2) and the lower bound in
(13). Without loss of generality, fori = j, assume that

a;;T(B) + bj;jT(A) — T(A)T(B) > ajjT(B) + bj;jT(A) — T(A)T(B). (20)
Thus, we can write (20) equivalently as

—ai;T(B) — bt (A) + 1(A)T(B) < —aj;jT(B) — bj;jT(A) + t(A)T(B). (21)
That is

(ai; — T(A) (bii — T(B)) — aiji; <(a;; — T(A)(bj; — T(B)) — ayjbjy. (22)
Thus, from (22), we have

(ai; — T(A))(bii — T(B)) <(gj; — T(A))(bj; — T(B)) + ai;bi; — aj;bjj-. (23)

From (13) and (23), we have

1
2 {a,‘,ibi,,‘ + ajjbj;j — [(ai,ibi,i - C’jJ'ij')2

=

+4(aj;i — T(A)(bij — T(B))(gjj — T(A))(bjj — T(B))] }

1 2
> Z{Gi'ibi'i + ajjbjj — [(ai,ibi,i — ajjbj ;)

1 4(aj; — T(A)) by — r(B))((ajJ — T(A)(bjj — T(B)) + aijbij — ajjbjj>]

=
[ —

1
= Z{Gi'ibi'i + ajjbjj — [(ai,ibi.i - ajJ'bJ'J')2

Nf—=

+4(ajj — T(A)*(bjj — T(B)* + 4(gjj — T(A))(bjj — T(B))(ajbij — ajjbjj)]

|
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1 1
- Z{ai_ib,;i +ajbjj — [ (@iibii — ajjhjj + 2(aj; — T(A) by — (B)))*]’ }

1
= 3 {ai,ibi,i + ajjbjj — (ai,ibi,i + ajjbjj — 2a;;T(B) — 2bj ;T (A) + 2‘E(A)‘L'(B)>}
= ajjT(B) + bjjT(A) — 1 (A)T(B). (24)

Thus, from (13) and (24), we get
o1
T(A%B) >min - {ai,ibi,i + aijbjj — [ (@iibis — ajjby,)?
i#j 2

+4(a;; — t(A)(bij — T(B))(a;; — T(A))(bj; — T(B))} ? }

> 1r<nii£1n {aijT(B) + bijT(A) — T(A)T(B)}.

From Theorem 7 and [1, p. 380] we can obtain the following corollary:

Corollary 8. Let A, B be two nonsingular M-matrices. Then we have

|det(A%B)| =[t (A%B)]"

.1 2
> Ill"iljl on iai'ibi'i + aj;bj; + [(a,-,,-bi,i — ajbjj)

+4(ai; — T(A) (bis — T(B)) (i — T(A) (b — T(B) ] * }

> 1r<r1iign{ai,ir(5’) — biit(A) — t(A)T(B)}"' >(z(A)T(B)".

Example 2. Consider two 3 x 3 M-matrices
2 —1 0 1 —0.25 —0.25
A= 0 1 —-0.5|, B=| —0.5 1 —0.25].
—-0.5 -1 2 —-0.25 —0.5 1

It is easy to show that (A) = 0.5402, T(B) = 0.3432 and t(A%B) = 0.8819. By calculation, we
have that 7 (A)t(B) = 0.1854. According to inequalities (2) and (13), we have

T(A%B) > 1I<nii213{a,<,,-t(B) + bi;T(A) — T(A)T(B)} = 0.6980,

and
1
7(A%B) >min - {a,-v,‘bi,i + a;jbj; — [(ai,,-b,;i — ajJ'ij)2
i#j 2
1
+4(a;; — ©(A)) (b — r(B))(ajJ — ‘K(A))(bj‘,‘ — ‘L'(B))} 2 ] = 0.7655.
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