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1. Introduction

For a positive integer n, N denotes the set {1, 2, . . . , n}. The set of all n × n complex matrices is

denoted by Cn×n and Rn×n denotes the set of all n × n real matrices throughout.

Let A = (ai,j) and B = (bi,j) be two real n × n matrices. Then, A� B(> B) if ai,j � bi,j(> bi,j) for all
1� i � n, 1� j � n. If O is the null matrix and A�O(> O), we say that A is a nonnegative (positive)

�
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matrix. The spectral radius of A is denoted by ρ(A). If A is a nonnegative matrix, the Perron–Frobenius

theorem guarantees that ρ(A) ∈ σ(A), where σ(A) denotes the spectrum of A.

For n� 2, an n × n A ∈ Cn×n is reducible if there exists an n × n permutation matrix P such that

PTAP =
[
A1,1 A1,2

0 A2,2

]
,

whereA1,1 is an r × r submatrix andA2,2 is an (n − r) × (n − r) submatrix,where1� r < n. If no such

permutation matrix exists, then A is irreducible. If A is a 1 × 1 complex matrix, then A is irreducible if

its single entry is nonzero, and reducible otherwise.

Let A be an irreducible nonnegative matrix. It is well known that there exists a positive vector u

such that Au = ρ(A)u, u being called right Perron eigenvector of A.

The Hadamard product of A ∈ Cn×n and B ∈ Cn×n is defined by A ◦ B ≡ (ai,jbi,j) ∈ Cn×n.

In [3, p. 358], there is a simple estimate for ρ(A ◦ B): if A, B ∈ Rn×n, A�O, and B �O, then ρ(A ◦
B) � ρ(A)ρ(B). From Exercise [3, p. 358], we know this inequality can be very weak by taking B = J,

the matrix of all ones. For example, If A = I, B = J, then we have

ρ(A ◦ B) = ρ(A) = 1 � ρ(A)ρ(B) = n

when n is very large. But also clearly show that equality can occur (let A = I and B = I).

Recently, Fang [4] gave an upper bound for ρ(A ◦ B), that is,

ρ(A ◦ B) � max
1� i � n

{2ai,ibi,i + ρ(A)ρ(B) − ai,iρ(B) − bi,iρ(A)} (1)

which is shaper than the bound ρ(A)ρ(B) in [3, p. 358].

For two nonnegative matrices A, B, we will give a new upper bound for ρ(A ◦ B) in Section 2.

The bound is shaper than the bound ρ(A)ρ(B) in [3, p. 358] and the bound max1� i � n{2ai,ibi,i +
ρ(A)ρ(B) − ai,iρ(B) − bi,iρ(A)} in [4].

The set Zn ⊂ Rn×n is defined by

Zn = {A = (ai,j) ∈ Rn×n : ai,j � 0 if i /= j, i, j = 1, . . . , n}
the simple sign patten of the matrices in Zn has many striking consequences. Let A = (ai,j) ∈ Zn and

suppose A = αI − P with α ∈ R and P �O. Then α − ρ(P) is an eigenvalue of A, every eigenvalue of A

lies in the disc {z ∈ C : |z − α| � ρ(P)}, and hence every eigenvalue λ of A satisfies Reλ � α − ρ(P).
In particular, A is an M-matrix if and only if α > ρ(P). If A is an M-matrix, one may always write

A = γ I − P with γ = max{ai,i : i = 1, . . . , n}, P = γ I − A�O; necessarily, γ > ρ(P).
If A = (ai,j) ∈ Zn, and if we denote min{Re(λ) : λ ∈ σ(A)} by τ(A). Basic for our purpose are the

following simple facts (see Problem 16, 19 and 28 in Section 2.5 of [3]):

(i) τ(A) ∈ σ(A); τ(A) is called the minimum eigenvalue of A.

(ii) If A, B ∈ Zn, and A� B, then τ(A) � τ(B).
(iii) If A ∈ Zn, then ρ(A−1) is the Perron eigenvalue of the nonnegative matrix A−1, and τ(A) =

1

ρ(A−1)
is a positive real eigenvalue of A.

Let A be an irreducible nonsingularM-matrix. It is well known that there exists a positive vector u

such that Au = τ(A)u, u being called right Perron eigenvector of A.

Let A ∈ Cn×n, B ∈ Cn×n. The Fan product of A and B is denoted by A�B ≡ C = (ci,j) ∈ Cn×n and is

defined by

ci,j =
{−ai,jbi,j , if i /= j,

ai,ibi,i, if i = j.

If A, B ∈ Zn areM-matrices, then so is A�B. In [3, p. 359], a lower bound for τ(A�B)was given: Let

A, B ∈ Zn beM-matrices. Then A−1 ◦ B−1 �(A�B)−1, and hence τ(A�B) � τ(A)τ (B). Fang [4] gave a

sharper lower bound for τ(A�B), that is,

τ(A�B) � min
1� i � n

{ai,iτ(B) + bi,iτ(A) − τ(A)τ (B)}. (2)
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For two nonsingularM-matrices A and B, we will give a new lower bound for τ(A�B) in Section 3.

2. Inequalities for the Hadamard product of nonnegative matrices

In this section, we will give an upper bound for ρ(A ◦ B). In order to prove our results, we first give

some Lemmas.

Lemma 1 [1]. Let A ∈ Rn×n be given. Then either A is irreducible or there exists a permutation P such that

PTAP =

⎡⎢⎢⎢⎣
R1,1 R1,2 · · · R1,m
O R2,2 · · · R2,m
...

...
. . .

...
O O · · · Rm,m

⎤⎥⎥⎥⎦ , (3)

where each square submatrix Rj,j , 1� j �m, is either irreducible or a 1 × 1 null matrix.

Remark 1. Eq. (3) is said to be the normal form of a reducible matrix A. Clearly, the eigenvalues of A

are the eigenvalues of the square submatrices Rj,j , 1� j �m (cf. [5]).

Lemma2 [1]. Let A ∈ Rn×n be a nonnegativematrix. If Ak is a principal submatrix of A, thenρ(Ak) � ρ(A).
If, in addition, A is irreducible and Ak /= A, then ρ(Ak) < ρ(A).

Lemma 3 [2]. Let A = (ai,j) ∈ Rn×n be a nonnegative matrix. Then

ρ(A) �max
i /= j

1

2

⎧⎪⎨⎪⎩ai,i + aj,j +
⎡⎣(ai,i − aj,j)

2 + 4
∑
k /= i

ai,k
∑
k /= j

aj,k

⎤⎦
1
2

⎫⎪⎬⎪⎭ .

Lemma 4 [3]. Let A, B ∈ Cn×n and if D ∈ Cn×n and E ∈ Cn×n are diagonal, then

D(A ◦ B)E = (DAE) ◦ B = (DA) ◦ (BE) = (AE) ◦ (DB) = A ◦ (DBE).

Theorem 4. If A, B ∈ Rn×n, A�O, and B �O, then

ρ(A ◦ B) �max
i /= j

1

2

{
ai,ibi,i + aj,jbj,j +

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(ρ(A) − ai,i)(ρ(B) − bi,i)(ρ(A) − aj,j)(ρ(B) − bj,j)
] 1

2

}
. (4)

Proof. It is clear that (4) holds with equality for n = 1.

We next assume that n� 2.

If A ◦ B is irreducible, then A and B are irreducible. From Lemma 2, we have

ρ(A) − ai,i > 0 ∀i ∈ N (5)

and

ρ(B) − bi,i > 0 ∀i ∈ N. (6)

Since A = (ai,j), B = (bi,j) are nonnegative irreducible, then there exists two positive vectors u, v

such that Au = ρ(A)u, Bv = ρ(B)v. Thus, we have

ai,i +
∑
j /= i

ai,juj

ui
= ρ(A) (7)

and



Q. Liu, G. Chen / Linear Algebra and its Applications 431 (2009) 974–984 977

bi,i +
∑
j /= i

bi,jvj

vi
= ρ(B). (8)

DefineU = diag(u1, . . . , un),V = diag(v1, . . . , vn).WeknowthatU andV arenonsingular diagonal

matrices. Let Â = (âi,j) = U−1AU and B̂ = (b̂i,j) = V−1BV , then we have

Â = (âi,j) = U−1AU =

⎡⎢⎢⎢⎢⎢⎣
a1,1

a1,2u2
u1

· · · a1,nun
u1

a2,1u1
u2

a2,2 · · · a2,nun
u2

...
...

. . .
...

an,1u1
un

an,2u2
un

· · · an,n

⎤⎥⎥⎥⎥⎥⎦ ,

B̂ = (b̂i,j) = V−1BV =

⎡⎢⎢⎢⎢⎢⎢⎣
b1,1

b1,2v2
v1

· · · b1,nvn
v1

b2,1v1
v2

b2,2 · · · b2,nvn
v2

...
...

. . .
...

bn,1v1
vn

bn,2v2
vn

· · · bn,n

⎤⎥⎥⎥⎥⎥⎥⎦ .

It is easy to show that Â and B̂ are nonnegative irreducible matrices, and all the row sums of Â are

equal to ρ(A) and all the row sums of B̂ are equal to ρ(B).
Also let W = VU, then W is nonsingular. From Lemma 4, we have

(VU)−1(A ◦ B)(VU) = U−1V−1(A ◦ B)VU = U−1(A ◦ (V−1BV))U

= (U−1AU) ◦ (V−1BV) = Â ◦ B̂.

Thus, we have that ρ(A ◦ B) = ρ(̂A ◦ B̂).
We next consider the spectral radius ρ(̂A ◦ B̂) of Â ◦ B̂. For nonnegative irreducible matrices Â, B̂,

from Definition of the Hadamard product of Â and B̂, (5)–(8) and Lemma 3, we have

ρ(̂A ◦ B̂) �max
i /= j

1

2

⎧⎨⎩âi,ib̂i,i + âj,jb̂j,j

+
⎡⎣(âi,ib̂i,i − âj,jb̂j,j)

2 + 4
∑
k /= i

âi,kb̂i,k
∑
k /= j

âj,kb̂j,k

⎤⎦
1
2

⎫⎪⎬⎪⎭
= max

i /= j

1

2

⎧⎨⎩ai,ibi,i + aj,jbj,j

+
⎡⎣(ai,ibi,i − aj,jbj,j)

2 + 4
∑
k /= i

ai,kuk

ui

bi,kvk

vi

∑
k /= j

aj,kuk

uj

bj,kvk

vj

⎤⎦
1
2

⎫⎪⎬⎪⎭
� max

i /= j

1

2

⎧⎨⎩ai,ibi,i + aj,jbj,j +
[
(ai,ibi,i − aj,jbj,j)

2

+ 4

⎛⎝∑
k /= i

ai,kuk

ui

∑
k /= i

bi,kvk

vi

⎞⎠⎛⎝∑
k /= j

aj,kuk

uj

∑
k /= j

bj,kvk

vj

⎞⎠⎤⎦
1
2

⎫⎪⎬⎪⎭
= max

i /= j

1

2

⎧⎨⎩ai,ibi,i + aj,jbj,j +
[
(ai,ibi,i − aj,jbj,j)

2
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+ 4(ρ(A) − ai,i)(ρ(B) − bi,i)(ρ(A) − aj,j)(ρ(B) − bj,j)
] 1
2

}
. (9)

IfA ◦ B is reducible.WedenotebyD = (di,j) then × npermutationmatrixwithd1,2 = d2,3 = · · · =
dn−1,n = dn,1 = 1, the remaining di,j zero, then both A + tD and B + tD are nonnegative irreducible

matrices for any chosen positive real number t. Now we substitute A + tD and B + tD for A and B,

respectively in the previous case, and then letting t → 0, the result follows by continuity.

Using ideas of the proof of Theorem 4, we give new proofs of inequality in [3, Observation 5.7.4]

and inequality (1) in [4].

For inequality ρ(A ◦ B) � ρ(A)ρ(B).
From the proof of Theorem 4, we know that ρ(A ◦ B) = ρ(̂A ◦ B̂). Then we have

ρ(A ◦ B) = ρ(̂A ◦ B̂) � max
1� i � n

n∑
j=1

âi,jb̂i,j � max
1� i � n

n∑
j=1

âi,j max
1� i � n

n∑
j=1

b̂i,j = ρ(A)ρ(B).

For inequality ρ(A ◦ B) �max1� i � n{2ai,ibi,i + ρ(A)ρ(B) − ai,iρ(B) − bi,iρ(A)}.
Similar to the proof of Theorem 4, we have

ρ(A ◦ B) = ρ(̂A ◦ B̂) � max
1� i � n

n∑
j=1

âi,jb̂i,j = max
1� i � n

⎛⎝ai,ibi,i +
∑
j /= i

âi,jb̂i,j

⎞⎠ .

From (7) and (8), we have

ρ(A ◦ B) � max
1� i � n

(
ai,ibi,i + ∑

j /= i âi,jb̂i,j

)
� max

1� i � n

(
ai,ibi,i + ∑

j /= i âi,j
∑

j /= i b̂i,j

)
= max

1� i � n
(ai,ibi,i + (ρ(A) − ai,i)(ρ(B) − bi,i))

= max
1� i � n

{2ai,ibi,i + ρ(A)ρ(B) − ai,iρ(B) − bi,iρ(A)}. �

Remark 2. Fang [4] has shown that the upper bound in (1) for ρ(A ◦ B) is sharper than the bound

ρ(A)ρ(B). We next give a simple comparison between the upper bound in (1) and the upper bound in

(4). Without loss of generality, for i /= j, assume that

2ai,ibi,i + ρ(A)ρ(B) − ai,iρ(B) − bi,iρ(A) � 2aj,jbj,j + ρ(A)ρ(B) − aj,jρ(B) − bj,jρ(A). (10)

Thus, we can write (10) equivalently as

ai,ibi,i + (ρ(A) − ai,i)(ρ(B) − bi,i) � aj,jbj,j + (ρ(A) − aj,j)(ρ(B) − bj,j). (11)

From (4), we have

ai,ibi,i +aj,jbj,j +
[
(ai,ibi,i − aj,jbj,j)

2 + 4(ρ(A) − ai,i)(ρ(B) − bi,i)(ρ(A) − aj,j)(ρ(B) − bj,j)

] 1
2

� ai,ibi,i + aj,jbj,j +
[
(ai,ibi,i − aj,jbj,j)

2 + 4(ρ(A)

− ai,i)(ρ(B) − bi,i)
(
(ρ(A) − ai,i)(ρ(B) − bi,i) + ai,ibi,i − aj,jbj,j

) ] 1
2

= ai,ibi,i + aj,jbj,j +
[
(ai,ibi,i − aj,jbj,j)

2 + 4(ρ(A) − ai,i)
2(ρ(B) − bi,i)

2

+ 4(ρ(A) − ai,i)(ρ(B) − bi,i)(ai,ibi,i − aj,jbj,j)

] 1
2

= ai,ibi,i + aj,jbj,j +
[(
ai,ibi,i − aj,jbj,j + 2(ρ(A) − ai,i)(ρ(B) − bi,i)

)2] 1
2
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= ai,ibi,i + aj,jbj,j + ai,ibi,i − aj,jbj,j + 2(ρ(A) − ai,i)(ρ(B) − bi,i)

= 2ai,ibi,i + 2(ρ(A) − ai,i)(ρ(B) − bi,i), (12)

Thus, from (4) and (12), we have

ρ(A ◦ B) �max
i /= j

1

2

{
ai,ibi,i + aj,jbj,j +

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(ρ(A) − ai,i)(ρ(B) − bi,i)(ρ(A) − aj,j)(ρ(B) − bj,j)

] 1
2

⎫⎬⎭
� max

1� i � n

1

2

{
2ai,ibi,i + 2(ρ(A) − ai,i)(ρ(B) − bi,i)

}
= max

1� i � n

{
ai,ibi,i + (ρ(A) − ai,i)(ρ(B) − bi,i)

}
= max

1� i � n

{
2ai,ibi,i + ρ(A)ρ(B) − ai,iρ(B) − bi,iρ(A)

}
.

Hence, the bound in (4) is sharper than the known one ρ(A)ρ(B) in [3] and the bound max1� i � n{2ai,ibi,i + ρ(A)ρ(B) − ai,iρ(B) − bi,iρ(A)} in [4].

Consider the example in Introduction. Let A = I, B = J, it is easy to show that ρ(A ◦ B) = 1 and

ρ(A ◦ B) �max
i /= j

1

2

{
ai,ibi,i + aj,jbj,j +

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(ρ(A) − ai,i)(ρ(B) − bi,i)(ρ(A) − aj,j)(ρ(B) − bj,j)
] 1

2

}
= 1.

We next give another example to validate our results.

Example 1. Consider two 4 × 4 nonnegative matrices

A =
⎡⎢⎢⎣
4 1 0 2

1 0.05 1 1

0 1 4 0.5
1 0.5 0 4

⎤⎥⎥⎦ , B =
⎡⎢⎢⎣
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤⎥⎥⎦ .

It is easy toshowthatρ(A ◦ B) = ρ(A) = 5.7339.Bycalculation,wehave thatρ(A)ρ(B) = 22.9336.
According to inequalities (1) and (4), we have

ρ(A ◦ B) � max
1� i � 4

{2ai,ibi,i + ρ(A)ρ(B) − ai,iρ(B) − bi,iρ(A)} = 17.1017,

and

ρ(A ◦ B) �max
i /= j

1

2

{
ai,ibi,i + aj,jbj,j +

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(ρ(A) − ai,i)(ρ(B) − bi,i)(ρ(A) − aj,j)(ρ(B) − bj,j)
] 1

2

}
= 11.6478.

From Theorem 4 we can obtain the following corollary:

Corollary 5. Let A, B be two n × n nonnegative matrices. Then we have

|det(A ◦ B)| �[ρ(A ◦ B)]n
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�max
i /= j

1

2n

{
ai,ibi,i + aj,jbj,j +

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(ρ(A) − ai,i)(ρ(B) − bi,i)(ρ(A) − aj,j)(ρ(B) − bj,j)
] 1

2

}n

� max
1� i � n

{2ai,ibi,i + ρ(A)ρ(B) − ai,iρ(B) − bi,iρ(A)}n �(ρ(A)ρ(B))n.

3. Inequalities for the Fan product of M-matrices

In this Section, we will give a lower bound for τ(A�B).

Lemma 5. Let A, B be two nonsingular M-matrices and if D and E are two positive diagonal matrices, then

D(A�B)E = (DAE)�B = (DA)�(BE) = (AE)�(DB) = A�(DBE).

Proof. Lemma 5 follows from Definition of Fan product. �

Theorem 7. Let A = (ai,j), B = (bi,j) ∈ Rn×n be two nonsingular M-matrices. Then

τ(A�B) �min
i /= j

1

2

{
ai,ibi,i + aj,jbj,j −

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(ai,i − τ(A))(bi,i − τ(B))(aj,j − τ(A))(bj,j − τ(B))
] 1

2

}
. (13)

Proof. It is quite evident that (13) holds with equality for n = 1.

We next assume that n� 2.

If A�B is irreducible, then A and B are irreducible. Since A − τ(A)I and B − τ(B)I are singular

irreducible M-matrices, Theorem 6.4.16 of [1] yields that

ai,i − τ(A) > 0 ∀i ∈ N (14)

and

bi,i − τ(B) > 0 ∀i ∈ N. (15)

Since A = (ai,j), B = (bi,j) are irreducible nonsingular M-matrices, then there exists two positive

vectors u, v such that Au = τ(A)u, Bv = τ(B)v. Thus, we have

ai,i −
∑
j /= i

|ai,j|uj
ui

= τ(A) (16)

and

bi,i −
∑
j /= i

|bi,j|vj
vi

= τ(B). (17)

Define Ũ = diag(u1, . . . , un), Ṽ = diag(v1, . . . , vn). Then we have that Ũ and Ṽ are nonsingular

diagonal matrices. Let Ã = (ãi,j) = Ũ−1AŨ and B̃ = (b̃i,j) = Ṽ−1BṼ , then we have

Ã = (ãi,j) = Ũ−1AŨ =

⎡⎢⎢⎢⎢⎢⎣
a1,1

a1,2u2
u1

· · · a1,nun
u1

a2,1u1
u2

a2,2 · · · a2,nun
u2

...
...

. . .
...

an,1u1
un

an,2u2
un

· · · an,n

⎤⎥⎥⎥⎥⎥⎦ ,



Q. Liu, G. Chen / Linear Algebra and its Applications 431 (2009) 974–984 981

B̃ = (b̃i,j) = Ṽ−1AṼ =

⎡⎢⎢⎢⎢⎢⎢⎣
b1,1

b1,2v2
v1

· · · b1,nvn
v1

b2,1v1
v2

b2,2 · · · b2,nvn
v2

...
...

. . .
...

bn,1v1
vn

bn,2v2
vn

· · · bn,n

⎤⎥⎥⎥⎥⎥⎥⎦ .

It is easy to show that Ã and B̃ are also irreducible nonsingularM-matrices.

Also let W̃ = Ṽ Ũ, then W̃ is nonsingular. From Lemma 6, we have

(Ṽ Ũ)−1(A�B)(Ṽ Ũ) = Ũ−1Ṽ−1(A�B)Ṽ Ũ = Ũ−1(A�(Ṽ−1BṼ))Ũ

= (Ũ−1AŨ)�(Ṽ−1BṼ) = Ã�B̃.

Thus, we have that τ (̃A�B̃) = τ(A�B).
Wenextconsider theminimumeigenvalueτ (̃A�B̃)of Ã�B̃. For irreduciblenonsingularM-matrices

Ã, B̃, let λ ∈ σ (̃A�B̃) satisfy τ (̃A�B̃) = λ, then we have that 0 < λ < ai,ibi,i,∀i ∈ N. From Definition

of the Fan product of Ã and B̃, (14)–(17) and Theorem 1.23 of [5], there is a pair (i, j) of positive integers
with i /= j such that

|λ − ai,ibi,i||λ − aj,jbj,j| �
∑
k /= i

| − ãi,kb̃i,k|
∑
k /= j

| − ãj,kb̃j,k|.

Thus, for i /= j, we have

|(λ − ai,ibi,i)(λ − aj,jbj,j)| �
∑
k /= i

|ãi,kb̃i,k|
∑
k /= j

|ãj,kb̃j,k|

�
∑
k /= i

|ai,k|uk
ui

∑
k /= i

|bi,k|vk
vi

∑
k /= j

|aj,k|uk
uj

∑
k /= j

|bj,k|vk
vj

= (ai,i − τ(A))(bi,i − τ(B))(aj,j − τ(A))(bj,j − τ(B)). (18)

From inequality (18) and 0 < λ < ai,ibi,i,∀i ∈ N, we have

(λ − ai,ibi,i)(λ − aj,jbj,j) �(ai,i − τ(A))(bi,i − τ(B))(aj,j − τ(A))(bj,j − τ(B)). (19)

Thus, from inequality (19), we have

λ �
1

2

{
ai,ibi,i + aj,jbj,j −

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(ai,i − τ(A))(bi,i − τ(B))(aj,j − τ(A))(bj,j − τ(B))
] 1

2

}
.

That is

τ(A�B) �
1

2

{
ai,ibi,i + aj,jbj,j −

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(ai,i − τ(A))(bi,i − τ(B))(aj,j − τ(A))(bj,j − τ(B))
] 1

2

}

�min
i /= j

1

2

{
ai,ibi,i + aj,jbj,j −

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(ai,i − τ(A))(bi,i − τ(B))(aj,j − τ(A))(bj,j − τ(B))
] 1

2

}
.

If A�B is reducible. It is well known that a matrix in Zn is a nonsingular M-matrix if and only if all

its leading principal minors are positive (see condition (E17) of Theorem 6.2.3 of [1]). If we denote by
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D = (di,j) the n × n permutation matrix with d1,2 = d2,3 = · · · = dn−1,n = dn,1 = 1, the remaining

di,j zero, then both A − tD and B − tD are irreducible nonsingularM-matrices for any chosen positive

real number t, sufficiently small such that all the leading principal minors of both A − tD and B − tD

are positive. Now we substitute A − tD and B − tD for A and B, respectively in the previous case, and

then letting t → 0, the result follows by continuity.

Using ideas of the proof of Theorem 7, we next give a new proof of inequality (2) in [4].

Letλ ∈ σ (̃A�B̃) satisfy τ (̃A�B̃) = λ. Similar to the proof of Theorem7, by theoremofGerschgorin,

we have

|λ − ai,ibi,i| �
∑
k /= i

| − ai,kuk

ui

bi,kvk

vi
|.

Thus, we have

ai,ibi,i − λ �
∑
k /= i

|ai,k|uk
ui

∑
k /= i

|bi,k|vk
vi

= (ai,i − τ(A))(bi,i − τ(B)).

Hence, we have

λ � ai,ibi,i − (ai,i − τ(A))(bi,i − τ(B))

= ai,iτ(B) + bi,iτ(A) − τ(A)τ (B) � min
1� i � n

{
ai,iτ(B) + bi,iτ(A) − τ(A)τ (B)

}
. �

Remark 3. Fang [4] has shown that the lower bound in (2) for τ(A�B) is sharper than the bound

τ(A)τ (B). We next give a simple comparison between the lower bound in (2) and the lower bound in

(13). Without loss of generality, for i /= j, assume that

ai,iτ(B) + bi,iτ(A) − τ(A)τ (B) � aj,jτ(B) + bj,jτ(A) − τ(A)τ (B). (20)

Thus, we can write (20) equivalently as

− ai,iτ(B) − bi,iτ(A) + τ(A)τ (B) � −aj,jτ(B) − bj,jτ(A) + τ(A)τ (B). (21)

That is

(ai,i − τ(A))(bi,i − τ(B)) − ai,ibi,i �(aj,j − τ(A))(bj,j − τ(B)) − aj,jbj,j. (22)

Thus, from (22), we have

(ai,i − τ(A))(bi,i − τ(B)) �(aj,j − τ(A))(bj,j − τ(B)) + ai,ibi,i − aj,jbj,j. (23)

From (13) and (23), we have

1

2

{
ai,ibi,i + aj,jbj,j −

[
(ai,ibi,i − aj,jbj,j)

2

+4(ai,i − τ(A))(bi,i − τ(B))(aj,j − τ(A))(bj,j − τ(B))

] 1
2

}

�
1

2

{
ai,ibi,i + aj,jbj,j −

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(aj,j − τ(A))(bj,j − τ(B))

(
(aj,j − τ(A))(bj,j − τ(B)) + ai,ibi,i − aj,jbj,j

)] 1
2

}

= 1

2

{
ai,ibi,i + aj,jbj,j −

[
(ai,ibi,i − aj,jbj,j)

2

+ 4(aj,j − τ(A))2(bj,j − τ(B))2 + 4(aj,j − τ(A))(bj,j − τ(B))(ai,ibi,i − aj,jbj,j)

] 1
2
}
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= 1

2

{
ai,ibi,i + aj,jbj,j −

[(
ai,ibi,i − aj,jbj,j + 2(aj,j − τ(A))(bj,j − τ(B))

)2] 1
2

}

= 1

2

{
ai,ibi,i + aj,jbj,j −

(
ai,ibi,i + aj,jbj,j − 2aj,jτ(B) − 2bj,jτ(A) + 2τ(A)τ (B)

)}
= aj,jτ(B) + bj,jτ(A) − τ(A)τ (B). (24)

Thus, from (13) and (24), we get

τ(A�B) �min
i /= j

1

2

{
ai,ibi,i + aj,jbj,j −

[
(ai,ibi,i − aj,jbj,j)

2

+4(ai,i − τ(A))(bi,i − τ(B))(aj,j − τ(A))(bj,j − τ(B))
] 1

2

}
� min

1� i � n

{
ai,iτ(B) + bi,iτ(A) − τ(A)τ (B)

}
.

From Theorem 7 and [1, p. 380] we can obtain the following corollary:

Corollary 8. Let A, B be two nonsingular M-matrices. Then we have

|det(A�B)| �[τ(A�B)]n

�min
i /= j

1

2n

{
ai,ibi,i + aj,jbj,j +

[
(ai,ibi,i − aj,jbj,j)

2

+4(ai,i − τ(A))(bi,i − τ(B))(aj,j − τ(A))(bj,j − τ(B))
] 1

2

} n

� min
1� i � n

{ai,iτ(B) − bi,iτ(A) − τ(A)τ (B)}n �(τ (A)τ (B))n.

Example 2. Consider two 3 × 3 M-matrices

A =
⎡⎣ 2 −1 0

0 1 −0.5
−0.5 −1 2

⎤⎦ , B =
⎡⎣ 1 −0.25 −0.25

−0.5 1 −0.25
−0.25 −0.5 1

⎤⎦ .

It is easy to show that τ(A) = 0.5402, τ(B) = 0.3432 and τ(A�B) = 0.8819. By calculation, we

have that τ(A)τ (B) = 0.1854. According to inequalities (2) and (13), we have

τ(A�B) � min
1� i � 3

{ai,iτ(B) + bi,iτ(A) − τ(A)τ (B)} = 0.6980,

and

τ(A�B) �min
i /= j

1

2

{
ai,ibi,i + aj,jbj,j −

[
(ai,ibi,i − aj,jbj,j)

2

+4(ai,i − τ(A))(bi,i − τ(B))(aj,j − τ(A))(bj,j − τ(B))
] 1

2

}
= 0.7655.
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