On two inequalities for the Hadamard product and the Fan product of matrices ${ }^{\text {d/ }}$

Qingbing Liu ${ }^{\mathrm{a}, \mathrm{b}}$, Guoliang Chen ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ Department of Mathematics, East China Normal University, Shanghai 200241, PR China
${ }^{\text {b }}$ Department of Mathematics, Zhejiang Wanli University, Ningbo 315100, PR China

A R T I C L E I N F O

Article history:

Received 23 November 2008
Accepted 25 March 2009
Available online 7 May 2009
Submitted by H. Schneider

AMS classification:

15A15
15A48

Abstract

If A and B are $n \times n$ nonsingular M-matrices, a lower bound on the smallest eigenvalue $\tau(A \star B)$ for the Fan product of A and B is given. In addition, using the estimate on the perron root of nonnegative smallest eigenvalue $\tau(A \star B)$ for the Fan product of A and B is given. In addition, using the estimate on the perron root of nonnegative matrices, we also obtain an upper bound on the spectral radius $\rho(A \circ B)$ for nonnegative matrices A and B. These bounds improve some existing results.

Crown copyright © 2009 Published by Elsevier Inc. All rights Crown copyright © 2009 Published by Elsevier Inc. All rights reserved.

Keywords:

M-matrix
Nonnegative matrix
Fan product
Hadamard product
Spectral radius \qquad

1. Introduction

For a positive integer n, N denotes the set $\{1,2, \ldots, n\}$. The set of all $n \times n$ complex matrices is denoted by $C^{n \times n}$ and $R^{n \times n}$ denotes the set of all $n \times n$ real matrices throughout.

Let $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$ be two real $n \times n$ matrices. Then, $A \geqslant B(>B)$ if $a_{i, j} \geqslant b_{i, j}\left(>b_{i, j}\right)$ for all $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n$. If O is the null matrix and $A \geqslant O(>0)$, we say that A is a nonnegative (positive)

[^0]matrix. The spectral radius of A is denoted by $\rho(A)$. If A is a nonnegative matrix, the Perron-Frobenius theorem guarantees that $\rho(A) \in \sigma(A)$, where $\sigma(A)$ denotes the spectrum of A.

For $n \geqslant 2$, an $n \times n A \in C^{n \times n}$ is reducible if there exists an $n \times n$ permutation matrix P such that

$$
P^{T} A P=\left[\begin{array}{cc}
A_{1,1} & A_{1,2} \\
0 & A_{2,2}
\end{array}\right],
$$

where $A_{1,1}$ is an $r \times r$ submatrix and $A_{2,2}$ is an $(n-r) \times(n-r)$ submatrix, where $1 \leqslant r<n$. If no such permutation matrix exists, then A is irreducible. If A is a 1×1 complex matrix, then A is irreducible if its single entry is nonzero, and reducible otherwise.

Let A be an irreducible nonnegative matrix. It is well known that there exists a positive vector u such that $A u=\rho(A) u, u$ being called right Perron eigenvector of A.

The Hadamard product of $A \in C^{n \times n}$ and $B \in C^{n \times n}$ is defined by $A \circ B \equiv\left(a_{i, j} b_{i, j}\right) \in C^{n \times n}$.
In [3, p. 358], there is a simple estimate for $\rho(A \circ B)$: if $A, B \in R^{n \times n}, A \geqslant 0$, and $B \geqslant 0$, then $\rho(A \circ$ $B) \leqslant \rho(A) \rho(B)$. From Exercise [3, p. 358], we know this inequality can be very weak by taking $B=J$, the matrix of all ones. For example, If $A=I, B=J$, then we have

$$
\rho(A \circ B)=\rho(A)=1 \ll \rho(A) \rho(B)=n
$$

when n is very large. But also clearly show that equality can occur (let $A=I$ and $B=I$).
Recently, Fang [4] gave an upper bound for $\rho(A \circ B)$, that is,

$$
\begin{equation*}
\rho(A \circ B) \leqslant \max _{1 \leqslant i \leqslant n}\left\{2 a_{i, i} b_{i, i}+\rho(A) \rho(B)-a_{i, i} \rho(B)-b_{i, i} \rho(A)\right\} \tag{1}
\end{equation*}
$$

which is shaper than the bound $\rho(A) \rho(B)$ in [3, p. 358].
For two nonnegative matrices A, B, we will give a new upper bound for $\rho(A \circ B)$ in Section 2. The bound is shaper than the bound $\rho(A) \rho(B)$ in [3, p. 358] and the bound $\max _{1 \leqslant i \leqslant n}\left\{2 a_{i, i} b_{i, i}+\right.$ $\left.\rho(A) \rho(B)-a_{i, i} \rho(B)-b_{i, i} \rho(A)\right\}$ in [4].

The set $Z_{n} \subset R^{n \times n}$ is defined by

$$
Z_{n}=\left\{A=\left(a_{i, j}\right) \in R^{n \times n}: a_{i, j} \leqslant 0 \quad \text { if } i \neq j, i, j=1, \ldots, n\right\}
$$

the simple sign patten of the matrices in Z_{n} has many striking consequences. Let $A=\left(a_{i, j}\right) \in Z_{n}$ and suppose $A=\alpha I-P$ with $\alpha \in R$ and $P \geqslant 0$. Then $\alpha-\rho(P)$ is an eigenvalue of A, every eigenvalue of A lies in the disc $\{z \in C:|z-\alpha| \leqslant \rho(P)\}$, and hence every eigenvalue λ of A satisfies $\operatorname{Re} \lambda \geqslant \alpha-\rho(P)$. In particular, A is an M-matrix if and only if $\alpha>\rho(P)$. If A is an M-matrix, one may always write $A=\gamma I-P$ with $\gamma=\max \left\{a_{i, i}: i=1, \ldots, n\right\}, P=\gamma I-A \geqslant 0$; necessarily, $\gamma>\rho(P)$.

If $A=\left(a_{i j}\right) \in Z_{n}$, and if we denote $\min \{\operatorname{Re}(\lambda): \lambda \in \sigma(A)\}$ by $\tau(A)$. Basic for our purpose are the following simple facts (see Problem 16, 19 and 28 in Section 2.5 of [3]):
(i) $\tau(A) \in \sigma(A) ; \tau(A)$ is called the minimum eigenvalue of A.
(ii) If $A, B \in Z_{n}$, and $A \geqslant B$, then $\tau(A) \geqslant \tau(B)$.
(iii) If $A \in Z_{n}$, then $\rho\left(A^{-1}\right)$ is the Perron eigenvalue of the nonnegative matrix A^{-1}, and $\tau(A)=$ $\frac{1}{\rho\left(A^{-1}\right)}$ is a positive real eigenvalue of A.

Let A be an irreducible nonsingular M-matrix. It is well known that there exists a positive vector u such that $A u=\tau(A) u, u$ being called right Perron eigenvector of A.

Let $A \in C^{n \times n}, B \in C^{n \times n}$. The Fan product of A and B is denoted by $A \star B \equiv C=\left(c_{i, j}\right) \in C^{n \times n}$ and is defined by

$$
c_{i j}= \begin{cases}-a_{i j} b_{i j}, & \text { if } i \neq j \\ a_{i, i} b_{i, i}, & \text { if } i=j\end{cases}
$$

If $A, B \in Z_{n}$ are M-matrices, then so is $A \star B$. In [3, p. 359], a lower bound for $\tau(A \star B)$ was given: Let $A, B \in Z_{n}$ be M-matrices. Then $A^{-1} \circ B^{-1} \geqslant(A \star B)^{-1}$, and hence $\tau(A \star B) \geqslant \tau(A) \tau(B)$. Fang [4] gave a sharper lower bound for $\tau(A \star B)$, that is,

$$
\begin{equation*}
\tau(A \star B) \geqslant \min _{1 \leqslant i \leqslant n}\left\{a_{i, i} \tau(B)+b_{i, i} \tau(A)-\tau(A) \tau(B)\right\} . \tag{2}
\end{equation*}
$$

For two nonsingular M-matrices A and B, we will give a new lower bound for $\tau(A \star B)$ in Section 3 .

2. Inequalities for the Hadamard product of nonnegative matrices

In this section, we will give an upper bound for $\rho(A \circ B)$. In order to prove our results, we first give some Lemmas.

Lemma 1 [1]. Let $A \in R^{n \times n}$ be given. Then either A is irreducible or there exists a permutation P such that

$$
P^{T} A P=\left[\begin{array}{cccc}
R_{1,1} & R_{1,2} & \cdots & R_{1, m} \tag{3}\\
0 & R_{2,2} & \cdots & R_{2, m} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & R_{m, m}
\end{array}\right] \text {, }
$$

where each square submatrix $R_{j, j}, 1 \leqslant j \leqslant m$, is either irreducible or a 1×1 null matrix.
Remark 1. Eq. (3) is said to be the normal form of a reducible matrix A. Clearly, the eigenvalues of A are the eigenvalues of the square submatrices $R_{j,}, 1 \leqslant j \leqslant m$ (cf. [5]).

Lemma 2 [1].Let $A \in R^{n \times n}$ be a nonnegative matrix. If A_{k} is a principal submatrix of A, then $\rho\left(A_{k}\right) \leqslant \rho(A)$. If, in addition, A is irreducible and $A_{k} \neq A$, then $\rho\left(A_{k}\right)<\rho(A)$.

Lemma 3 [2]. Let $A=\left(a_{i, j}\right) \in R^{n \times n}$ be a nonnegative matrix. Then

$$
\rho(A) \leqslant \max _{i \neq j} \frac{1}{2}\left\{a_{i, i}+a_{j, j}+\left[\left(a_{i, i}-a_{j, j}\right)^{2}+4 \sum_{k \neq i} a_{i, k} \sum_{k \neq j} a_{j, k}\right]^{\frac{1}{2}}\right\} .
$$

Lemma 4 [3]. Let $A, B \in C^{n \times n}$ and if $D \in C^{n \times n}$ and $E \in C^{n \times n}$ are diagonal, then

$$
D(A \circ B) E=(D A E) \circ B=(D A) \circ(B E)=(A E) \circ(D B)=A \circ(D B E) .
$$

Theorem 4. If $A, B \in R^{n \times n}, A \geqslant 0$, and $B \geqslant 0$, then

$$
\begin{align*}
\rho(A \circ B) \leqslant & \max _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j,} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\left(\rho(A)-a_{j, j}\right)\left(\rho(B)-b_{j, j}\right)\right]^{\frac{1}{2}}\right\} . \tag{4}
\end{align*}
$$

Proof. It is clear that (4) holds with equality for $n=1$.
We next assume that $n \geqslant 2$.
If $A \circ B$ is irreducible, then A and B are irreducible. From Lemma 2, we have

$$
\begin{equation*}
\rho(A)-a_{i, i}>0 \quad \forall i \in N \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho(B)-b_{i, i}>0 \quad \forall i \in N . \tag{6}
\end{equation*}
$$

Since $A=\left(a_{i, j}\right), B=\left(b_{i, j}\right)$ are nonnegative irreducible, then there exists two positive vectors u, v such that $A u=\rho(A) u, B v=\rho(B) v$. Thus, we have

$$
\begin{equation*}
a_{i, i}+\sum_{j \neq i} \frac{a_{i, j} u_{j}}{u_{i}}=\rho(A) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i, i}+\sum_{j \neq i} \frac{b_{i, j} v_{j}}{v_{i}}=\rho(B) . \tag{8}
\end{equation*}
$$

Define $U=\operatorname{diag}\left(u_{1}, \ldots, u_{n}\right), V=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$. We know that U and V are nonsingular diagonal matrices. Let $\widehat{A}=\left(\hat{a}_{i j}\right)=U^{-1} A U$ and $\widehat{B}=\left(\hat{b}_{i j}\right)=V^{-1} B V$, then we have

$$
\begin{aligned}
& \widehat{A}=\left(\hat{a}_{i, j}\right)=U^{-1} A U=\left[\begin{array}{cccc}
a_{1,1} & \frac{a_{1,2} u_{2}}{u_{1}} & \ldots & \frac{a_{1, n} u_{n}}{u_{n}} \\
\frac{a_{1,1} u_{1}}{u_{2}} & a_{2,2} & \ldots & \frac{a_{2, n} u_{n}}{u_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{a_{n, 1} u_{1}}{u_{n}} & \frac{a_{n, 2} u_{2}}{u_{n}} & \ldots & a_{n, n}
\end{array}\right], \\
& \widehat{B}=\left(\hat{b}_{i, j}\right)=V^{-1} B V=\left[\begin{array}{cccc}
b_{1,1} & \frac{b_{1,2} v_{2}}{v_{1}} & \ldots & \frac{b_{1, n} v_{n}}{v_{1}} \\
\frac{b_{2,1,} v_{1}}{v_{2}} & b_{2,2} & \ldots & \frac{b_{2, n} v_{n}}{v_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{b_{n, 1} v_{1}}{v_{n}} & \frac{b_{n, 2} v_{2}}{v_{n}} & \cdots & b_{n, n}
\end{array}\right] .
\end{aligned}
$$

It is easy to show that \widehat{A} and \widehat{B} are nonnegative irreducible matrices, and all the row sums of \widehat{A} are equal to $\rho(A)$ and all the row sums of \widehat{B} are equal to $\rho(B)$.

Also let $W=V U$, then W is nonsingular. From Lemma 4, we have

$$
\begin{aligned}
(V U)^{-1}(A \circ B)(V U) & =U^{-1} V^{-1}(A \circ B) V U=U^{-1}\left(A \circ\left(V^{-1} B V\right)\right) U \\
& =\left(U^{-1} A U\right) \circ\left(V^{-1} B V\right)=\widehat{A} \circ \widehat{B} .
\end{aligned}
$$

Thus, we have that $\rho(A \circ B)=\rho(\widehat{A} \circ \widehat{B})$.
We next consider the spectral radius $\rho(\widehat{A} \circ \widehat{B})$ of $\widehat{A} \circ \widehat{B}$. For nonnegative irreducible matrices \widehat{A}, \widehat{B}, from Definition of the Hadamard product of \widehat{A} and $\widehat{B},(5)-(8)$ and Lemma 3, we have

$$
\begin{aligned}
\rho(\widehat{A} \circ \widehat{B}) \leqslant & \max _{i \neq j} \frac{1}{2}\left\{\hat{a}_{i, i} \hat{b}_{i, i}+\hat{a}_{j, j} \hat{b}_{j, j}\right. \\
& \left.+\left[\left(\hat{a}_{i, i} \hat{b}_{i, i}-\hat{a}_{j,} \hat{b}_{j, j}\right)^{2}+4 \sum_{k \neq i} \hat{a}_{i, k} \hat{b}_{i, k} \sum_{k \neq j} \hat{a}_{j, k} \hat{b}_{j, k}\right]^{\frac{1}{2}}\right\} \\
= & \max _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}\right. \\
& \left.+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}+4 \sum_{k \neq i} \frac{a_{i, k} u_{k}}{u_{i}} \frac{b_{i, k} v_{k}}{v_{i}} \sum_{k \neq j} \frac{a_{j, k} u_{k}}{u_{j}} \frac{b_{j, k} v_{k}}{v_{j}}\right]^{\frac{1}{2}}\right\} \\
\leqslant & \max _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(\sum_{k \neq i} \frac{a_{i, k} u_{k}}{u_{i}} \sum_{k \neq i} \frac{b_{i, k} v_{k}}{v_{i}}\right)\left(\sum_{k \neq j} \frac{a_{j, k} u_{k}}{u_{j}} \sum_{k \neq j} \frac{b_{j, k} v_{k}}{v_{j}}\right)\right]^{\frac{1}{2}}\right\} \\
= & \max _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.+4\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\left(\rho(A)-a_{j, j}\right)\left(\rho(B)-b_{j, j}\right)\right]^{\frac{1}{2}}\right\} . \tag{9}
\end{equation*}
$$

If $A \circ B$ is reducible. We denote by $D=\left(d_{i j}\right)$ the $n \times n$ permutation matrix with $d_{1,2}=d_{2,3}=\cdots=$ $d_{n-1, n}=d_{n, 1}=1$, the remaining $d_{i j}$ zero, then both $A+t D$ and $B+t D$ are nonnegative irreducible matrices for any chosen positive real number t. Now we substitute $A+t D$ and $B+t D$ for A and B, respectively in the previous case, and then letting $t \rightarrow 0$, the result follows by continuity.

Using ideas of the proof of Theorem 4, we give new proofs of inequality in [3, Observation 5.7.4] and inequality (1) in [4].

For inequality $\rho(A \circ B) \leqslant \rho(A) \rho(B)$.
From the proof of Theorem 4, we know that $\rho(A \circ B)=\rho(\widehat{A} \circ \widehat{B})$. Then we have

$$
\rho(A \circ B)=\rho(\widehat{A} \circ \widehat{B}) \leqslant \max _{1 \leqslant i \leqslant n} \sum_{j=1}^{n} \hat{a}_{i j} \hat{b}_{i, j} \leqslant \max _{1 \leqslant i \leqslant n} \sum_{j=1}^{n} \hat{a}_{i, j} \max _{1 \leqslant i \leqslant n} \sum_{j=1}^{n} \hat{b}_{i, j}=\rho(A) \rho(B) .
$$

Similar to the proof of Theorem 4, we have

$$
\rho(A \circ B)=\rho(\widehat{A} \circ \widehat{B}) \leqslant \max _{1 \leqslant i \leqslant n} \sum_{j=1}^{n} \hat{a}_{i, j} \hat{b}_{i, j}=\max _{1 \leqslant i \leqslant n}\left(a_{i, i} b_{i, i}+\sum_{j \neq i} \hat{a}_{i, j} \hat{b}_{i, j}\right) .
$$

From (7) and (8), we have

$$
\begin{aligned}
\rho(A \circ B) & \leqslant \max _{1 \leqslant i \leqslant n}\left(a_{i, i} b_{i, i}+\sum_{j \neq i} \hat{a}_{i, j} \hat{b}_{i, j}\right) \\
& \leqslant \max _{1 \leqslant i \leqslant n}\left(a_{i, i} b_{i, i}+\sum_{j \neq i} \hat{a}_{i, j} \sum_{j \neq i} \hat{b}_{i, j}\right) \\
& =\max _{1 \leqslant i \leqslant n}\left(a_{i, i} b_{i, i}+\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\right) \\
& =\max _{1 \leqslant i \leqslant n}\left\{2 a_{i, i} b_{i, i}+\rho(A) \rho(B)-a_{i, i} \rho(B)-b_{i, i} \rho(A)\right\} .
\end{aligned}
$$

Remark 2. Fang [4] has shown that the upper bound in (1) for $\rho(A \circ B)$ is sharper than the bound $\rho(A) \rho(B)$. We next give a simple comparison between the upper bound in (1) and the upper bound in (4). Without loss of generality, for $i \neq j$, assume that

$$
\begin{equation*}
2 a_{i, i} b_{i, i}+\rho(A) \rho(B)-a_{i, i} \rho(B)-b_{i, i} \rho(A) \geqslant 2 a_{j,} b_{j, j}+\rho(A) \rho(B)-a_{j, j} \rho(B)-b_{j, j} \rho(A) \tag{10}
\end{equation*}
$$

Thus, we can write (10) equivalently as

$$
\begin{equation*}
a_{i, i} b_{i, i}+\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right) \geqslant a_{j, j} b_{j, j}+\left(\rho(A)-a_{j, j}\right)\left(\rho(B)-b_{j, j}\right) \tag{11}
\end{equation*}
$$

From (4), we have

$$
\begin{aligned}
a_{i, i} b_{i, i}+ & a_{j j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}+4\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\left(\rho(A)-a_{j, j}\right)\left(\rho(B)-b_{j, j}\right)\right]^{\frac{1}{2}} \\
& \leqslant a_{i, i} b_{i, i}+a_{j,} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}+4(\rho(A)\right. \\
& \left.\left.-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\left(\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)+a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)\right]^{\frac{1}{2}} \\
& =a_{i, i} b_{i, i}+a_{j, j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}+4\left(\rho(A)-a_{i, i}\right)^{2}\left(\rho(B)-b_{i, i}\right)^{2}\right. \\
& \left.+4\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\left(a_{i, i} b_{i, i}-a_{j j j} b_{j, j}\right)\right]^{\frac{1}{2}} \\
& =a_{i, i} b_{i, i}+a_{j j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}+2\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{align*}
& =a_{i, i} b_{i, i}+a_{j, j} b_{j, j}+a_{i, i} b_{i, i}-a_{j, j} b_{j, j}+2\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right) \\
& =2 a_{i, i} b_{i, i}+2\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right) \tag{12}
\end{align*}
$$

Thus, from (4) and (12), we have

$$
\begin{aligned}
\rho(A \circ B) \leqslant & \max _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\left(\rho(A)-a_{j, j}\right)\left(\rho(B)-b_{j, j}\right)\right]^{\frac{1}{2}}\right\} \\
\leqslant & \max _{1 \leqslant i \leqslant n} \frac{1}{2}\left\{2 a_{i, i} b_{i, i}+2\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\right\} \\
= & \max _{1 \leqslant i \leqslant n}\left\{a_{i, i} b_{i, i}+\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\right\} \\
= & \max _{1 \leqslant i \leqslant n}\left\{2 a_{i, i} b_{i, i}+\rho(A) \rho(B)-a_{i, i} \rho(B)-b_{i, i} \rho(A)\right\}
\end{aligned}
$$

Hence, the bound in (4) is sharper than the known one $\rho(A) \rho(B)$ in [3] and the bound $\max _{1 \leqslant i \leqslant n}$ $\left\{2 a_{i, i} b_{i, i}+\rho(A) \rho(B)-a_{i, i} \rho(B)-b_{i, i} \rho(A)\right\}$ in [4].

Consider the example in Introduction. Let $A=I, B=J$, it is easy to show that $\rho(A \circ B)=1$ and

$$
\begin{aligned}
\rho(A \circ B) \leqslant & \max _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\left(\rho(A)-a_{j, j}\right)\left(\rho(B)-b_{j, j}\right)\right]^{\frac{1}{2}}\right\}=1
\end{aligned}
$$

We next give another example to validate our results.
Example 1. Consider two 4×4 nonnegative matrices

$$
A=\left[\begin{array}{cccc}
4 & 1 & 0 & 2 \\
1 & 0.05 & 1 & 1 \\
0 & 1 & 4 & 0.5 \\
1 & 0.5 & 0 & 4
\end{array}\right], \quad B=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

It is easy to show that $\rho(A \circ B)=\rho(A)=5.7339$. By calculation, we have that $\rho(A) \rho(B)=22.9336$. According to inequalities (1) and (4), we have

$$
\rho(A \circ B) \leqslant \max _{1 \leqslant i \leqslant 4}\left\{2 a_{i, i} b_{i, i}+\rho(A) \rho(B)-a_{i, i} \rho(B)-b_{i, i} \rho(A)\right\}=17.1017
$$

and

$$
\begin{aligned}
\rho(A \circ B) \leqslant & \max _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\left(\rho(A)-a_{j, j}\right)\left(\rho(B)-b_{j, j}\right)\right]^{\frac{1}{2}}\right\}=11.6478
\end{aligned}
$$

From Theorem 4 we can obtain the following corollary:

Corollary 5. Let A, B be two $n \times n$ nonnegative matrices. Then we have

$$
|\operatorname{det}(A \circ B)| \leqslant[\rho(A \circ B)]^{n}
$$

$$
\begin{aligned}
& \leqslant \max _{i \neq j} \frac{1}{2^{n}}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
&\left.\left.+4\left(\rho(A)-a_{i, i}\right)\left(\rho(B)-b_{i, i}\right)\left(\rho(A)-a_{j, j}\right)\left(\rho(B)-b_{j, j}\right)\right]^{\frac{1}{2}}\right\}^{n} \\
& \leqslant \max _{1 \leqslant i \leqslant n}\left\{2 a_{i, i} b_{i, i}+\rho(A) \rho(B)-a_{i, i} \rho(B)-b_{i, i} \rho(A)\right\}^{n} \leqslant(\rho(A) \rho(B))^{n} .
\end{aligned}
$$

3. Inequalities for the Fan product of M-matrices

In this Section, we will give a lower bound for $\tau(A \star B)$.
Lemma 5. Let A, B be two nonsingular M-matrices and if D and E are two positive diagonal matrices, then $D(A \star B) E=(D A E) \star B=(D A) \star(B E)=(A E) \star(D B)=A \star(D B E)$.

Proof. Lemma 5 follows from Definition of Fan product.
Theorem 7. Let $A=\left(a_{i, j}\right), B=\left(b_{i, j}\right) \in R^{n \times n}$ be two nonsingular M-matrices. Then

$$
\begin{align*}
\tau(A \star B) \geqslant & \min _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\right]^{\frac{1}{2}}\right\} . \tag{13}
\end{align*}
$$

Proof. It is quite evident that (13) holds with equality for $n=1$.
We next assume that $n \geqslant 2$.
If $A \star B$ is irreducible, then A and B are irreducible. Since $A-\tau(A) I$ and $B-\tau(B) I$ are singular irreducible M-matrices, Theorem 6.4.16 of [1] yields that

$$
\begin{equation*}
a_{i, i}-\tau(A)>0 \quad \forall i \in N \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i, i}-\tau(B)>0 \quad \forall i \in N . \tag{15}
\end{equation*}
$$

Since $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ are irreducible nonsingular M-matrices, then there exists two positive vectors u, v such that $A u=\tau(A) u, B v=\tau(B) v$. Thus, we have

$$
\begin{equation*}
a_{i, i}-\sum_{j \neq i} \frac{\left|a_{i, j}\right| u_{j}}{u_{i}}=\tau(A) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i, i}-\sum_{j \neq i} \frac{\left|b_{i, j}\right| v_{j}}{v_{i}}=\tau(B) \tag{17}
\end{equation*}
$$

Define $\widetilde{U}=\operatorname{diag}\left(u_{1}, \ldots, u_{n}\right), \widetilde{V}=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$. Then we have that \widetilde{U} and \widetilde{V} are nonsingular diagonal matrices. Let $\widetilde{A}=\left(\tilde{a}_{i, j}\right)=\widetilde{U}^{-1} A \widetilde{U}$ and $\widetilde{B}=\left(\tilde{b}_{i, j}\right)=\widetilde{V}^{-1} B \widetilde{V}$, then we have

$$
\widetilde{A}=\left(\tilde{a}_{i, j}\right)=\widetilde{U}^{-1} A \widetilde{U}=\left[\begin{array}{cccc}
a_{1,1} & \frac{a_{1,2}, u_{2}}{u_{1}} & \ldots & \frac{a_{1, n} u_{n}}{u_{1}} \\
\frac{a_{2,1} u_{1}}{u_{2}} & a_{2,2} & \ldots & \frac{a_{2, n} u_{n}}{u_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{a_{n, 1}, u_{1}}{u_{n}} & \frac{a_{n, 2 u_{2}}}{u_{n}} & \cdots & a_{n, n}
\end{array}\right] \text {, }
$$

$$
\widetilde{B}=\left(\tilde{b}_{i, j}\right)=\widetilde{V}^{-1} A \widetilde{V}=\left[\begin{array}{cccc}
b_{1,1} & \frac{b_{1,2} v_{2}}{v_{1}} & \ldots & \frac{b_{1, n} v_{n}}{v_{1}} \\
\frac{b_{2,1} v_{1}}{v_{2}} & b_{2,2} & \ldots & \frac{b_{2, n}}{v_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{b_{n, 1} v_{1}}{v_{n}} & \frac{b_{n, 2} v_{2}}{v_{n}} & \cdots & b_{n, n}
\end{array}\right] \text {. }
$$

It is easy to show that \widetilde{A} and \widetilde{B} are also irreducible nonsingular M-matrices.
Also let $\widetilde{W}=\widetilde{V} \widetilde{U}$, then \widetilde{W} is nonsingular. From Lemma 6 , we have

$$
\begin{aligned}
(\widetilde{V} \widetilde{U})^{-1}(A \star B)(\widetilde{V} \widetilde{U}) & =\widetilde{U}^{-1} \widetilde{V}^{-1}(A \star B) \widetilde{V} \widetilde{U}=\widetilde{U}^{-1}\left(A \star\left(\widetilde{V}^{-1} B \widetilde{V}\right)\right) \widetilde{U} \\
& =\left(\widetilde{U}^{-1} A \widetilde{U}\right) \star\left(\widetilde{V}^{-1} B \widetilde{V}\right)=\widetilde{A} \star \widetilde{B} .
\end{aligned}
$$

Thus, we have that $\tau(\widetilde{A} \star \widetilde{B})=\tau(A \star B)$.
We next consider the minimum eigenvalue $\tau(\widetilde{A} \star \widetilde{B})$ of $\widetilde{A} \star \widetilde{B}$. For irreducible nonsingular M-matrices $\widetilde{A}, \widetilde{B}$, let $\lambda \in \sigma(\widetilde{A} \star \widetilde{B})$ satisfy $\tau(\widetilde{A} \star \widetilde{B})=\lambda$, then we have that $0<\lambda<a_{i, i} b_{i, i}, \forall i \in N$. From Definition of the Fan product of \widetilde{A} and \widetilde{B}, (14)-(17) and Theorem 1.23 of [5], there is a pair (i, j) of positive integers with $i \neq j$ such that

$$
\left|\lambda-a_{i, i} b_{i, i}\right|\left|\lambda-a_{j j} b_{j, j}\right| \leqslant \sum_{k \neq i}\left|-\tilde{a}_{i, k} \tilde{b}_{i, k}\right| \sum_{k \neq j}\left|-\tilde{a}_{j, k} \tilde{b}_{j, k}\right| .
$$

Thus, for $i \neq j$, we have

$$
\begin{align*}
\left|\left(\lambda-a_{i, i} b_{i, i}\right)\left(\lambda-a_{j, j} b_{j, j}\right)\right| & \leqslant \sum_{k \neq i}\left|\tilde{a}_{i, k} \tilde{b}_{i, k}\right| \sum_{k \neq j}\left|\tilde{a}_{j, k} \tilde{b}_{j, k}\right| \\
& \leqslant \sum_{k \neq i} \frac{\left|a_{i, k}\right| u_{k}}{u_{i}} \sum_{k \neq i} \frac{\left|b_{i, k}\right| v_{k}}{v_{i}} \sum_{k \neq j} \frac{\left|a_{j, k}\right| u_{k}}{u_{j}} \sum_{k \neq j} \frac{\left|b_{j, k}\right| v_{k}}{v_{j}} \\
& =\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right) . \tag{18}
\end{align*}
$$

From inequality (18) and $0<\lambda<a_{i, i} b_{i, i}, \forall i \in N$, we have

$$
\begin{equation*}
\left(\lambda-a_{i, i} b_{i, i}\right)\left(\lambda-a_{j,} b_{j, j}\right) \leqslant\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right) . \tag{19}
\end{equation*}
$$

Thus, from inequality (19), we have

$$
\begin{aligned}
\lambda \geqslant & \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j,} b_{j, j}-\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\right]^{\frac{1}{2}}\right\} .
\end{aligned}
$$

That is

$$
\begin{aligned}
\tau(A \star B) \geqslant & \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\right]^{\frac{1}{2}}\right\} \\
& \geqslant \min _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\right]^{\frac{1}{2}}\right\} .
\end{aligned}
$$

If $A \star B$ is reducible. It is well known that a matrix in Z_{n} is a nonsingular M-matrix if and only if all its leading principal minors are positive (see condition (E17) of Theorem 6.2.3 of [1]). If we denote by
$D=\left(d_{i, j}\right)$ the $n \times n$ permutation matrix with $d_{1,2}=d_{2,3}=\cdots=d_{n-1, n}=d_{n, 1}=1$, the remaining $d_{i, j}$ zero, then both $A-t D$ and $B-t D$ are irreducible nonsingular M-matrices for any chosen positive real number t, sufficiently small such that all the leading principal minors of both $A-t D$ and $B-t D$ are positive. Now we substitute $A-t D$ and $B-t D$ for A and B, respectively in the previous case, and then letting $t \rightarrow 0$, the result follows by continuity.

Using ideas of the proof of Theorem 7, we next give a new proof of inequality (2) in [4].
Let $\lambda \in \sigma(\widetilde{A} \star \widetilde{B})$ satisfy $\tau(\widetilde{A} \star \widetilde{B})=\lambda$. Similar to the proof of Theorem 7, by theorem of Gerschgorin, we have

$$
\left|\lambda-a_{i, i} b_{i, i}\right| \leqslant \sum_{k \neq i}\left|-\frac{a_{i, k} u_{k}}{u_{i}} \frac{b_{i, k} v_{k}}{v_{i}}\right|
$$

Thus, we have

$$
a_{i, i} b_{i, i}-\lambda \leqslant \sum_{k \neq i} \frac{\left|a_{i, k}\right| u_{k}}{u_{i}} \sum_{k \neq i} \frac{\left|b_{i, k}\right| v_{k}}{v_{i}}=\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right) .
$$

Hence, we have

$$
\begin{aligned}
\lambda & \geqslant a_{i, i} b_{i, i}-\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right) \\
& =a_{i, i} \tau(B)+b_{i, i} \tau(A)-\tau(A) \tau(B) \geqslant \min _{1 \leqslant i \leqslant n}\left\{a_{i, i} \tau(B)+b_{i, i} \tau(A)-\tau(A) \tau(B)\right\} .
\end{aligned}
$$

Remark 3. Fang [4] has shown that the lower bound in (2) for $\tau(A \star B)$ is sharper than the bound $\tau(A) \tau(B)$. We next give a simple comparison between the lower bound in (2) and the lower bound in (13). Without loss of generality, for $i \neq j$, assume that

$$
\begin{equation*}
a_{i, i} \tau(B)+b_{i, i} \tau(A)-\tau(A) \tau(B) \geqslant a_{j, j} \tau(B)+b_{j, j} \tau(A)-\tau(A) \tau(B) . \tag{20}
\end{equation*}
$$

Thus, we can write (20) equivalently as

$$
\begin{equation*}
-a_{i, i} \tau(B)-b_{i, i} \tau(A)+\tau(A) \tau(B) \leqslant-a_{j, j} \tau(B)-b_{j, j} \tau(A)+\tau(A) \tau(B) \tag{21}
\end{equation*}
$$

That is

$$
\begin{equation*}
\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)-a_{i, i} b_{i, i} \leqslant\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)-a_{j, j} b_{j, j} . \tag{22}
\end{equation*}
$$

Thus, from (22), we have

$$
\begin{equation*}
\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right) \leqslant\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)+a_{i, i} b_{i, i}-a_{j, j} b_{j, j} . \tag{23}
\end{equation*}
$$

From (13) and (23), we have

$$
\begin{aligned}
& \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.\quad+4\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\right]^{\frac{1}{2}}\right\} \\
& \quad \geqslant \\
& \quad \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.\quad+4\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\left(\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)+a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.\quad+4\left(a_{j, j}-\tau(A)\right)^{2}\left(b_{j, j}-\tau(B)\right)^{2}+4\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)\right]^{\frac{1}{2}}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}+2\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\right)^{2}\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-\left(a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-2 a_{j, j} \tau(B)-2 b_{j, j} \tau(A)+2 \tau(A) \tau(B)\right)\right\} \\
& =a_{j, j} \tau(B)+b_{j, j} \tau(A)-\tau(A) \tau(B) \tag{24}
\end{align*}
$$

Thus, from (13) and (24), we get

$$
\begin{aligned}
\tau(A \star B) & \geqslant \min _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-\left[\left(a_{i, i} b_{i, i}-a_{j j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\right]^{\frac{1}{2}}\right\} \\
& \geqslant \min _{1 \leqslant i \leqslant n}\left\{a_{i, i} \tau(B)+b_{i, i} \tau(A)-\tau(A) \tau(B)\right\} .
\end{aligned}
$$

From Theorem 7 and [1, p. 380] we can obtain the following corollary:
Corollary 8. Let A, B be two nonsingular M-matrices. Then we have

$$
\begin{aligned}
|\operatorname{det}(A \star B)| \geqslant & {[\tau(A \star B)]^{n} } \\
\geqslant & \min _{i \neq j} \frac{1}{2^{n}}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}+\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\right]^{\frac{1}{2}}\right\}^{n} \\
\geqslant & \min _{1 \leqslant i \leqslant n}\left\{a_{i, i} \tau(B)-b_{i, i} \tau(A)-\tau(A) \tau(B)\right\}^{n} \geqslant(\tau(A) \tau(B))^{n}
\end{aligned}
$$

Example 2. Consider two $3 \times 3 \mathrm{M}$-matrices

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 1 & -0.5 \\
-0.5 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & -0.25 & -0.25 \\
-0.5 & 1 & -0.25 \\
-0.25 & -0.5 & 1
\end{array}\right]
$$

It is easy to show that $\tau(A)=0.5402, \tau(B)=0.3432$ and $\tau(A \star B)=0.8819$. By calculation, we have that $\tau(A) \tau(B)=0.1854$. According to inequalities (2) and (13), we have

$$
\tau(A \star B) \geqslant \min _{1 \leqslant i \leqslant 3}\left\{a_{i, i} \tau(B)+b_{i, i} \tau(A)-\tau(A) \tau(B)\right\}=0.6980,
$$

and

$$
\begin{aligned}
\tau(A \star B) \geqslant & \min _{i \neq j} \frac{1}{2}\left\{a_{i, i} b_{i, i}+a_{j, j} b_{j, j}-\left[\left(a_{i, i} b_{i, i}-a_{j, j} b_{j, j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(a_{i, i}-\tau(A)\right)\left(b_{i, i}-\tau(B)\right)\left(a_{j, j}-\tau(A)\right)\left(b_{j, j}-\tau(B)\right)\right]^{\frac{1}{2}}\right\}=0.7655 .
\end{aligned}
$$

Acknowledgments

We express our thanks to the anonymous referees who made much useful and detailed suggestions that helped us to correct some errors and improve the quality of the paper.

References

[1] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994.
[2] A. Brauer, Limits for the characteristic roots of a matrix II, Duke Math. J. 14 (1947) 21-26.
[3] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1985.
[4] M.Z. Fang, Bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Linear Algebra Appl. 425 (2007) 7-15.
[5] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.

[^0]: 4. This project is granted financial support from Shanghai Science and Technology Committee (No. 062112065) and Shanghai Priority Academic Discipline Foundation and PhD Program Scholarship Fund of ECNU 2009(PHD2009).

 * Corresponding author.

 E-mail address: glchen@math.ecnu.edu.cn (G. Chen).

