Discrete Conjugate Boundary Value Problems

R. P. AGARWAL
Department of Mathematics, National University of Singapore
10 Kent Ridge Crescent, Singapore 119260

D. O'REGAN
Department of Mathematics, National University of Ireland
Galway, Ireland

(Received and accepted October 1998)

Abstract—This paper discusses higher-order discrete conjugate boundary value problems of singular and nonsingular type. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords—Conjugate discrete boundary value problems, Singular problems, Nonsingular problems, Nonnegative solutions.

1. INTRODUCTION

This paper discusses the \(n \)th \((n \geq 2)\) order discrete conjugate boundary value problem

\[
(-1)^{n-p} \Delta^n y(i-p) = f(i, y(i)), \quad i \in J_p, \\
\Delta^i y(0) = 0, \quad 0 \leq i \leq p-1 \text{ (i.e., } y(0) = \cdots = y(p-1) = 0), \\
\Delta^i y(T+n-i) = 0, \quad 0 < i < n-p-1 \text{ (i.e., } y(T+p+1) = \cdots = y(T+n) = 0) ;
\]

(1.1)

here \(T \in \{1,2,\ldots\}, J_p = \{p,p+1,\ldots,T+p\}, 1 \leq p \leq n-1, \) and \(y : I_n = \{0,1,\ldots,T+n\} \rightarrow \mathbb{R} \).

We will let \(C(I_n) \) denote the class of maps \(w \) continuous on \(I_n \) (discrete topology) with norm \(||w|| = \max_{k \in I_n} |w(k)| \). By a solution to (1.1), we mean a \(w \in C(I_n) \) such that \(w \) satisfies the difference equation in (1.1) for \(i \in J_p \) and \(w \) satisfies the conjugate boundary data. In this paper, we discuss separately the cases when \(f \) is nonsingular and when \(f \) is singular (i.e., \(f(i,u) \) singular at \(u = 0 \)). All the results are new and they extend and complement the theory in the literature [1-5]. Indeed this paper is the first time the singular higher-order discrete conjugate boundary value problem has been discussed (see [6] for results when \(n = 2 \)).

For the remainder of this introduction, we gather together some results which will be used in Sections 2 and 3. In [1-3,5], it was shown that if \(y \) satisfies

\[
\Delta^n y(k) = \phi(k), \quad k \in I_0 = \{0,1,\ldots,T\}, \\
\Delta^i y(0) = 0, \quad 0 \leq i \leq p-1, \\
\Delta^i y(T+n-i) = 0, \quad 0 \leq i \leq n-p-1,
\]

(1.2)
then

\[y(k) = \sum_{j=0}^{T} G_3(k,j) \phi(j), \quad \text{for } k \in I_n; \]

here

\[G_3(k,j) = \sum_{l=0}^{p-1} \left[\sum_{i=0}^{p-l-1} \binom{n-p+i-1}{i} \frac{k^{(l+i)}}{(T+n-l)(n-p+i)} \right] \frac{(-j-1)^{(n-l-1)}}{l!(n-l-1)!} (T+n-k)^{(n-p)} \]

if \(j \in \{0,1,\ldots,k-1\} \), and

\[G_3(k,j) = -\sum_{l=0}^{n-p-1} \left[\sum_{i=0}^{n-p-l-1} \binom{p+i-1}{i} \frac{(T+p+l+i-k)^{(l+i)}}{(T+p+1+l+i)^{(p+i)}} \right] \frac{(-1)^l (T+p-j)^{(n-l+1)} k^p}{l!(n-l-1)!} \]

if \(j \in \{k,k+1,\ldots,T\} \). Next consider

\[\Delta^n y(k-p) = \phi(k), \quad k \in J_p, \]
\[\Delta^i y(0) = 0, \quad 0 \leq i \leq p-1, \]
\[\Delta^i y(T+n-i) = 0, \quad 0 \leq i \leq n-p-1. \] \hspace{1cm} (1.3)

Notice (1.3) is the same as

\[\Delta^n y(k) = \phi(k+p), \quad k \in I_0, \]
\[\Delta^i y(0) = 0, \quad 0 \leq i \leq p-1, \]
\[\Delta^i y(T+n-i) = 0, \quad 0 \leq i \leq n-p-1, \] \hspace{1cm} (1.4)

and so

\[y(k) = \sum_{j=0}^{T} G_3(k,j) \phi(j+p), \quad \text{for } k \in I_n. \] \hspace{1cm} (1.5)

This is the same as

\[y(k) = \sum_{j=p}^{T+p} G_3(k,j-p) \phi(j), \quad \text{for } k \in I_n. \] \hspace{1cm} (1.6)

We write

\[y(k) = \sum_{j=p}^{T+p} G(k,j) \phi(j), \quad \text{for } k \in I_n, \] \hspace{1cm} (1.7)

where

\[G(k,j) = G_3(k,j-p). \]

Also in [2,3], the following result was established.

Theorem 1.1. Suppose \(y : I_n \to \mathbb{R} \) is such that

\[(-1)^{n-p} \Delta^n y(k) \geq 0, \quad k \in I_0, \]
\[\Delta^i y(0) = 0, \quad 0 \leq i \leq p-1, \]
\[\Delta^i y(T+n-i) = 0, \quad 0 \leq i \leq n-p-1. \] \hspace{1cm} (1.8)

Then

\[y(k) \geq \theta \max_{j \in I_n} |y(j)| = \theta \|y\|, \quad \text{for } k \in J_p, \] \hspace{1cm} (1.9)
where \(0 < \theta < 1\) is a constant given by

\[
\theta = \min\{b(p), b(p+1)\};
\]

(1.10)

here \(b\) is given by

\[
b(x) = \frac{\min\{g(x, p), g(x, T + p)\}}{\min\{g(x, \lceil x \rceil), g(x, \lceil x \rceil + 1), g(x, p), g(x, T + p)\}}
\]

(1.11)

with

\[
g(x, k) = k(x-1) (T + n - k)^{n-2} \quad \text{and} \quad \theta(x) = \frac{(x-1)T + (x-2)n + x}{n-1}
\]

(1.12)

(note \([.\] denotes the greatest integer function).

Now suppose \(y : I_n \to \mathbb{R}\) satisfies

\[
(-1)^{n-p} \Delta^n y(k - p) \geq 0, \quad k \in J_p,
\]

\[
\Delta^i y(0) = 0, \quad 0 \leq i \leq p - 1,
\]

\[
\Delta^i y(T + n - i) = 0, \quad 0 \leq i \leq n - p - 1.
\]

(1.13)

Of course, \((-1)^{n-p} \Delta^n y(k - p) \geq 0\) for \(k \in J_p\) is exactly the same as \((-1)^{n-p} \Delta^n y(k) \geq 0\) for \(k \in I_0\) and so

\[
y(k) \geq \theta \|y\| = \theta \max_{j \in I_n} |y(j)|, \quad \text{for } k \in J_p.
\]

(1.14)

Next, we present an existence principle for the discrete conjugate boundary value problem

\[
(-1)^{n-p} \Delta^n y(k - p) = f(k, y(k)), \quad k \in J_p,
\]

\[
y(0) = a,
\]

\[
\Delta^i y(0) = 0, \quad 1 \leq i \leq p - 1,
\]

\[
y(T + n) = a,
\]

\[
\Delta^i y(T + n - i) = 0, \quad 1 \leq i \leq n - p - 1.
\]

(1.15)

Theorem 1.2. Suppose \(f : J_p \times \mathbb{R} \to \mathbb{R}\) is continuous (i.e., continuous as a map from the topological space \(J_p \times \mathbb{R}\) into the topological space \(\mathbb{R}\) (of course, the topology on \(J_p\) will be the discrete topology)). Assume there is a constant \(M > \|a\|\), independent of \(\lambda\), with

\[
\|y\| = \max_{j \in I_n} |y(j)| \neq M
\]

for any solution \(y \in C(I_n)\) to

\[
(-1)^{n-p} \Delta^n y(k - p) = \lambda f(k, y(k)), \quad k \in J_p,
\]

\[
y(0) = a,
\]

\[
\Delta^i y(0) = 0, \quad 1 \leq i \leq p - 1,
\]

\[
y(T + n) = a,
\]

\[
\Delta^i y(T + n - i) = 0, \quad 1 \leq i \leq n - p - 1,
\]

(1.16)\(\lambda\)

for each \(\lambda \in (0, 1)\). Then (1.15)\(\lambda\) has a solution.

Proof. Solving (1.16)\(\lambda\) is equivalent to finding a \(y \in C(I_n)\) which satisfies

\[
y(k) = a + \lambda \sum_{j=p}^{T+p} G(k, j) f(j, y(j)), \quad \text{for } k \in I_n;
\]

(1.17)\(\lambda\)
here G is as in (1.7). Define the operator $S: C(I_n) \to C(I_n)$ by setting

$$Sy(k) = a + \sum_{j=p}^{T+p} G(k,j) f(j,y(j)).$$

Now (1.17)

$$y = (1 - \lambda)a + \lambda Sy.$$

It is easy to see [3,7] that $S: C(I_n) \to C(I_n)$ is continuous and completely continuous. Let

$$U = \{ u \in C(I_n) : \| u \| < M \} \quad \text{and} \quad E = C(I_n).$$

The nonlinear alternative of Leray-Schauder [4] guarantees that S has a fixed point in U, i.e., (1.15) has a solution. \[\square \]

2. NONSINGULAR PROBLEMS

In this section, we are interested in establishing the existence of nonnegative solutions to discrete conjugate higher-order boundary value problems of nonsingular type. For convenience we discuss (1.1). However, we note that the ideas in this section could be used to discuss other higher-order discrete problems; for example, the (n,p), focal, and conjugate problems in [3].

THEOREM 2.1. Suppose the following conditions are satisfied:

$$f: J_p \times [0, \infty) \to [0, \infty)$$

is continuous, (2.1)

there exists a continuous, nondecreasing function $\psi: [0, \infty) \to [0, \infty)$

with $\psi > 0$ on $(0, \infty)$ and a function $q: J_p \to [0, \infty)$ with $f(k,u) \leq q(k) \psi(u)$, for all $u \geq 0$ and $k \in J_p$ (2.2)

and

$$\sup_{c \in (0,\infty)} \left(\frac{c}{\psi(c)} \right) > Q; \quad \text{here} \quad Q = \max_{k \in I_n} \sum_{j=p}^{T+p} q(j) (-1)^{n-p} G(k,j).$$

Then (1.1) has a nonnegative solution.

PROOF. Consider the family of problems

$$(-1)^{n-p} \Delta^n y(k-p) = \lambda f^*(k,y(k)), \quad k \in J_p,$$

$$\Delta^i y(0) = 0, \quad 0 \leq i \leq p-1,$$

$$\Delta^i y(T+n-i) = 0, \quad 0 \leq i \leq n-p-1,$$

for $0 < \lambda < 1$; here

$$f^*(k,u) = \begin{cases} f(k,u), & u \geq 0, \\ f(k,0), & u \leq 0. \end{cases}$$

Let y be any solution of (2.4) for $0 < \lambda < 1$. Then

$$y(k) = \lambda \sum_{j=p}^{T+p} (-1)^{n-p} G(k,j) f(j,y(j)) \geq 0, \quad \text{for} \quad k \in I_n.$$ (2.5)

For notational purposes let $y_0 = \sup_{k \in I_n} y(k)$. Let $M > 0$ satisfy

$$\frac{M}{\psi(M)} > Q.$$ (2.6)
From (2.5) we have for \(k \in I_n \),
\[
y(k) \leq \sum_{j=p}^{T+p} (-1)^{n-p} G(k, j) q(j) \psi(y(j)) \leq \psi(y_0) \sum_{j=p}^{T+p} (-1)^{n-p} G(k, j) q(j) \leq Q \psi(y_0)
\]
and so
\[
\frac{y_0}{\psi(y_0)} \leq Q. \tag{2.7}
\]
Now (2.6) together with (2.7) implies \(y_0 \neq M \). Thus, any solution \(y \) of (2.4), satisfies \(\|y\| \neq M \), i.e., \(y_0 \neq M \). Now Theorem 1.2 implies (2.4) has a solution \(y \) and, of course, \(y(k) \geq 0 \) for \(k \in I_n \). Thus, \(y \) is a solution of (1.1).

3. SINGULAR PROBLEMS

Next we discuss (1.1) when our nonlinearity \(f(i, y) \) may be singular at \(y = 0 \).

Theorem 3.1. Suppose the following conditions are satisfied:

\[
f : J_p \times (0, \infty) \rightarrow (0, \infty)
\]

is continuous,

\[
f(k, u) \leq g(u) + h(u) \text{ on } J_p \times (0, \infty) \text{ with } g > 0 \text{ continuous and nonincreasing on } (0, \infty), \ h \geq 0 \text{ continuous on } [0, \infty) \text{ and } h/g \text{ nondecreasing on } (0, \infty)
\]

for each constant \(H > 0 \) there exists a continuous function

\[
\psi_H : J_p \rightarrow (0, \infty) \text{ with } f(k, u) \geq \psi_H(k) \text{ on } J_p \times (0, H]
\]

there exists a constant \(K_\theta > 0 \) with \(g(\theta u) \leq K_\theta g(u) \) for all \(u \geq 0 \); here \(\theta \) is as in (1.10)

and

\[
\sup_{c \in (0, \infty)} \left(\frac{c}{g(c) + h(c)} \right) > K_\theta Q; \tag{3.5}
\]

here

\[
Q = \max_{k \in J_p} \sum_{j=p}^{T+p} (-1)^{n-p} G(k, j) \text{ and } G \text{ is as in (1.7)}.
\]

Then (1.1) has a solution \(y \in C(I_n) \) with \(y(i) > 0 \) for \(i \in J_p \).

Proof. Choose \(M > 0 \) with

\[
\frac{M}{Q K_\theta [g(M) + h(M)]} > 1. \tag{3.6}
\]

Next choose \(\epsilon > 0 \) and \(\epsilon < M \) with

\[
\frac{M}{Q K_\theta [g(M) + h(M)] + \epsilon} > 1. \tag{3.7}
\]

Let \(n_0 \in \{1, 2, \ldots\} \) be chosen so that \(1/n_0 < \epsilon \) and let \(N_0 = \{n_0, n_0 + 1, \ldots\} \). We first show

\[
(-1)^{n-p} \Delta^n y(k - p) = f^**(k, y(k)), \quad k \in J_p,
\]

\[
y(0) = \frac{1}{m},
\]

\[
\Delta^i y(0) = 0, \quad 1 \leq i \leq p - 1,
\]

\[
y(T + n) = \frac{1}{m},
\]

\[
\Delta^i y(T + n - i) = 0, \quad 1 \leq i \leq n - p - 1,
\]

\[
(3.8)^m
\]
has a solution for each $m \in N_0$; here

$$f^{**}(k, u) = \begin{cases} f(k, u), & u \geq \frac{1}{m}, \\ f\left(k, \frac{1}{m}\right), & u < \frac{1}{m}. \end{cases}$$

To show (3.8)m has a solution for each $m \in N_0$, we will apply Theorem 1.2. Consider the family of problems

$$(-1)^{n-p} \Delta^n y(k - p) = \lambda f^{**}(k, y(k)), \quad k \in J_p,$$

$$y(0) = \frac{1}{m},$$

$$\Delta^i y(0) = 0, \quad 1 \leq i \leq p - 1,$$ \hspace{1cm} (3.9)m

$$y(T + n) = \frac{1}{m},$$

$$\Delta^i y(T + n - i) = 0, \quad 1 \leq i \leq n - p - 1,$$

for $0 < \lambda < 1$. Let $y \in C(I_n)$ be any solution of (3.9)m. Then

$$y(k) = \frac{1}{m} + \lambda \sum_{j=p}^{T+p} (-1)^{n-p} G(k, j) f^{**}(j, y(j)), \quad k \in I_n,$$ \hspace{1cm} (3.10)

and so $y(k) \geq 1/m$ for $k \in I_n$.

Remark 3.1. Any solution u of (3.9)$_\lambda$ satisfies $u(k) \geq 1/m$ for $k \in I_n$ also.

We next claim that

$$\|y\| = \sup_{j \in I_n} y(j) \neq M, \quad (\text{here } M \text{ is as in (3.6))}$$ \hspace{1cm} (3.11)

for any solution y to (3.9)$^\lambda$. To see this, let y be any solution of (3.9)$_\lambda$ and let the absolute maximum of $y(k)$ be at say $i_0 \in J_p$. Then (3.10), (3.2), (1.14), and (3.4) (with $y(k) \geq 1/m$ for $k \in I_n$) imply

$$y(i_0) \leq \frac{1}{m} + \left(1 + \frac{h(y(i_0))}{g(y(i_0))}\right) \sum_{j=p}^{T+p} (-1)^{n-p} G(i_0, j) g(y(j))$$

$$\leq \epsilon + \left(1 + \frac{h(y(i_0))}{g(y(i_0))}\right) \sum_{j=p}^{T+p} (-1)^{n-p} G(i_0, j) g(\theta y(i_0))$$

$$\leq \epsilon + [g(y(i_0)) + h(y(i_0))] K_0 \sum_{j=p}^{T+p} (-1)^{n-p} G(i_0, j)$$

$$\leq \epsilon + [g(y(i_0)) + h(y(i_0))] K_0 Q.$$

Consequently,

$$\frac{y(i_0)}{\epsilon + [g(y(i_0)) + h(y(i_0))] K_0 Q} \leq 1.$$ \hspace{1cm} (3.12)

Now (3.7) and (3.12) imply $y(i_0) \neq M$ and so (3.11) is true. Consequently, Theorem 1.2 guarantees that (3.8)m has a solution $y_m \in C(I_n)$ with $1/m \leq y_m(i) \leq M$ for $i \in I_n$ and y_m satisfies

$$(-1)^{n-p} \Delta^n y(k - p) = f(k, y(k)), \quad k \in J_p,$$

$$y(0) = \frac{1}{m},$$

$$\Delta^i y(0) = 0, \quad 1 \leq i \leq p - 1,$$

$$y(T + n) = \frac{1}{m},$$

$$\Delta^i y(T + n - i) = 0, \quad 1 \leq i \leq n - p - 1,$$
Next we obtain a sharper lower bound on y_m. Notice y_m satisfies

$$y_m(i) = \frac{1}{m} + \sum_{j=p}^{T+p} (-1)^{n-p} G(i, j) f(j, y_m(j)), \quad \text{for } i \in I_n. \quad (3.13)$$

Also (3.3) guarantees the existence of a continuous function $\psi_M : J_p \to (0, \infty)$ with $f(i, u) \geq \psi_M(i)$ for $(i, u) \in J_p \times (0, M]$. This together with (3.13) yields

$$y_m(i) \geq \sum_{j=p}^{T+p} (-1)^{n-p} G(i, j) \psi_M(j) \equiv \Phi_M(i), \quad \text{for } i \in J_p. \quad (3.14)$$

Clearly,

$$\{y_m\}_{m \in N_0} \text{ is a bounded family on } I_n. \quad (3.15)$$

The Arzela-Ascoli Theorem [2] guarantees the existence of a subsequence N of N_0 and a function $y \in C(J_n)$ with $y_n \to y$ in $C(I_n)$ as $n \to \infty$ through N. Also

$$y(0) = \cdots = y(p - 1) = y(T + p + 1) = \cdots = y(T + n) = 0.$$

Fix $i \in J_p$. Then $y_m, m \in N$, satisfies (3.13). Also

$$\Phi_M = \min_{i \in J_p} \Phi_M(i) \leq y_m(j) \leq M, \quad \text{for } j \in J_p \text{ and } m \in N. \quad (3.16)$$

Let $m \to \infty$ through N in (3.13) to obtain

$$y(i) = \sum_{j=p}^{T+p} (-1)^{n-p} G(i, j) f(j, y(j)), \quad \text{for } i \in J_p$$

and so $(-1)^{n-p} \Delta^n y(i - p) = f(i, y(i))$ for $i \in J_p$. Also notice that (3.16) implies $y(j) \geq \Phi_M > 0$ for $j \in J_p$.

Example 3.1. Consider the boundary value problem

$$(-1)^{n-p} \Delta^n y(k - p) = \mu \left([y(k)]^{-\alpha} + A [y(k)]^\beta + B \right), \quad \text{for } k \in J_p,$$

$$\Delta^i y(0) = 0, \quad 0 \leq i \leq p - 1, \quad (3.17)$$

$$\Delta^i y(T + n - i) = 0, \quad 0 \leq i \leq n - p - 1,$$

with $\alpha > 0, \beta \geq 0, A \geq 0, B \geq 0$, and $\mu > 0$. If

$$\mu < \frac{\theta^\alpha}{Q} \sup_{c \in (0, \infty)} \left(\frac{c^{\alpha+1}}{1 + A c^{\alpha+\beta} + B c^\alpha} \right) \quad (3.18)$$

(here θ is as in (1.10) and Q is as in the statement of Theorem 3.1) then (3.17) has a solution $y \in C(I_n)$ with $y(i) > 0$ for $i \in J_p$.

Remark 3.2. If $\beta < 1$, then (3.18) is true for all $\mu > 0$.

The result follows immediately from Theorem 3.1 with $g(u) = \mu u^{-\alpha}$ and $h(u) = \mu [A u^\beta + B]$. Clearly, (3.1), (3.2), (3.3) (with $\psi_H = \mu H^{-\alpha}$), and (3.4) (with $K_\theta = \theta^{-\alpha}$) are satisfied. Also, (3.18) guarantees that (3.5) is true. Existence of a solution is now guaranteed from Theorem 3.1.
REFERENCES