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The Schechter–Valle theorem states that a positive observation of neutrinoless double-beta (0νββ) decays 
implies a finite Majorana mass term for neutrinos when any unlikely fine-tuning or cancellation is 
absent. In this note, we reexamine the quantitative impact of the Schechter–Valle theorem, and find that 
current experimental lower limits on the half-lives of 0νββ-decaying nuclei have placed a restrictive 
upper bound on the Majorana neutrino mass |δmee

ν | < 7.43 × 10−29 eV radiatively generated at the 
four-loop level. Furthermore, we generalize this quantitative analysis of 0νββ decays to that of the 
lepton-number-violating (LNV) meson decays M− → M ′+ +�−

α +�−
β (for α, β = e or μ). Given the present 

upper limits on these rare LNV decays, we have derived the loop-induced Majorana neutrino masses 
|δmee

ν | < 9.7 ×10−18 eV, |δmeμ
ν | < 1.6 ×10−15 eV and |δmμμ

ν | < 1.0 ×10−12 eV from K − → π+ +e− +e−, 
K − → π+ + e− + μ− and K − → π+ + μ− + μ−, respectively. A partial list of radiative neutrino masses 
from the LNV decays of D , Ds and B mesons is also given.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It remains an open question whether massive neutrinos are Ma-
jorana particles, whose antiparticles are themselves [1]. The final 
answer to this fundamental question will tell us whether the lep-
ton number is conserved or not in nature, and help us explore the 
origin of neutrino masses.

Currently, the most promising way to answer if massive neu-
trinos are their own antiparticles is to observe the 0νββ decays 
N(Z , A) → N(Z + 2, A) + e− + e− , where Z and A stand respec-
tively for the atomic and mass numbers of a nuclear isotope 
N(Z , A) [2,3]. Over the last few decades, a great number of ded-
icated experiments have been carried out to search for this kind 
of decays [4,5]. So far, we have not observed any positive signals, 
and a lower bound on the half-life of the implemented nuclear 
isotope can be drawn from experimental data. The GERDA Phase-I 
experiment [6] has disproved the signals of 0νββ decays claimed 
by the Heidelberg–Moscow experiment [7], and the joint lower 
bound from all the previous 76Ge-based experiments on the half-
life turns out to be T 1/2

0ν > 3.0 × 1025 yr at the 90% confidence 
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level [6,8]. For 136Xe-based experiments, a combined analysis of 
the EXO-200 [9] and KamLAND-Zen Phase-I data [10] gives rise to 
a lower bound T 1/2

0ν > 3.4 × 1025 yr at the 90% confidence level. 
More recently, KamLAND-Zen announced their Phase-II result [11], 
and improved the lower bound to T 1/2

0ν > 1.07 × 1026 yr at the 90%
confidence level with both Phase-I and Phase-II data. If neutrino 
mass ordering is inverted (i.e., m3 < m1 < m2), the next-generation 
0νββ experiments with a few tons of target mass will be able to 
discover a remarkable signal in the near future [4].

The Schechter–Valle theorem [12] states that a clear signal 
of 0νββ decays will unambiguously indicate a finite Majorana 
mass of neutrinos, if neither a fine-tuning among parameters nor 
a cancellation among different contributions is assumed.1 Obvi-
ously, this theorem signifies the physical importance of search-
ing for 0νββ decays experimentally. The quantitative impact of 
the Schechter–Valle theorem has already been studied by Duerr, 
Lindner and Merle in Ref. [13], where it is found that the Ma-
jorana neutrino masses implied by the Schechter–Valle theorem 
are too small to explain neutrino oscillations. Explicitly, assum-

1 It has been pointed out by Apostolos Pilaftsis that the tree-level parameters can 
be well chosen to give a vanishing neutrino mass in the type-I seesaw model, while 
the 0νββ decay rate remains nonzero as the nuclear medium effects on quarks may 
break any intricate cancellation.
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ing one short-range operator to be responsible for 0νββ decays, 
they find that current experimental lower bounds on the half-
lives of 0νββ-decaying isotopes indicate an upper bound on the 
Majorana neutrino mass |δmee

ν | < 5 × 10−28 eV, where δmαβ
ν de-

notes the effective neutrino mass term associated with ναLν
c
βL for 

α, β = e, μ, τ . In this paper, we reexamine this problem, and ob-
tain an upper bound |δmee

ν | < 7.43 × 10−29 eV that agrees with 
the above result from Ref. [13] on the order of magnitude. Fur-
thermore, we generalize the analysis of 0νββ decays to that of the 
LNV rare decays of B , D and K mesons. For instance, we obtain 
|δmee

ν | < 9.7 × 10−18 eV, |δmeμ
ν | < 1.6 × 10−15 eV and |δmμμ

ν | <
1.0 × 10−12 eV from current upper bounds on the LNV rare de-
cays of K mesons. The radiative Majorana neutrino masses related 
to other LNV decays are also tabulated. Therefore, we confirm the 
conclusion from Ref. [13] that although the Schechter–Valle the-
orem in general implies a tiny Majorana neutrino mass, we have 
to explore other mechanisms to generate the observed neutrino 
masses at the sub-eV level.

The remaining part of this work is organized as follows. In 
Sec. 2, we recall the calculation of Majorana neutrino masses from 
the four-loop diagram mediated by the effective operator, which 
is also responsible for the 0νββ decays. The generalization to the 
LNV meson decays is performed in Sec. 3, where the corresponding 
Majorana masses are computed. Finally, we summarize our main 
conclusions in Sec. 4.

2. Majorana masses from 0νββ decays

In this section, we present a brief review on the calculation of 
Majorana neutrino masses radiatively generated from the operator 
that leads to the 0νββ decays, following Ref. [13] closely. Such 
a calculation can be readily generalized to the case of Majorana 
neutrino masses induced by the LNV meson decays, as shown in 
the next section.

At the elementary-particle level, the 0νββ decays can be ex-
pressed as d + d → u + u + e− + e− , where the up quark u, the 
down quark d and the electron e− are all massive fermions. If the 
0νββ decays take place, they can be effectively described by the 
LNV operator O0νββ = d̄d̄uuee, in which the chiralities of charged 
fermions have been omitted and will be specified later. As already 
pointed out by Schechter and Valle [12], this operator will unam-
biguously result in a Majorana neutrino mass term δmee

ν νeLν
c
eL. The 

relevant Feynman diagrams are given in Fig. 1. It is worthwhile 
to notice that quark and charged-lepton masses are indispens-
able for the Schechter–Valle theorem to be valid, as emphasized 
in Ref. [13]. In the Standard Model (SM), only left-handed neu-
trino fields participate in the weak interactions, so the electron 
masses can be implemented to convert the right-handed electron 
fields into the left-handed ones, which are then coupled to left-
handed neutrino fields via the charged weak gauge boson W + . 
This does make sense, since the chirality of electrons in the op-
erator O0νββ can in general be either left-handed or right-handed. 
For the same reason, quark masses are also required to realize the 
hadronic charged-current interactions in the SM. In this case, the 
operator O0νββ in Fig. 1(a) can be attached to the left-handed neu-

trinos through two propagators of W + , leading to the neutrino 
self-energy diagram in Fig. 1(b).

Assuming that 0νββ decays are mediated by short-range inter-
actions, one can write down the most general Lorentz-invariant La-
grangian that contains various point-like operators as follows [14]

L0νββ = G2
F

2mp

(
ε1 J J j + ε2 Jμν Jμν j + ε3 Jμ Jμ j

+ ε4 Jμ Jμν jν + ε5 Jμ J jμ
)
, (1)
Fig. 1. The “ladybird” diagram (a) for the 0νββ decays induced by an effective 
operator O0νββ , and the “butterfly” diagram (b) for the corresponding Majorana 
neutrino mass term δmee

ν νeLν
c
eL generated at the four-loop level [12].

where GF = 1.166 × 10−5 GeV−2 and mp = 938.27 MeV denote 
respectively the Fermi constant and the proton mass, and εi (for 
i = 1, 2, · · · , 5) are effective coupling constants. In Eq. (1), the 
hadronic currents are defined as [14]

J ≡ ū(1 ± γ5)d , Jμ ≡ ūγ μ(1 ± γ5)d ,

Jμν ≡ ū
i

2
[γ μ,γ ν ](1 ± γ5)d , (2)

while the leptonic currents are given by

j = ē(1 ± γ5)ec , jμ = ēγ μ(1 ± γ5)ec ,

jμν = ē
i

2
[γ μ,γ ν ](1 ± γ5)ec , (3)

where ec ≡ CēT with C ≡ iγ 2γ 0 is the charge-conjugated elec-
tron field. According to Cγ T

μC−1 = −γμ and the fact that fermion 
fields are Grassmann numbers, one can immediately verify that the 
tensor leptonic current jμν automatically vanishes. Different chi-
ralities of hadronic and leptonic currents in Eqs. (2) and (3) should 
be distinguished by the left- and right-handed projection operators 
PL,R = (1 ∓ γ5)/2. For instance, we have defined JL,R = 2ū PL,Rd, 
and similarly for the other types of currents in Eqs. (2) and (3), in 
which the corresponding subscripts “L” or “R” are omitted with-
out causing any confusions. In this connection, the effective cou-
pling constants εi should also be regarded as εxyz

i (for x, y, z =
L, R), which are carrying the superscripts for different chiralities of 
hadronic and leptonic currents.

Given one of the five operators in Eq. (1), one can set an up-
per limit on their coupling εi by assuming that it is responsible 
for the 0νββ decay and saturates the experimental lower bound 
on the half-life, as done in Ref. [14]. Recently, some of those lim-
its have been recalculated in Ref. [13], using more recent results 
for the nuclear matrix elements. The effective coupling constants 
for the operators JL JL jL and JμR JμR jL have been found to be 
ε1 < 2 × 10−7 and ε3 < 1.5 × 10−8, respectively. Having obtained 
these couplings, we are then ready to evaluate the induced neu-
trino mass by inserting the dimension-nine effective operators into 
the butterfly diagram, as depicted in Fig. 1. The authors of Ref. [13]
have demonstrated that the operator JL JL jL leads to a vanishing 
neutrino mass term via the butterfly diagram, while the other one 
JμR JμR jL does lead to a tiny Majorana neutrino mass, which will 
be revisited below.

Now that the operator ε3 JμR JμR jL is responsible for the 0νββ

decays, the radiatively induced Majorana mass term for electron 
neutrinos can be extracted from the self-energy in Fig. 1(b) by set-
ting the external momentum to zero as [13],

δmee
ν = 128g4G2

Fε3m2
um2

dm2
e

m
I0νββ , (4)
p
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Table 1
Particle masses, decay constants of mesons, CKM mixing angles and Dirac phase that are used in the evaluation of radiatively-
generated neutrino masses [16].

Quark masses mu = 2.3 MeV md = 4.8 MeV ms = 95 MeV
mc = 1.27 GeV mb = 4.2 GeV

Lepton masses me = 0.511 MeV mμ = 105.7 MeV

Meson masses mπ = 139.6 MeV mρ = 775.3 MeV mK = 493.7 MeV
mK ∗ = 891.7 MeV mD = 1869.6 MeV mDs

= 1968.3 MeV
mB = 5279.3 MeV

Decay constants fπ = 135 MeV fρ = 209 MeV f K = 160 MeV
f K ∗ = 218 MeV f D = 222.6 MeV f Ds

= 280.1 MeV
f B = 216 MeV

CKM mixing angles and Dirac phase θ12 = 0.227 θ23 = 0.041 θ13 = 3.6 × 10−3

δ = 1.25
where g is the weak gauge coupling, and mu, md and me are the 
up-quark, down-quark and electron masses, respectively. In addi-

tion, the loop integral is given by I0νββ = [
I(m2

e ,m2
u,m2

d)
]2

with

I(m2
e ,m2

u,m2
d)

=
∫

d4k1

(2π)4

d4q1

(2π)4

× 1

(k2
1 − m2

e )[(k1 + q1)
2 − m2

u](q2
1 − m2

d)(k2
1 − M2

W )
, (5)

where MW = 80.4 GeV is the W -boson mass, k1 and q1 stand for 
the four-momenta of internal particles running in the loop and 
can be easily identified via the integrand on the right-hand side 
of Eq. (5) and from Fig. 1(b). To evaluate this integral, we employ 
the technique for massive two-loop diagrams in Ref. [15] and ar-
rive at

I(m2
e ,m2

u,m2
d) = 1

(4π2)4+εμ2ε

×
1∫

0

dz G
(
(1 − z)M2

W + zm2
e ,m2

d,m2
u;0

)
, (6)

with ε ≡ 4 −n as usually introduced in the dimensional regulariza-
tion and μ being the renormalization scale. The relevant function 
reads as [15]

G(m2
i ,m2

j ,m2
k ;k2)

≡
∫

dn p dnq

(p2 + m2
i )

2[(q + k)2 + m2
j ][(p + q)2 + m2

k ] (7)

= π4(πm2
i )

n−4 �(2 − 1
2 n)

�(3 − 1
2 n)

×
1∫

0

dx

1∫
0

dy [x(1 − x)] 1
2 n−2 y(1 − y)2− 1

2 n

×
{

(y2κ2 + η2)�(5 − n)

[y(1 − y)κ2 + y + (1 − y)η2]5−n

+ n

2

�(4 − n)

[y(1 − y)κ2 + y + (1 − y)η2]4−n

}
, (8)

with

η2 = ax + b(1 − x)

x(1 − x)
, a = m2

j

m2
, b = m2

k

m2
, κ2 = k2

m2
. (9)
i i i
As usual, the integral is expanded with respect to ε = 4 − n in the 
limit of n → 4 and the ultraviolet divergences can be separated as 
inverse powers of ε. Since the loop integral involves the divergent 
terms proportional to ε−2 and ε−1, we need to keep the terms up 
to ε2 in I(m2

e , m2
u, m2

d), namely,

I(m2
e ,m2

u,m2
d) ≈ 8.02 × 10−5

ε2
− 7.96 × 10−4

ε

+ 0.0041 − 0.0146ε + 0.040ε2 +O(ε3) , (10)

so as to obtain all the finite parts of I0νββ . In our numerical 
calculations, we have adopted the renormalization scale of μ =
100 MeV, which is a characteristic scale of typical energy transfer 
in nuclear processes. The other implemented parameters can be 
found in Table 1. In the scheme of minimal subtraction, we finally 
get the induced neutrino mass from Eq. (4) as

|δmee
ν | < 7.43 × 10−29 eV , (11)

which agrees with the result |δmee
ν | < 5 × 10−28 eV from Ref. [13]

on the order of magnitude.2 Since this mass is extremely small, 
one has to implement other mechanisms to account for neutrino 
masses. In this sense, the main conclusion in Ref. [13] is still 
valid that the Schechter–Valle theorem is qualitatively correct, but 
quantitatively irrelevant for the neutrino mass-squared differences 
required for neutrino oscillation experiments.

3. Majorana masses from LNV meson decays

Then, we consider the LNV meson decays M−
i → M+

f �−
α �−

β , 
where M−

i and M+
f are the initial and final charged mesons, while 

the emitted same-sign charged leptons with flavors α and β are 
denoted by �−

α and �−
β , respectively. These processes have been ex-

tensively discussed in the presence of heavy Majorana neutrinos 
or a Higgs triplet [17]. If the LNV meson decays are observed ex-
perimentally, we assume that these processes are caused by some 
short-range interactions and can be described by a number of 
Lorentz-invariant operators of dimension-nine. However, to carry 
out an order-of-magnitude estimate of the induced Majorana neu-
trino masses, one can simply consider just one operator so long as 
it contributes dominantly. The main idea is to generalize the anal-
ysis for 0νββ decays to the LNV meson decays. For instance, we 
take the operator

2 Here we perform a careful treatment on the renormalization scale in the eval-
uation of the loop integral, and that leads to the above minor discrepancy between 
two numerical results. At this point, we are grateful to Dr. Michael Duerr for kind 
communications regarding the evaluation of the loop integral.
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LMD = εαβ

G2
F

2mp
JμR J ′

μR jL , (12)

where εαβ (for α, β = e, μ) are real dimensionless couplings, and 
the hadronic and leptonic currents are defined similarly as before, 
i.e., J (′)

μR = 2U (′)γμ PR D(′) and jL = 2�α PL�
c
β . Here U (′) and D(′) are 

generic up- and down-type quark fields, and we have distinguished 
two possibly different hadronic currents by a prime symbol. For 
instance, in the decay of B− → D+e−μ− , the two hadronic cur-
rents are c̄γμ PRd and ūγμ PRb, with b being the bottom-quark 
field, while the leptonic current is ePLμ

c. It should be noticed 
that the results will also be valid for the CP-conjugated channel 
M+

i → M−
f �+

α �+
β if the CP violation in these LNV decays is negligi-

ble.
Given the operator in Eq. (12), it is straightforward to write 

down the Feynman amplitude for the LNV meson decay M−
i (pi) →

M+
f (p f ) + �−

α (pα) + �−
β (pβ) as

iM = iεαβ

G2
F

2mp
8〈M+

f (p f )�
−
α (pα)�−

β (pβ)|

× Uγ μ PR DU ′γμ PR D ′�α PL�
c
β |M−

i (pi)〉 , (13)

where the four-momenta of initial and final states have been spec-
ified explicitly. Since the initial and final mesons are bound states, 
the hadronic processes involving them in general cannot be cal-
culated perturbatively. However, in our case, we assume that the 
hadronic interactions can be factorized out and related to the lep-
tonic meson decay constants, which are defined as follows [16]

〈0|q̄γμγ5q′|P (p)〉 = −ipμ f P ,

〈0|q̄γμq′|V (p)〉 = εμmV f V , (14)

where P and V respectively denote pseudoscalar and vector 
mesons, εμ the polarization vector for V , and mV the vector-
meson mass. For the relevant decay constants f P and f V , we adopt 
their numerical values from Ref. [16] and list them in Table 1.

For illustration, we first deal with the decay rates of pseu-
doscalar mesons. The results for the vector-meson decays can be 
similarly obtained, and will be given later in this section. With the 
help of the decay constants, the square of amplitude in Eq. (13)
can be reduced to

|M|2 = G4
F

4m4
p
ε2
αβ f 2

i f 2
f (pi · p f )

2(pα · pβ) , (15)

which will be inserted into the standard formula of the differential 
rate for three-body decays and lead to

d�

ds
= 1

2mi

∫ d3 p f

(2π)3

1

2E f

∫
d3 pα

(2π)3

1

2Eα

∫ d3 pβ

(2π)3

1

2Eβ

× |M|2(2π)4δ4(q − pα − pβ)δ[q2 − (pi − p f )
2] , (16)

where E f ,α,β
are the energies of final-state particles, and s ≡ q2 is 

the invariant momentum square transferred to leptons so that the 
condition (mα + mβ)2 ≤ s ≤ (mi − m f )

2 is satisfied. Here mi, f ,α,β

stand for the masses of the initial- and final-state particles. After a 
direct evaluation of the integral, we obtain

d�

ds
= Cαβ

2

ε2
αβ G4

F f 2
i f 2

f

16(4π)3m3
i m2

p
λ1/2(s,m2

α,m2
β)λ1/2(s,m2

i ,m2
f )

× (s − m2
i − m2

f )
2(s − m2

α − m2
β)

s
, (17)

where Cαβ = 1(2) for α = β (α �= β), and λ(a, b, c) ≡ (a −b − c)2 −
4bc is the Källen function. Then, the LNV decay rates of vector 
mesons can be derived in a similar way, and the final results turn 
out to be

d�

ds
= Cαβ

2

ε2
αβ G4

F f 2
i f 2

f

16(4π)3m3
i m2

p
λ1/2(s,m2

α,m2
β)λ3/2(s,m2

i ,m2
f )

× (s − m2
α − m2

β)

s
. (18)

Finally, the partial decay width � can be computed by integrating 
the differential one d�/ds over the allowed range of s. By compar-
ing between current experimental bounds on the LNV rare decays 
from Ref. [16] and theoretical predictions, one can extract the up-
per limits on the corresponding coupling constants εαβ . In Table 2, 
we list such upper limits for a number of LNV meson-decay pro-
cesses, and those numerical values will be used to compute the 
neutrino masses radiatively generated at the four-loop level, as 
shown in Fig. 1(b).

Since we have chosen the operator in Eq. (12) for the LNV me-
son decays, which resembles well the one ε3 JμR JμR jL for 0νββ

decays in the previous section, the calculation of generated Majo-
rana neutrino mass terms from LNV meson decays follows closely 
that in the case of 0νββ decays. The only difference is the pres-
ence of two possibly different lepton flavors and different hadronic 
currents, which bring the CKM matrix elements into the calcula-
tion. In the case where U �= U ′ and D �= D ′ do not hold simulta-
neously, a straightforward evaluation of a similar butterfly diagram 
leads to an induced neutrino mass δmαβ

ν for α and β lepton fla-
vors, namely,

δmαβ
ν = 64g4G2

FεαβmU mDmU ′mD ′mαmβ

CU U ′ C D D ′mp

× [
V ∗

U D V ∗
U ′ D ′ · I(m2

α,m2
U ,m2

D) · I(m2
β,m2

U ′ ,m2
D ′)

+ (α ↔ β)
]
, (19)

where V U (′) D(′) is the CKM matrix element, CU U ′ and C D D ′ follow 
the same definition of Cαβ below Eq. (17), and the loop integral I
is the same as that introduced in Eq. (6). On the other hand, when 
U �= U ′ and D �= D ′ are both present, we obtain

δmαβ
ν = 16g4G2

FεαβmU mDmU ′mD ′mαmβm−1
p

× [
V ∗

U D V ∗
U ′ D ′ · I(m2

α,m2
U ,m2

D) · I(m2
β,m2

U ′ ,m2
D ′)

+ V ∗
U ′ D V ∗

U D ′ · I(m2
α,m2

U ′ ,m2
D) · I(m2

β,m2
U ,m2

D ′)

+ (α ↔ β)
]
. (20)

Using numerical values of quark and lepton masses, CKM mixing 
angles θi j (for i j = 12, 13, 23) and Dirac phase δ in Table 1, we 
have tabulated the Majorana neutrino masses implied by various 
types of LNV meson decays in Table 2.

As one can observe from Table 2, depending on the current ex-
perimental limits, the values of Majorana neutrino masses from 
LNV meson decays can be quite different, spanning over many or-
ders of magnitude. The LNV meson decays may indicate Majorana 
neutrino mass terms δmeμ

ν and δmμμ
ν , which cannot be obtained 

from 0νββ decays. For instance, if the LNV decays K − → π+e−μ−
and K − → π+μ−μ− are observed, we arrive at |δmeμ

ν | ∼ 1.6 ×
10−15 eV and |δmμμ

ν | ∼ 1.0 × 10−12 eV, which are still far below 
the required masses from neutrino oscillation experiments.

4. Summary

Whether massive neutrinos are Majorana or Dirac particles 
remains an unsolved fundamental problem in particle physics. 
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Table 2
A partial list of the LNV decays of K , D , Ds and B mesons and current experimental constraints on the branching 
ratios [16]. The upper bounds on the coefficients εαβ and those on radiative neutrino masses |δmαβ

ν | (for α, β = e, μ) 
are given in the last two columns.

Decay modes Branching ratios Upper bounds on εαβ Upper bounds on |δmαβ
ν | (eV)

K − → π+e−e− < 6.4 × 10−10 9.0 × 102 9.7 × 10−18

K − → π+μ−μ− < 1.1 × 10−9 2.2 × 103 1.0 × 10−12

K − → π+e−μ− < 5.0 × 10−10 7.3 × 102 1.6 × 10−15

D− → π+e−e− < 1.1 × 10−6 2.4 × 104 7.3 × 10−15

D− → π+μ−μ− < 2.2 × 10−8 3.5 × 103 4.6 × 10−11

D− → π+e−μ− < 2.0 × 10−6 2.4 × 104 1.5 × 10−12

D− → ρ+μ−μ− < 5.6 × 10−4 1.0 × 106 1.3 × 10−8

D− → K +e−e− < 9 × 10−7 2.1 × 104 2.5 × 10−13

D− → K +μ−μ− < 1.0 × 10−5 7.2 × 104 3.7 × 10−8

D− → K +e−μ− < 1.9 × 10−6 2.2 × 104 5.5 × 10−11

D− → K ∗+μ−μ− < 8.5 × 10−4 1.7 × 106 8.7 × 10−7

D−
s → π+e−e− < 4.1 × 10−6 4.5 × 104 5.5 × 10−13

D−
s → π+μ−μ− < 1.2 × 10−7 7.9 × 103 4.1 × 10−9

D−
s → π+e−μ− < 8.4 × 10−6 4.6 × 104 1.2 × 10−10

D−
s → K +e−e− < 5.2 × 10−6 4.7 × 104 5.6 × 10−12

D−
s → K +μ−μ− < 1.3 × 10−5 7.7 × 104 3.9 × 10−7

D−
s → K +e−μ− < 6.1 × 10−6 3.7 × 104 8.9 × 10−10

D−
s → K ∗+μ−μ− < 1.4 × 10−3 1.8 × 106 9.1 × 10−6

B− → π+e−e− < 2.3 × 10−8 7.6 × 101 5.7 × 10−19

B− → π+μ−μ− < 1.3 × 10−8 5.7 × 101 1.8 × 10−14

B− → π+e−μ− < 1.5 × 10−7 1.4 × 102 2.1 × 10−16

B− → ρ+e−e− < 1.7 × 10−7 1.5 × 102 1.2 × 10−18

B− → ρ+μ−μ− < 4.2 × 10−7 2.4 × 102 7.5 × 10−14

B− → ρ+e−μ− < 4.7 × 10−7 1.8 × 102 2.8 × 10−16

B− → K +e−e− < 3.0 × 10−8 7.4 × 101 2.5 × 10−18

B− → K +μ−μ− < 4.1 × 10−8 8.7 × 101 1.3 × 10−13

B− → K +e−μ− < 1.6 × 10−7 1.2 × 102 8.6 × 10−16

B− → K ∗+e−e− < 4.0 × 10−7 2.4 × 102 8.1 × 10−18

B− → K ∗+μ−μ− < 5.9 × 10−7 2.9 × 102 4.2 × 10−13

B− → K ∗+e−μ− < 3.0 × 10−7 1.5 × 102 1.0 × 10−15

B− → D+e−e− < 2.6 × 10−6 6.3 × 102 1.5 × 10−14

B− → D+μ−μ− < 6.9 × 10−7 3.3 × 102 3.3 × 10−10

B− → D+e−μ− < 1.8 × 10−6 3.7 × 102 1.8 × 10−12

B− → D+
s μ−μ− < 5.8 × 10−7 2.5 × 102 1.3 × 10−9
According to the Schechter–Valle theorem, if the 0νββ decays 
N(Z , A) → N(Z + 2, A) + e− + e− are observed in future experi-
ments, one can claim that neutrinos do have Majorana masses. In 
this short note, we have revisited the quantitative impact of the 
Schechter–Valle theorem and shown that the Majorana neutrino 
mass radiatively generated at the four-loop level is |δmee

ν | < 7.43 ×
10−29 eV. Furthermore, a similar analysis has been performed for 
the LNV meson decays M− → M ′+ + �−

α + �−
β , from which the up-

per bounds |δmee
ν | < 9.7 × 10−18 eV, |δmeμ

ν | < 1.6 × 10−15 eV and 
|δmμμ

ν | < 1.0 × 10−12 eV can be derived. A list of radiative neu-
trino masses from other LNV rare decays of D and B mesons is 
also given.

Therefore, even if the 0νββ decays or the LNV meson decays 
are detected and the decay rates are close to current upper bounds, 
we have to invoke some other mechanisms to produce sub-eV 
neutrino masses, which can be of either Dirac or Majorana na-
ture. In the former case, massive neutrinos should be pseudo-Dirac 
particles, since a small Majorana mass is implied by the LNV de-
cays. In the latter case, compared to the sub-eV neutrino masses 
at the leading order, the radiative Majorana masses can be ne-
glected.
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