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Abstract

Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop 
computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they 
exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop 
effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The 
formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric 
IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained 
directly in position space at one loop using string states on generic noncommutative branes.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Noncommutative field theory (NCFT) was conceived as a generalization of (quantum) field 
theory to noncommutative or quantized spaces. One of the early hopes was that the intrinsic un-
certainty scale of the geometry would lead to a UV regularization of the corresponding field the-
ory. However, it turned out that this is not the case. Rather, the phenomenon of UV/IR mixing [1]
leads to an unexpected behavior of the quantum effective action at low energies, and IR diver-
gences arise due to UV contributions in the loops. This phenomenon was partially understood 
from various points of view, see e.g. [2–9] and references therein. The realization of noncommu-
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tative field theory in string theory [10] suggested an interpretation in terms of a closed string ex-
change [5], a geometric understanding in terms of emergent gravity was found [11], and a relation 
with non-locality was exhibited [3,4,12,13]. In any case, UV/IR mixing means that noncommuta-
tive field theory is not simply a deformation of ordinary field theory, but is qualitatively different.

In this paper, we consider a powerful tool in the framework of noncommutative field theory 
given by string states, refining and developing the ideas introduced in [12]. These states make the 
string-like character of NC field theory manifest, they provide a clear understanding of UV/IR 
mixing, and an efficient way to compute loop integrals. String states are defined as |x〉 〈y| ∈
End(H), in terms of coherent states |x〉 on the noncommutative space under consideration. They 
are elements of the noncommutative algebra of functions on the space, but they have no classical 
analog in field theory. They play a dominant role in the loop integrals, which explains the stringy 
nature of NCFT.

One of the technical results of this paper is a representation of one-loop integrals on fuzzy 
spaces in terms of integrals over string states rather than group-theoretical harmonics. This 
was developed to find a practical way of evaluating loop corrections on such backgrounds in 
Yang–Mills matrix models. The standard way of evaluating these loop integrals is to use a group-
theoretical basis of functions (such as spherical harmonics on the fuzzy sphere). However, this 
leads to unreasonable difficulties, requiring the asymptotics of various group-theoretical objects 
such as 6J symbols and their higher analogs. Moreover on generic spaces without symmetry, 
such a computation was practically impossible outside of the semi-classical regime. Most im-
portantly, the group-theoretical approach hides the physical meaning of the results. Although the 
main ideas of the present approach are contained in [12], we improve their results by replacing 
the ad-hoc lattices by an integration in position space, which yields a simple closed formulas for 
the effective action in position space.

We first review the basic facts about coherent states on the fuzzy sphere, which generalize 
to any quantized compact coadjoint orbit. In particular, the separation of the space of function 
into the semi-classical IR regime and the – much larger – UV regime is carefully discussed. The 
latter is best described by the string states, which are interpreted as strings whose energy and 
momentum is given by their length. These states have the remarkable property that they (approx-
imately) diagonalize the Laplacian, and are “bi-local” in configuration space. The corresponding 
propagator takes a very simple form, which makes them ideally suited for quantization. An over-
completeness relation leads to an exact representation of the trace in the one-loop effective action. 
We apply this in the basic one-loop integrals, and obtain a closed form for the (quadratic) 1-loop 
effective action in position space. This works for any quantized coadjoint orbit, and reproduces 
the known results for the fuzzy sphere which were obtained originally in a more complicated 
and less transparent way. On the Moyal–Weyl quantum plane, the origin of the non-local UV/IR 
mixing is clarified. The generalization to generic fuzzy spaces and to higher-loop computations 
is also discussed.

The results clearly exhibit the non-local nature of generic noncommutative field theories at the 
quantum level, making the previous observations in [3,4,13] more explicit and manifest. Hence 
attempts to directly use generic (non-supersymmetric) NC field theories as a replacement for 
ordinary local QFT are doomed,1 and only the maximally supersymmetric model(s) remain as 
candidates for a fundamental, “UV-complete” quantum theory.

1 One may however consider various limits of noncommutative field theories, which may again become local, see e.g. 
[14].
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This is the subject of the second part of this paper, where the formalism of string states is used 
to elaborate the 1-loop effective action of the supersymmetric IKKT or IIB model. In this case, 
the residual non-locality is mild and can be understood as a manifestation of the 10-dimensional 
supergravity in target space, which leads to a short-range r−8 interaction. It is indeed expected 
that this model is closely related to IIB supergravity and string theory. Up to now, this could 
be verified from the matrix model side (mostly for the BFSS model) only for simple configura-
tions such as parallel or spherical branes or for separate objects represented by block-matrices 
[15–23], possibly with some higher multipole moments. However a derivation for generic (non-
commutative) branes was missing and quite out of reach so far. The present formalism allows to 
generalize the old arguments to a much more general setting, and gives explicitly the 10D super-
gravity interactions in position space. This is very important in the on-going effort to analytically 
understand the physics of branes in this model, which is a candidate for a theory of fundamental 
interactions including gravity.

In particular, the present paper provides the necessary techniques for 1-loop computations on 
the fuzzy 4-sphere in the IKKT model. This is presented in a separate paper, demonstrating the 
emergence of 4-dimensional gravity [24].

2. Coherent states and string states

2.1. Coherent states on the fuzzy sphere

The fuzzy 2-sphere S2
N [25,26] is defined in terms of 3 hermitian matrices Xa, a = 1, 2, 3

which satisfy the algebra

[Xa,Xb] = iεabcXc, XaXa = 1

4
(N2 − 1) =: R2

N . (2.1)

Hence Xa = J a
(N) generate the irreducible representation of SU(2) on H = C

N . Functions on 

S2
N are given by (possibly hermitian) elements of the algebra A = End(H), which decomposes 

as SU(2)-module into fuzzy spherical harmonics Ŷ l
m according to A = ⊕N−1

l=0 (2l + 1). Here (n)

denotes the SO(3) irrep with dimension n. The matrix Laplacian is defined as

�φ = [Xa, [Xa,φ]], φ ∈ End(H) (2.2)

and it is easy to see that it has the same spectrum l(l + 1) for l = 0, 1, 2, .., N − 1 as the classical 
Laplacian on the sphere, and Ŷ l

m are the eigenfunctions. The commutation relations (2.1) state 
that fuzzy S2

N is a quantization of M = S2 with the SO(3)-invariant symplectic form ω (or 
Poisson structure) satisfying the quantization condition∫

M

ω = 2π dim(H). (2.3)

This construction generalizes to any (quantized) coadjoint orbit M of a compact Lie group, see 
e.g. [27,28].

As for all quantized coadjoint orbits, coherent states on M = S2 = SU(2)/U(1) are given by 
highest weight states |�〉 ∈H and their SU(2) orbits [29],

|x〉 = gx · |�〉, gx ∈ SU(2)

xa = 〈x|Xa|x〉 ≡ 〈Xa〉 xaxa = 1

4
(N − 1)2 =: r2

N . (2.4)
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Here r2
N is the radius of the coherent state orbit. Up to a U(1) phase factor, they are in one-to-one 

correspondence to points x on M. We therefore label them locally by x ∈ M, where the “north 
pole” p ∈M corresponds to the highest weight state |�〉. They are optimally localized as follows

�2 =
∑
a

〈(Xa)2〉 − 〈Xa〉2 = R2
N − r2

N = N − 1

2

=: L2
NC � R2

N, N � 1 . (2.5)

�2 is a measure for the uncertainty in position space, which defines the noncommutativity scale 
LNC . Upon rescaling X → rX, the sphere can have any desired radius R, and LNC ∼ R√

N
→ 0

as N → ∞ for fixed R. It is easy to see that the uncertainty is minimized for the coherent states; 
for more details and illustrations see e.g. [30]. Furthermore, the coherent states |x〉 on S2

N form 
an over-complete basis, with

1H = cN

∫
dx|x〉〈x|, cN = dimH

VolM . (2.6)

Indeed the operator defined on the rhs is invariant under the adjoint action of SU(2), and the 
only operator with this property is ∼ 1 (because H is irreducible). This gives the following 
representation of the trace of any operator O ∈ End(H)

trO = dimH
VolM

∫
dx〈x|O|x〉 . (2.7)

Here tr denotes the trace on H. The overlap of the coherent states decays rapidly with the distance 
between x and y,

|〈x|y〉|2 = 1

cN

δN(x, y) → 0 for x 
= y, N → ∞ (2.8)

which defines a regularized delta function 
∫

dxδN(x, y) = 1 on M. On the fuzzy sphere, there 
is an explicit formula [29]

|〈x|y〉|2 = (
1 + x · y

2
)N−1 ≈ exp(−1

4
φ2(N − 1)), φ2 � 1 (2.9)

where φ is the angle between x and y. Hence δN(x, y) is localized on an area 4π
N

, which reflects 
the quantization of the sphere in terms of N quantum cells.

The phase of 〈x|y〉 also contains interesting information. Since the coherent states are deter-
mined only up to a U(1) phase, they form a U(1) bundle B over S2. Near some point p ∈ S2

(the north pole, say), we can define a local section |x〉 = eiφiJi |0〉 parametrized by 2 angles 
φi, i = 1, 2 relative to p. The group action defines a connection ∇ , with curvature2 given by the 
symplectic form underlying the quantum space, just like in quantum mechanics. Then one finds

〈x|y〉 = eiA(x,y)(
1 + x · y

2
)(N−1)/2 =: 1

cN

δ̃N (x, y) (2.10)

where δ̃N (x, y) is again a (now complex-valued) approximate delta function which satisfies∫
dx δ̃N (x, y) |x〉 = |y〉 (2.11)

with similar localization properties. Here A(x, y) is the symplectic area of the spherical triangle 
spanned by x, y, p.

2 This is the line bundle with monopole number N − 1.
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Operators and symbols Coherent states provide a useful and explicit link between functions on 
M and operators. For an arbitrary operator O ∈ End(H), we define the symbol of O to be

O(x) = 〈x|O |x〉 . (2.12)

This should be viewed as de-quantization of O ∼ O(x). In particular, xa = 〈x|Xa |x〉. Combin-
ing this with (2.7), we can write the trace in the familiar form

trO = cN

∫
dxO(x) . (2.13)

Conversely, one can certainly represent every fuzzy function as

O = c2
N

∫
dxdy〈x|O|y〉|x〉〈y| (2.14)

however this is far from unique. At least on quantized homogeneous spaces one can even find a 
diagonal representation

O = cN

∫
dxÕ(x)|x〉〈x| , (2.15)

however Õ(x) 
= O(x) in general. For example on S2
N , we can write

Ŷ l
m = cN

∫
S2

dxY l
m(x)|x〉〈x| (2.16)

because both sides transform in the same way under SO(3). Similarly, plane waves on the 
Moyal–Weyl plane Rn

θ can be written as

eikX = c

∫
dxeikx |x〉〈x| . (2.17)

Hence all functions on fuzzy spaces can be represented in this diagonal way, however this is very 
delicate for large momenta and may be completely misleading3 as we will see. It should only be 
used in the semi-classical low-energy sector, which is defined as follows:

IR sector The important property which characterizes the semi-classical or low energy regime 
for functions on fuzzy spaces is their approximate locality. An operator or fuzzy function is in the 
semi-classical low energy (IR) regime if the non-local matrix elements decay at distance scales 
|x − y| ∼ LNC , so that

〈x|O|y〉 ≈ 〈x|O|x〉 δN(x, y) . (2.18)

This is the crucial property for external fields which will justify the following methods for com-
puting the effective action. In particular, we will need

〈x|f (X) |y〉 ≈ f (x)〈x|y〉 ≈ f (y)〈x|y〉 , (2.19)

which holds for functions f (x) which are approximately constant on the scale LNC . For (low) 
polynomials in Xa , this follows from the fact that the dispersion of Xa is given by �2, which 
is precisely the NC scale. The maximal angular momentum compatible with this requirement is 
l ≤ √

N , which is precisely the scale of the fuzzy delta function localized e.g. at the north pole,

3 In the same vein, using a star product for loop computations in NC field theory is misleading.
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|p〉〈p| =: 1

cN

δN(X;p) (2.20)

with symbol 1
cN

δN(x, y) (2.8). This is optimally localized with uncertainty �2 ∼ L2
NC (2.5), and 

has angular momentum lNC ∼ ‖[Xi, .]‖ ∼ √
N .

UV sector In contrast, most of the operators O ∈ End(H) have l >
√

N , and are therefore not 
in the semi-classical IR sector. These are best described in terms of the non-local string states

ψx,y := |x〉 〈y| ∈ End(H) (2.21)

introduced in [12] and discussed in detail below. These form the core of the fuzzy or “quan-
tum” geometry, yet they are often neglected. The most extreme example on S2

N is the state with 
maximal J3 eigenvalue,

YN−1
N−1 = |p〉〈−p|, (2.22)

where |p〉 is the highest weight state, cf. [31]. This is in the far UV region of the algebra, it is 
maximally de-localized and has maximal angular momentum lUV = 2j ∼ N � √

N = lNC .
Since these string states comprise the bulk of the algebra of functions, it should not be sur-

prising that they lead to significant non-local contributions in the effective action. The resulting 
string-like theory will be elaborated below. In the context of quantum mechanics, the analogous 
types of de-localized density matrices lead to the well-known non-local entanglement and EPR-
type considerations, which are characteristic for the “deep quantum” regime. Clearly such states 
are not well-described by deformation quantization or in any semi-classical picture, yet they form 
the core of noncommutative (or fuzzy) field theory.

Rescaling and planar limit So far, the radius of S2 was fixed to be R2
N . Now introduce a scaling 

factor so that

XaXa = R2 (2.23)

with any desired radius R. Then for R = 1 one obtains the classical sphere as N → ∞, and the 
dispersion of the coherent states is

�2(|x〉) = 〈x|
∑
a

(Xa − 〈Xa〉)2|x〉 = 2

N + 1
= O(

1

N
) . (2.24)

Hence the quantum cells become small as N → ∞. On the other hand if we scale the radius as

R2 = Nθ/2, θ = const, N → ∞, (2.25)

the generators X1, X2 generate the Moyal–Weyl quantum plane R2
θ near the north pole [32]

[Xi,Xj ] = iθεij +O(
1

N
) , (2.26)

dropping the X3 generator. This is valid for states localized near the origin (i.e. the north pole). 
We can then recover the standard coherent states on the Moyal–Weyl plane as |x〉 = Ux |0〉 where 
Ux = exp(iφiJ

i) for xi = R εijφj , which gives

〈x′|x〉 = 〈0|e−iφ′J eiφJ |0〉 = e− i
2θ

xiεij x′j
e− |x−x′ |2

4θ . (2.27)
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Hence the overlap between coherent states is confined to regions of size θ . This is the scale of 
noncommutativity LNC , which marks the boundary between the IR regime and the UV regime, 
as discussed above.

Even though we focus on the fuzzy sphere, the construction of coherent states goes through 
quite literally for any quantized coadjoint orbit such as CP n

N , and also for the Moyal–Weyl 
quantum plane R2n

θ . We refer to [27,29,30] for more details in these cases.

2.2. String states

Now consider some quantized fuzzy space (such as S2
N , CP n

N , or even R2n
θ ), with coherent 

states as above satisfying

〈x|y〉 = 1

cN

δ̃N(x, y), cN = dimH
VolM ,

∫
M

dx δ̃N (x, y)|x〉 = |y〉 . (2.28)

We then define the string states as∣∣∣ x
y

)
:= ψx,y := |x〉 〈y| ∈ End(H)(

x
y

∣∣∣ := ψ†
x,y := |y〉 〈x| (2.29)

cf. [12]. We also define the momentum operators acting on End(H)

Pa O := [Xa,O], O ∈ End(H)

�O := PaPaO (2.30)

with expectation values(
x
y

∣∣∣Pa
∣∣∣ x
y

)
= trψy,x[Xa,ψx,y] = �x(x) − �x(y)(

x
y

∣∣∣PaPa

∣∣∣ x
y

)
= trψy,x[Xa, [Xa, .]]ψx,y = Exy . (2.31)

Here

Exy = (�x(x) − �x(y))2 + �2
x + �2

y (2.32)

is the energy of a string state given by its length square plus their intrinsic zero point energy, in 
units of the noncommutativity scale (note that Pa = [Xa, .] ∼ θab∂b has dimension length). �2

x,y

denotes the uncertainty at x and y, respectively, which is simply �2 for homogeneous spaces. 
In particular, the string states ψx,y have “matrix momentum” P = x − y. This is consistent 
with previous observations [13,33,34] in noncommutative field theory, which now have a precise 
mathematical realization in terms of the string states.

We will also need the general matrix elements(
x
y

∣∣∣PaPa

∣∣∣ x′
y′

)
= 〈x|XaXa|x′〉〈y′|y〉 + 〈x|x′〉〈y′|XaXa|y〉 − 2〈x|Xa|x′〉〈y′|Xa|y〉
≈ Exy 〈x|x′〉〈y′|y〉 (2.33)

to a very good approximation. Note that this is nearly diagonal, and Exy is bounded from below 
by the scale of noncommutativity (2.32).

The remarkable feature of the string states is that they have good localization properties in both
position and momentum. This makes them very interesting and novel from a QFT point of view. 
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Even though (or rather because) they are typically in the UV regime far from the semi-classical 
regime, they are very important for loop computations.

We also note that a non-commutative background in the matrix model can generally be viewed 
as a condensate of diagonal string states

Xa ∼
∫

dnxxa|x〉〈x| . (2.34)

This is exact for R2n
θ and for quantized homogeneous spaces, and holds at least approximately in 

general, cf. section 2.4.

Propagator Generalizing the over-completeness relation (2.28), we can write

c2
N

∫
M×M

dxdy

∣∣∣ x
y

)(
x
y

∣∣∣ = 1End(H) (2.35)

which follows again by group invariance. In the same spirit, we can state the central formula of 
this paper, which is an approximation for the propagator (� + μ2)−1 using the string states. We 
claim that

(�̄ + μ2)−1 := c2
N

∫
M

dxdy

∣∣∣ x
y

)
1

Exy+μ2

(
x
y

∣∣∣ ≈ (� + μ2)−1 (2.36)

is an excellent approximation to the propagator. Although no rigorous estimates will be given 
here, this formula can be justified by the following computation

(�̃ + μ2)−1(� + μ2)

∣∣∣ x
y

)
= c2

N

∫
dx′dy′

∣∣∣ x′
y′

) 1

Ex′y′ + μ2

(
x′
y′

∣∣∣ (� + μ2)

∣∣∣ x
y

)

≈ c2
N

∫
dx′dy′

∣∣∣ x′
y′

) 1

Ex′y′ + μ2
(Exy + μ2)〈x′|x〉〈y|y′〉

≈
∣∣∣ x
y

)
(2.37)

using (2.33) and (2.28). The approximation here comes from the variation of Ex,y on scales of 
order LNC , which is small since Ex,y ≥ 2L2

NC . We therefore expect (2.36) to be an excellent 
approximation, even for μ2 = 0, and there is no problem with any singularities.4 We will see 
explicitly that it works very well in the examples discussed below. This justifies replacing �−1

by �̃−1, which is the key proposal.
Finally, we remark that on noncommutative branes, the above “matrix momentum” Pa is 

only indirectly related to the usual momentum. E.g. for a semi-classical scalar field we have 
Paφ = θab∂bφ, which leads to a non-trivial relation between the effective metric on a brane 
(“open string metric”) and the induced metric on the target space via θab [35]. This is responsible 
for some of the unusual features of noncommutative field theory.

2.3. One-loop computations using coherent states

The 1-loop effective action can be expressed in terms of the trace of some operator O acting 
on the space of wavefunctions. For the case of complex-valued scalar fields on a fuzzy space, 

4 Note also that the phases of the coherent states cancel out, so there is no hidden phase ambiguity.
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this is the space End(H) of operators on the underlying Hilbert space, where H is an irreducible 
representation of G. This trace can be written in terms of the string states as follows

TrEnd(H)O = (dimH)2

(VolM)2

∫
M×M

dxdy
(

x
y

∣∣∣O ∣∣∣ x
y

)
. (2.38)

This is an exact formula for any homogeneous quantum space of a (compact) Lie group G with 
coherent states as discussed above. To prove it, it suffices to note that rhs of (2.38) is a functional 
which is invariant under GL × GR , and by the uniqueness of the singlet in End(H) it must be 
proportional to the trace. Note that the integral over M ×M makes sense even though the spin 
states ψxy form a non-trivial bundle over M ×M, and there is no global section. However any 
phase factors cancel out in (2.38), and it does not matter whether we integrate over the bundle 
B ×B or over the base.

Now consider the case of hermitian fields φ = φ† ∈ End(H), which are realized by the string 
states as follows eiϕψxy + e−iϕψyx . This suggests that the phase factors might lead to non-trivial 
interference effects and we should integrate over the entire bundles B × B. Nevertheless, these 
effects cancel and the trace over hermitian operators is simply 1

2× the trace over all operators. 
Thus

TrHerm(H)O = 1

2

(dimH)2

(VolM)2

∫
M×M

dxdy
(

x
y

∣∣∣O ∣∣∣ x
y

)
(2.39)

where Herm(H) denotes the hermitian operators on H. To evaluate the matrix elements, it is 
sometimes more transparent to write(

x
y

∣∣∣O ∣∣∣ x
y

)
= tr

(|y〉〈x|O(|x〉〈y|)) . (2.40)

Using the formalism of quasi-coherent states [30] reviewed in section 2.4, the above formulas 
should hold also on rather generic quantum spaces to a very good approximation, as long as the 
operators O are sufficiently “local”. In the present paper, we will focus on the case of quantized 
coadjoint orbits for simplicity.

As a warm-up, we compute the trace of the Laplacian on the fuzzy sphere S2
N . Using (2.38)

and (2.31) we obtain

TrEnd(H)[Xa, [Xa, .]]

= N2

(VolS2)2

∫
S2×S2

dxdx′tr(|x〉〈x′|)(|Xa(x′) − Xa(x)|2 + 2�2)(|x′〉〈x|)

= N2

(VolS2)2

∫
S2×S2

dxdx′(|Xa(x′) − Xa(x)|2 + 2�2)

= N2

VolS2

∫
S2

dx(|Xa(e) − Xa(x)|2 + 2�2) . (2.41)

Here |.| is the Euclidean distance in target space R3, and e is an arbitrary point on S2, and 
H = CN . We parametrize S2 with the standard normalization Vol(S2) = 4π . Then Xa(x) ∈ R3

are functions on S2 normalized as
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R2
N = XaXa = 1

4
(N2 − 1) (2.42)

and recalling �2 ≈ N
2 (2.5) we obtain

TrEnd(H)[Xa, [Xa, .]] ≈ 1

4

N2(N2 − 1)

4π2

∫
S2

dx(|e3 − x|2 + O(
1

N
)) . (2.43)

where x is now normalized to 1. Evaluating the integral∫
S2

|e3 − x|2 = 2π

π∫
0

dθ sin θ((1 − cos θ)2 + sin2 θ) = 8π (2.44)

results in

TrEnd(H)[Xa, [Xa, .]] = 1

2
N2(N2 − 1)

(
1 + O(

1

N
)
)
. (2.45)

This agrees very well with the exact result

TrEnd(H)[Xa, [Xa, .]] =
N−1∑
j=0

j (j + 1)(2j + 1) = 1

2
(N2 − 1)N2. (2.46)

More generally, we can compute for any smooth function f

TrEnd(H)f (�) = N2

(VolS2)2

∫
S2

dx

∫
S2

dyf (R2
N |x − y|2 + 2�2)

= N2

VolS2

∫
S2

dxf (R2
N |e3 − x|2 + 2�2)

= 2π
N2

VolS2

π∫
0

dϑ sinϑf (R2
N(1 − cos θ)2 + sin2 θ) + 2�2)

= N2

2

1∫
−1

duf (2R2
N(1 − u) + 2�2)

≈
N∫

0

dj 2jf (j2 + 2�2) ≈
N−1∑
j=0

(2j + 1)f
(
j (j + 1) + 2�2)

= Trjmaxf (�g + 2�2) . (2.47)

Hence the result agrees well with the classical trace over f (�g + 2�2) for any smooth function 
f with UV cutoff jmax = N − 1, and the shift by 2�2 = N − 1 is negligible for N � 1. Here �g

denote the classical Laplacian on S2.
Upon closer examination, this computation is actually a bit strange: the contribution of the 

integral comes from non-classical, UV regime with angular momenta l2 ≥ �2 = O(N), where 
we can neglect the shift by 2�2. This is the regime where one should in general not trust the 
semi-classical approximation, and this computation only works because the spectrum of the ma-
trix Laplacian � coincides exactly with that of the classical Laplacian �g , even in the far UV 
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regime. Thus even though the string states |x〉〈y| cannot be approximated by any classical func-
tions, they allow to compute e.g. the classical heat kernel expansions, as long as the operators 
under consideration (such as �) have the classical spectrum even in the UV regime. We will see 
below that the method works also in other cases, but then the result does not always correspond 
to the naive semi-classical expectation.

2.3.1. One-loop propagator on S2
N

As an application of this formalism, we want to compute the one-loop correction to the prop-
agator for scalar φ4 theory on S2

N , with hermitian scalar field φ† = φ and action

S[φ] = 1

N
tr
(1

2
φ(� + μ2)φ + g

4!φ
4
)

= S0[φ] + Sint[φ] . (2.48)

The result will agree with the (more complicated and less transparent) original computation 
in [32]. We use the standard normalization for �

Xa = J a
(N), XaXa = 1

4
(N2 − 1) = R2

N

�φ = [Xa, [Xa,φ]] (2.49)

with spectrum l(l + 1). Then the effective action including one-loop quantum corrections can be 
written as

�eff[φ] = S[φ] + 1

2
TrEnd(H) log

(
S′′[φ]

)
(ψ,S′′[φ]ψ) = 1

N
tr
(
ψ(� + μ2)ψ + g

3
φ2ψ2 + g

6
ψφψφ

)
(2.50)

where S′′[φ] is the quadratic form for fluctuations around the background φ. The one-loop con-
tribution can be expanded follows

�1−loop[φ] = Tr log(.(� + μ2). + g

3
.φ2. + g

6
.φ.φ)

= Tr log(� + μ2) + Tr
(
.

1

� + μ2
(
g

3
φ2. + g

6
φ.φ)

)
+ O(φ4) . (2.51)

We assume that the background field

φ = φ(X) ≈ cN

∫
M

dy φ(y) |y〉 〈y| (2.52)

is slowly varying on the scale of noncommutativity. Then φ acts nearly-diagonally on the string 
basis ψyx = |y〉〈x|, and we can replace

φψyx ≈ φ(y)ψyx (2.53)

and similarly for φ2. Since dimH = N , (2.38) gives e.g.

Tr(.φ2.) = N2

Vol(M)2

∫
M×M

dxdytr(ψy,xφ
2ψx,y)

= N2

Vol(M)

∫
M

dx 〈x|φ2|x〉 . (2.54)
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Similarly, using the property (2.31) or (2.36) of the propagator we find

T r(.�−1φ2.) = N2

Vol(M)2

∫
M×M

dxdytr(ψy,x(� + μ2)−1(φ2ψx,y))

≈ N2

Vol(M)2

∫
M×M

dxdy
1

R2
N |x − y|2 + 2�2 + μ2

tr(ψy,xφ
2ψx,y)

= N2

Vol(M2)

∫
M×M

dxdy
1

R2
N |x − y|2 + μ̃2

〈x|φ2|x〉

= μ2
N

Vol(M)

∫
M

dx φ2(x) (2.55)

where

μ̃2 = μ2 + 2�2 > 0 (2.56)

and μ2
N is the 1-loop planar mass renormalization

μ2
N = N2

Vol(S2)

∫
S2

dy
1

R2
N |e − y|2 + μ̃2

= N2

2R2
N

π∫
0

dϑ sinϑ
1

(1 − cosϑ)2 + sinϑ2 + μ̃2

R2
N

= 2

1∫
−1

du
1

2 − 2u + μ̃2

R2
N

≈
N∑

j=0

2j + 1

j (j + 1) + μ2
=: IP (2.57)

where e is again some (arbitrary) reference point on S2. The approximation in (2.55) consists of 
replacing �−1 by its diagonal matrix elements. As discussed before (cf. (2.36)), this is justified 
as long as φ2 is in the IR regime, i.e. it varies only slowly at the NC scale. Note also that �−1 has 
bounded matrix elements in the string basis, which ensures that there are no IR divergences in 
this integral. This “planar” contribution is schematically depicted in Fig. 1. It can be interpreted 
in terms of an open string from x to y propagating in the loop, integrated over y.

Now consider the “non-planar” contribution

Tr(.(� + μ2)−1φ.φ) = N2

Vol(M)2

∫
M×M

dxdytr(ψy,x(� + μ2)−1(φψx,yφ))

= N2

Vol(M)2

∫
dxdy〈x|(� + μ2)−1φ|x〉〈y|φ|y〉
M×M
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Fig. 1. Planar 1-loop contribution.

Fig. 2. Non-planar 1-loop contribution.

= N2

Vol(M)2

∫
M×M

dxdy
1

R2
N |x − y|2 + μ̃2

φ(x)φ(y) (2.58)

depicted in Fig. 2. In contrast to the planar contribution this results in a non-local term (!). This 
can be interpreted either in terms of an open string loop stretching from x to y, or in terms of a 
closed string propagating from x to y. Finally we compute the “vacuum energy” contribution

Tr log(� + μ2) = N2

(VolM)2

∫
M

dx

∫
M

dy log
(
R2

N |x − y|2 + μ̃2)

= N2

4π

∫
S2

dx log
(|e − y|2 + μ̃2

R2
N

)

= N2

2

2∫
0

du log
(
2u + μ̃2

R2
N

)

= N2
(

ln 4 − 1 + O(
μ̃2

R2
N

)
)

=: �vac (2.59)

where e is some point on the unit sphere S2. Then the one-loop contribution to the effective 
action up to quadratic order in φ is
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�1−loop = �vac + g

3

1

Vol(M)

∫
M

dxμ2
Nφ(x)2

+ g

6

N2

Vol(M)2R2
N

∫
M×M

dxdy
φ(x)φ(y)

|x − y|2 + μ̃2

R2
N

+ O(φ4) (2.60)

cf.5 [12]. The planar contribution is local and leads to a standard mass renormalization, which 
agrees with the results in [32] using a traditional mode expansion. We will see that the non-planar 
loop contribution also agrees with [32], but it is now recognized as a long-range non-local action. 
This effect has no counterpart in standard quantum field theory. It is of distinctly stringy nature,6

reflecting the presence of virtual long strings described by the string states. Hence the model 
describes a non-local theory even on scales much longer than the noncommutativity scale, and 
should not be considered as approximation to some local QFT. Although similar observation 
were made in [3,4], the present derivation based on string states is most efficient, and easily 
generalized. Clearly the higher loop contributions will add even more non-local constrictions [1], 
and could be obtained explicitly in a similar way (the extension to higher loops will be discussed 
briefly in section 3).

The above derivation generalizes immediately to other, higher-dimensional fuzzy spaces such 
as fuzzy CP n

N , noting that |x − y| is always the Euclidean distance in target space. The one-loop 
effective action has always the same form (2.60), apart from trivial adaptions. This is already a 
significant new result, since non-planar loop contributions are very hard using group-theoretical 
expansions and have not been performed.

Comparison with 1-loop results for fuzzy S2
N To check the validity of the approximations in the 

coherent state approach, we compare (2.60) with the known result for the fuzzy sphere [32]. We 
evaluate the non-planar contribution for spin l spherical harmonics φ = Y l

m, which gives

�NP = g

6

N2

(4π)2R2
N

∫
S2×S2

dxdy
1

|x − y|2 + μ̃2

R2
N

(∑
m

(−1)mY l
m(x)Y l−m(y)

)

= g

6

2l + 1

4π

N2

(4π)2R2
N

∫
S2×S2

dxdy
1

|x − y|2 + μ̃2

R2
N

Pl(cosϑ)

= g

6

2l + 1

2

N2

R2
N(4π)

π∫
0

dϑ sinϑ
Pl(cosϑ)

(1 − cosϑ)2 + sinϑ2 + μ̃2

R2
N

= g

6

2l + 1

4π

1∫
−1

du
Pl(u)

1 − u + μ̃2

2R2
N

5 The same structure was obtained in [12] using partitions into block-matrices. The present approach is more efficient 
and does not require any ad-hoc partitions of space.

6 The present low-dimensional model should be viewed as non-critical string theory. The connection to critical string 
theory will be discussed in section 4.
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=: g

6

2l + 1

4π
INP (l) (2.61)

using the spherical harmonics addition theorem, where ϑ is the angle between x and y. This 
integral is convergent as RN → ∞. Taking out the factor (2l + 1) from the sum over m, we re-
cover precisely the result which was obtained in [32] using a more complicated group-theoretical 
computation (which required the asymptotics of the 6J symbols). Clearly the present derivation 
is much more efficient and transparent, it works equally well on higher-dimensional spaces such 
as CP 2, and – most importantly – it can be applied to more complicated problems such as super-
symmetric matrix models.

Planar limit and UV/IR mixing on R2
θ Although the above non-local term is perfectly well-

defined on compact fuzzy spaces for finite N , it leads to IR-divergences in the non-compact 
limit R → ∞, which clearly cannot be canceled by any local counterterms. This is the infamous 
UV/IR mixing of NC field theory, which is now understood in a completely transparent way. To 
see this, we recall that the Moyal–Weyl quantum plane R2

θ can be obtained as a scaling limit of 
the fuzzy sphere (near the north pole) for Xa = rJ a with R2 = r2R2

N = Nθ
4 and fixed θ . Then 

the above non-planar contribution to the one-loop effective action takes the form

�NP ≈ gN2

6Vol(M)2

∫
M×M

dxdy
φ(x)φ(y)

|x − y|2 + μ2

= g

6π2θ2

∫
M×M

dxdy
φ(x)φ(y)

|x − y|2 + μ2
(2.62)

where VolM = 4πR2 = πNθ . Now N has disappeared, and this form can in fact be obtained 
directly7 from coherent state representation on M =R

2
θ . Even though it is non-local, this term is 

invariant under translations in the flat limit N � 1, and we can compute it in a plane wave basis 
φ(x) = ∫

d2k
2π

φk(e
ixk + e−ikx). This leads to

�NP ≈ g

6π2θ2

∫
d2kφ(k)2

∫
d2z

1

|z|2g + μ2
eikiz

i

= g

6π2θ2

∫
d2kφ(k)2

∫
d2p

1

pipjGij + μ2
eikiθ

ij pj , (2.63)

replacing zi = θijpj in the second step. Here |.|g is the background (closed string) metric, and

Gij = θii′θjj ′
δi′j ′ (2.64)

is the “open string” metric which governs noncommutative field theory on R2
θ [10,35]. This is the 

familiar form8 for the non-planar contribution to the propagator on R2
θ , and the derivation gener-

alizes immediately to the case of R2n
θ . In this form, the non-locality leads to an IR divergence as 

7 Starting with the noncompact case makes IR issues even more tricky, while the present derivation is very clean.
8 In many papers on NC field theory [6,7], the kinetic term is defined as ∂iφ∂iφ rather than [Xi, φ][Xi, φ]. Then the 

closed string metric rather than the open string one appears in the last line of (2.63), reconciling it with the literature. 
Conceptually, the present matrix model approach seems more natural.
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k → 0, and the well-known failure9 of the standard renormalization procedure with local coun-
terterms is obvious given the non-local nature of the theory. In particular, the loop variables p are 
now properly understood as position variables x, y, z. The IR divergence in (2.63) suggests that 
the standard translation-invariant vacuum is inappropriate, and the non-local equation of motion

0 = (� + μ2 + g

3
μ2

N

)
φ(x) + g

6

N2

Vol(M)R2
N

∫
M

dy
φ(y)

|x − y|2 + μ̃2

R2
N

(2.65)

suggest the presence of phase transitions and non-trivial “striped” vacua [36–38]. Analogous 
remarks apply to NC gauge theory.

While this non-local nature of generic NC field theories excludes their application as funda-
mental theories, they may still be useful e.g. as effective description of physics in strong magnetic 
fields, and possibly other contexts. However, there is an important exception to this conclusion, 
given by the maximally supersymmetric IKKT and BFSS matrix models. We will see that the 
nonlocality is much milder in the IKKT model, given by 10-dimensional supergravity coupled 
to the brane. More sophisticated backgrounds such as fuzzy S4

N in this model are promising can-
didates for the quantum nature of space–time at short distances. The present methods are also 
applicable in these backgrounds, as shown in [24].

2.4. (Quasi-) Coherent states on generic fuzzy spaces

To show the applicability of the above coherent state methods to generic quantum geome-
tries,10 we recall the general concept of quasi-coherent states introduced in [30], cf. [39,40]. 
Given any background defined in terms of D hermitean matrices Xa ∈ End(H), they are de-
fined to be the ground states |x〉 of the point probe Hamiltonian

Hx = (Xa − xa)(Xa − xa), Hx |x〉 = E(x)|x〉 (2.66)

for arbitrary x ∈R
D . It follows that

〈Hy〉x = �2(x) + |�x(x) − �y|2 (2.67)

where 〈.〉x = 〈x|.|x〉 and �x(x) = 〈Xa〉x and

�2(x) :=
d∑

a=1

〈(Xa − xa(x)
)(

Xa − xa(x)
)〉x (2.68)

is the dispersion. We assume that this defines a “brane” i.e. a sub-variety M ⊂R
D where �2(x)

is small, and E(x) grows quadratically in the directions transversal to the brane. We assume for 
simplicity that these ground states are non-degenerate, defining a rank one projector

|x〉〈x| = P0(Hx). (2.69)

Hence the |x〉 form a U(1) bundle B over M. As in section 2.1, we can then map operators in 
φ ∈ End(H) to functions via

9 This may be circumvented by adding additional terms to the action which strongly modify the noncommutative 
geometry, cf. [14].
10 We only have in mind here the case where the algebra of functions on a compact space is finite-dimensional. There 
are many examples where this is not satisfied, and these are expected to have a very different intrinsic nature.
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φ(x) = 〈x|φ |x〉 (2.70)

and

〈x| [φ,ψ] |x〉 ≈ i{φ,ψ} (2.71)

defines a bracket on the classical functions which approximately satisfies the Leibniz rule and the 
Jacobi identity for large N . This recovers the Poisson bracket for functions. The corresponding 
(NC) symplectomorphisms U = ei�(x) define a connection ∇ on B, whose curvature should be 
the symplectic form ω associated to the Poisson structure. In particular, the symplectic form will 
satisfy the quantization condition

dimH = Vol�(M) =
∫
M

� (2.72)

where � = 1
(2π)nn!ω

∧n is the symplectic volume form on M. We can then write down the fol-
lowing formula for a resolution of the unit in terms of the coherent states, generalizing (2.6):

1 = dimH
VolM

∫
M

� |x〉 〈x| . (2.73)

As a heuristic justification, we note that the expression on the rhs should be invariant under the 
connection ∇ (since ω is the curvature of ∇), and therefore invariant under symplectomorphisms. 
This means that it should commute with the generators (at least to a very good approximation), 
and therefore it should be proportional to 1. A rigorous proof or qualification of the overcom-
pleteness relation (2.73) in the generic case is left as a challenge to future work. As before, the 
localization property of the coherent states can then be written as

〈y|z〉 = 1

cN

δ̃(x, y), cN = dimH
Vol(M)

. (2.74)

If the above assumptions are satisfied, then all the formulae for the loop integrals developed in 
section 2.3 are applicable also in this general case.

3. Higher loops and ’t Hooft approach to NC QFT

Given these powerful techniques, one would like to go beyond the one-loop approximation. 
We will briefly discuss the generalization to higher loops in the spirit of ’t Hooft’s double line 
representation, and possible non-perturbative setups.

Suppose we want to compute the n-point functions of a scalar field φ on some fuzzy space at 
higher loops. One approach is to first write down the perturbative contributions as usual using a 
Gaussian integration using some arbitrary but ordinary basis for the matrix modes, and then to 
rewrite these Feynman rules in terms of the over-complete coherent state representations. This 
will result in a ’t Hooft-type double line representation with the simple propagators (2.36). To 
make this more explicit, consider complex scalar fields on the fuzzy sphere with action S[φ] =
S0[φ] + Sint[φ] with free part S0 as in (2.48), and Sint could contain any terms of the form 
1
N

tr(φ∗φ)n. We can expand φ in an arbitrary basis

φi
j =

∑
A

(̂YA)ij ϕA, YA ∈A = End(H) (3.1)

where i, j = 1, ..., N labels a basis of H. The correlators are obtained as usual from
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Z[J ] =
∫
A

Dφe−S[φ]+trφJ = e−W [J ] . (3.2)

Then the perturbative expansion of a correlator is given be the sum of contractions. This is most 
transparent in the matrix basis using φi

j rather than ϕA. Then the free propagator

〈φi
j φ∗k

l 〉0 ∈ A⊗A∗ (3.3)

is viewed as an element in A ⊗ A∗ ∼= End(A), and represented by a double line starting at 
(

i
j
) and ending at ( k

l
). Since the vertices have the form of a matrix product, the Feynman rules 

are obtained directly in the ’t Hooft double line organization, where the labels i, j of the lines 
are preserved in the vertices. The diagrams are then be viewed naturally as ribbon graphs on 
a Riemann surface. However, the labels are not preserved by the propagator, which makes the 
computations difficult.

The key is now to translate these Feynman–’t Hooft rules into the coherent state represen-
tation, for each given diagram. All we have to do is use the form (2.36) for the (approximate) 
propagator,

(�̄ + μ2)−1 = c2
N

∫
M×M

dxdy

∣∣∣ x
y

) 1

|x − y|2 + μ̃2

(
x
y

∣∣∣ ∈A⊗A∗ (3.4)

which is explicitly written as an element in A ⊗A∗. Since these propagators are connected by 
canonically contracting the indices i.e. evaluating A = H ⊗ H∗ and A∗ = H∗ ⊗ H, this gives 
immediately the Feynman–’t Hooft rules where the lines of the propagator are now labeled by 
positions x, y ∈ M on the fuzzy space which are preserved by the propagators, and trivially 
connected at the vertices to form ribbon graphs. The sums over the internal lines become position 
integrals over M. The key feature is that both the propagators and the vertices are now diagonal 
in position space. The resulting Feynman rules are very simple and natural, and their evaluation 
is much easier (!) than in ordinary QFT. The one-loop diagrams lead to the diagrams 1 and 2, 
and the Feynman rules reproduce directly our results in section 2.3, even quicker than using the 
trace-log formula. It is then easy to compute higher loop corrections; some explicit computations 
will be presented elsewhere [41] This simplification also leads to the hope that one may devise 
new techniques to extract their asymptotics, analogous to those in matrix models [42].

Since the resulting formalism is so simple, it is tempting to skip the intermediate steps and to 
use directly the coherent state representation of general operators φ ∈ End(H), e.g. as

φ =
∫

M×M

dxdy|x〉φ(x, y)〈y| (3.5)

where φ is represented as a function on M ×M. Although this representation is not unique, one 
might try to define a path integral for such functions leading to the same type 2-line diagrams 
as before. On the other hand, it seems more reasonably to replace the functions φ(x, y) by finite 
matrices

φ(x, y) ↔ �x,y (3.6)

on some equidistributed lattice on M consisting of dimH points xi , interpreted as (matrix) string 
with energy

�̃� = [E, [E,�]] = |x − y|2, Ex,y = x − y . (3.7)
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This is the picture of bi-local fields introduced in [12]. Then the original model could be replaced 
by the simplified “string” matrix model

Sred [�] = tr([E,�]2 + �2�2 + g�4) (3.8)

which can be treated by the usual methods. Now the kinetic term is simplified, and now repre-
sented by a single matrix E instead of the set of matrices {Xa}. In this form, non-perturbative 
approaches should be applicable. A similar simplification should apply for Yang–Mills matrix 
models.

The present techniques may also be useful in an exact RG approach to NC field theory, noting 
that the modes with highest energy are the longest string modes. In the case of a fuzzy sphere, 
these are the strings connecting opposite points, which should explain the origin of the antipodal 
terms found in [43]. We leave these topics for future investigations.

Finally, these ideas should also provide an efficient way to compute quantum corrections for 
ordinary SU(N) Yang–Mills theory with large N around non-trivial (Higgs) vacua correspond-
ing to fuzzy extra dimensions [44,45]. Again the Feynman rules can be rewritten in a string basis 
for u(N) as above, and the propagators acquire weight factors corresponding to their distance in 
internal space as above. Then the computations should be comparable to large N gauge theory 
computations in the trivial vacuum.

Minkowski signature The present paper is focused on the case of Euclidean signature. In the 
case of Minkowski signature, � has a non-trivial kernel, corresponding to time-like string states 
ψx,y with

(y − x)2 + 2�2 + μ2 = 0 (3.9)

One might worry if such a model can ever be well-defined, but numerical simulations [46]
demonstrate that this can be achieved by adding suitable IR-regulator terms to the action. We 
expect that the present techniques provide a useful tool also in the case of Minkowski signature, 
which is left for future work.

4. The 1-loop effective potential for the IKKT model

The above formalism is clearly also applicable to gauge theories, which are defined by ma-
trix models of Yang–Mills type. In this section, we will use this to study the one-loop effective 
actions for the maximally supersymmetric IKKT matrix model, on some noncommutative brane 
background with the required properties as described above. Again there is considerable overlap 
with [12], but we develop a formalism applicable to generic fuzzy spaces, thus preparing the 
ground for the application on S4

N in [24]. The background is defined in terms of 10 hermitian 
matrices

Xa ∼ xa : M ↪→R
10 (4.1)

interpreted as quantized embedding function of some quantized symplectic manifold M in R10. 
They define the flux

[Xa,Xb] = i�ab (4.2)

which corresponds to the quantized Poisson brackets of the xa . The IKKT or IIB matrix model 
is defined by the action
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S0[X] = 1

g2
Tr

(
−[Xa,Xb][Xa,Xb] + 2μ2XaXa + �γa[Xa,�]

)
. (4.3)

To regularize possible IR singularities, we added a (small) mass μ2. The equations of motion for 
the bosonic matrices are

(� + 1

2
μ2)Xa = 0, � = [Xa, [Xa, .]] . (4.4)

Now consider fluctuations around some (not necessarily on-shell) background Xa → Xa +
Aa(Xa). Then the quadratic action for Aa is given by

S[X +A] = S[X] + 2

g2
Tr

(
2Aa(� + μ2)Xa

+Aa

(
(� + μ2)δa

b + 2i[�ab, . ] − [Xa, [Xb, .]])Ab

)
.

Hence the quadratic fluctuations Aa are governed by the quadratic form

TrAa

(
(� + μ2)δa

b + 2i[�ab, . ] − [Xa, [Xb, .]]
)
Ab . (4.5)

The last term can be canceled by adding a suitable Faddeev–Popov gauge-fixing term for 
f = [Aa, Xa] = 0 [47]. The one-loop effective action on a matrix background is defined by 
the Gaussian integration around the background

Z[X] =
∫

1 loop

dAd�e−S[X+A,�] = e−�eff[X] (4.6)

and we will denote the bare and one-loop contributions as

�eff[X] = S0[X] + �1loop[X] . (4.7)

We recall the following form of the one-loop effective action in the IKKT model [15,47,48]

�1loop[X]= 1

2
Tr

(
log(� + μ2 − M

(A)
ab [�ab, .]) − 1

2
log(� − M

(ψ)
ab [�ab, .]) − 2 log(�)

)

= 1

2
Tr

(∑
n>0

1

n

(
(�−1( − M

(A)
ab [�ab, .] + μ2)

)n − 1

2
(−�−1M

(ψ)
ab [�ab, .])n

))

= 1

2
Tr

(
1

4
(�−1(M

(A)
ab [�ab, .])4 − 1

8
(�−1M

(ψ)
ab [�ab, .])4 +O(�−1[�ab, .])5

)

+ 1

2
μ2Tr�−1 + O(μ4) (4.8)

with a, b = 1, ..., 10, where

(M
(ψ)
ab )αβ = 1

4i
[γa, γb]αβ

(M
(A)
ab )cd = i(δc

bδad − δc
aδbd) ,

(4.9)

and the 2 log� term arises from the ghost contribution. Here � and �ab refer to the operators 
defined for the background Xi as in the previous sections. Note that the coupling constant g
drops out from �1loop. For μ = 0, the first non-vanishing term in this expansion is n = 4 due to 
maximal supersymmetry. However for soft SUSY breaking with μ2 
= 0, there are contributions 
with n = 1, starting with the above μ2 term.
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This 4th order term plus the leading μ2 contribution is given by the following expression [47]:

�1loop;4[X]= 1

8
Tr

(
(�−1(M

(A)
ab [�ab, .])4 − 1

2
(�−1M

(ψ)
ab [�ab, .])4

)

= 1

4
Tr

(�−1[�a1b1 , . . .�−1[�a4b4 , .]]]]
)

(−4gb1a2gb2a3gb3a4gb4a1 − 4gb1a2gb2a4gb4a3gb3a1 − 4gb1a3gb3a2gb2a4gb4a1

+ gb1a2gb2a1gb3a4gb4a3 + gb1a3gb3a1gb2a4gb4a2 + gb1a4gb4a1gb2a3gb3a2

)
(4.10)

and the leading term in μ2 is

�1loop;μ2 [X]= −1

4
μ2Tr

(�−1) . (4.11)

To explain the new technique for evaluating the trace using string states, we focus on the case 
of an irreducible fuzzy space of brane11 given by the quantization of a symplectic manifold M; 
stacks of branes will not be discussed here. We assume that there is an over-complete set of 
coherent states |x〉 on M, with the associated string states |y〉〈x| spanning End(H). According 
to the results in the previous sections, we can then write

�−1(|x〉〈y|) ∼ 1

|x − y|2 + 2�2
|x〉〈y|

�−1[�ab, .](|x〉〈y|) ∼ 1

|x − y|2 + 2�2
δ�ab(x, y)|x〉〈y| (4.12)

on a sufficiently slowly-varying background, where

δ�ab(x, y) := �ab(x) − �ab(y) (4.13)

are now ordinary, commutative functions rather than operators. We assume that the dispersion 
�2

x ≈ �2 is independent of x for simplicity. Then the traces over End(H) can be evaluated as

�1loop;4[X]∼ 1

4

(dimH)2

(VolM)2∫
M×M

�x�y

δ�a1b1(x, y)δ�a2b2(x, y)δ�a3b3(x, y)δ�a4b4(x, y)

(|x − y|2 + 2�2)4

3
(−4gb1a2gb2a3gb3a4gb4a1 + gb1a2gb2a1gb3a4gb4a3

)
= 3

4

∫
M×M

dxdyρ(x)ρ(y)
S4[δ�(x, y)]

(|x − y|2 + 2�2)4

�1loop;μ2 [X]∼ 5

2

∫
M×M

dxdyρ(x)ρ(y)
μ2

|x − y|2 + 2�2
(4.14)

suppressing the target space metric gab. Here �x = ρ(x)dx is the symplectic volume form on 
M such that dimH = VolM. We denote accordingly

11 The string theoretical picture is that N D-instantons bound to and “dissolved” on a D-brane M.
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S4[δ�] = −4trδ�4 + (trδ�2)2 . (4.15)

An important observation [49] is the following: If δ�ab(x, y) has rank ≤ 4, then

−S4[δ�] = 4tr(δ�gδ�gδ�gδ�g) − (trδ�gδ�g)2

= 4(δ�ab+ δ�+ba) (δ�cd− δ�−dc), δ�± = δ� ± �gδ�

≥ 0 (4.16)

where �g denotes the 4-dimensional Hodge star with respect to gμν . This leads to an attractive 
interaction, which vanishes precisely in the (anti-) selfdual case δ� = ± �g δ�. Thus parallel 
4-dimensional branes with flux �ab

A and �ab
B are attracted to each other with an attractive − 1

r4

potential [15,48] and are unstable, unless �ab
A − �ab

B is (anti-)selfdual. For fluxes with rank ≥ 6, 
the interaction is in general not attractive. �1loop;4 vanishes identically for a single branes with 
constant flux such as R4

θ , which reflects their BPS property.
For slowly varying backgrounds, �1loop;4[X] describes interactions which decay like

|x − y|−8, but are bounded for short distances by the NC cutoff �2. In the next section, we 
will identify these interactions with linearized IIB supergravity on M, generalizing previous 
results for block-matrix configurations and simple backgrounds [15–23].

As discussed in section 2.3, possible UV divergences are associated with large eigenvalues 
of �, which corresponds to widely separated points x, y ∈M, or longs strings |y〉〈x|. This is the 
essence of UV/IR mixing. Due to the short-range interaction in the supersymmetric model, this 
does not lead to any problems (at one loop) on manifolds with dimension less than 8, in contrast 
to non-supersymmetric models.

4.1. Induced interactions and linearized IIB supergravity

Now we want to understand the physics of the above one-loop interactions. It was conjectured 
in [48] that the IKKT matrix model provides a non-perturbative definition of IIB string theory 
on R

10. The main direct evidence (i.e. based solely on the matrix model itself) are loop com-
putations as above for the interactions of simple branes in target space, which can be computed 
in the matrix model and compared with string theory or rather IIB supergravity. The relevant 
(bosonic) degrees of freedom in IIB supergravity mediating such interactions are the graviton, 
the dilaton, and the anti-symmetric 2-form and 4-form fields.12 It was indeed found in [48], 
and corroborated in subsequent works [15,18–20,22,23] that the interaction in the matrix model 
matches with supergravity at least in the long-distance limit. However, the methods were lim-
ited to highly symmetric branes or “D-particles” represented by block-matrices. Using the above 
techniques, we can extend this to rather generic branes, as long as they admit coherent states as 
discussed above.

First, consider the self-interaction of an irreducible brane background M. Expanding the 
above action using the short-hand notation

δ�(x, y) = �x − �y (4.17)

we get

12 The separation between the NSNS and the RR form fields is not clearly visible from the matrix model point of view.
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S4[δ�(x, y)] = −4trδ�(x, y)4 + (trδ�(x, y)2)2

= −4tr(T 2
x ) + tr(Tx)

2 + (x ↔ y)

+ 4
(
4tr(�x�x�x�y) − tr(�x�y)tr(�x�x) + (x ↔ y)

)
− 16tr(TxTy) + 2trTxtrTy

− 8tr(�x�y�x�y) + 4(tr(�x�y))
2 (4.18)

which disappears for x = y as it must. Here we identify the matrix–energy–momentum tensor of 
the (background) brane in target space as

T ab[�] = �ac�cb. (4.19)

This is the “closed string” e–m tensor, in agreement13 with related results in the literature, cf. 
[19,22]. Furthermore, we denote the effective propagator on R10 as

D(x − y) = 3

2π5

1

(|x − y|2 + �2)4
∼ 3

2π5

1

|x − y|8 , (4.20)

which for distances |x − y|2 � �2 coincides with the 10-dimensional (Euclidean) propagator in 
10 dimensions, but is regularized in the UV by �2. Then the effective interaction induced at one 
loop is

�1loop;4[X] ∼ π5

2

∫
M×M

dxdyρ(x)ρ(y)
(

2S4(�(x)) D(x − y)

+ 16
(
�ae(x)�ef (x)�f b(x)

+ 1

4
�ab(x)�ef (x)�ef (x)

)
D

(AS)
ab;cd(x, y)�dc(y)

− 8T ab(x)D
(S)
ab;cd (x, y)T cd(y)

+ 4�aab(x)�ef (x)D
(AS)
abef ;cdgh

(x, y)�cd(y)�gh(y)
)
. (4.21)

Here

D
(S)
ab;cd(x, y) = (

gacgbd + gadgbc − 1

4
gabgcd

)
D(x − y)

D
(AS)
abef ;cdgh

(x, y) = (
gacgbdgeggf h + gacgbhgedgfg − gacgbggedgf h

)
D(x − y)

D
(AS)
ab;cd(x, y) = (

gacgbd − gadgbc

)
D(x − y) (4.22)

For |x − y|2 � �2, the fourth line in (4.21) can clearly be interpreted in terms of a graviton 
exchange in R10, and D(S)

μν;αβ
(x, y) is indeed the graviton propagator in de Donder gauge. The 

last line is due to the exchange of a rank four antisymmetric tensor, and D(S)
μν;αβ

(x, y) is the 
propagator for a rank four antisymmetric tensor. The first line can be interpreted in terms of a 
dilaton exchange [23,50] coupling the background density ρ(y) to

S4(�) = −4T ab(x)Tab(x) + T (x)T (x), T = T abgab . (4.23)

13 This should be contrasted with the effective (“open-string”) energy momentum tensor which arises in the effective 
gauge theory on the brane with the open string metric, which has the standard form as in classical Yang–Mills gauge 
theory.
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Finally the second and third lines can be interpreted as exchange of an antisymmetric rank 2 
tensor field Bab, which couples to branes14 via terms of the form [50]∫

Bab(�
ab + �ac�cd�db + 1

4
�ab�cd�cd + ...). (4.24)

Hence all these terms can be interpreted as interaction mediated by an exchange of the basic 
fields in 10-dimensional IIB supergravity, coupled to a brane described by the matrix background 
�ab . The specific form of the interaction ensures that it cancels identically for constant, flat 
backgrounds. Even though this mechanism has in principle been known for a long time [48], 
the derivations in the literature are based on separate block-matrices, and can be trusted only for 
large separations between localized branes. The present coherent state representation captures 
the detailed x-dependence for generic curved branes within the matrix model. With these tools 
at hand, it should be possible to derive also the (analog of the) Dirac–Born–Infeld effective 
action starting from the matrix model beyond the one-loop order, incorporating the full quantum 
effective action for slowly varying fields.

It is quite interesting that this interaction has a UV cutoff scale �2 in D(x − y), reflecting 
the quantum structure of the brane. This is as expected on branes with B-field, corresponding 
to noncommutative spaces. Moreover, the above derivation is easily adapted also to branes with 
vanishing 2-form flux, such as the fuzzy 4-sphere S4

N [51]. This is properly understood as a 
degenerate higher-dimensional quantized symplectic space, where the B-field is averaged over 
the degenerate S2-fiber over S4 [52–54]. The present method allows to compute the one-loop 
effective action also on this background, in a much simpler and more transparent way than the 
group-theoretical approach in [54]. This will be published elsewhere [24].

4.2. Fluctuations on a background

Since the 1-loop interaction vanishes for flat backgrounds, the above action becomes more 
intuitive for fluctuations Xa = X̄a +Aa on some background brane M described by X̄a . Then

�ij = �̄ij +F ij (4.25)

where iF ij = [Xi, Aj ] − [Xi, Aj ] + [Ai , Aj ] is an excitation on the background �̄ij . To orga-
nize the various contributions, we note again that S4 depends only on the combination

δ�ab(x, y) := (�̄ab(x) − �̄ab(y)) + (Fab(x)) −Fab(y))

=: δ�̄ab(x, y) + δFab(x, y) . (4.26)

Assume that the background �̄(x) is almost constant, while F(x) is varying on much shorter 
scales (but still long compared to �2). Then δF(x, y) � δ�̄(x, y), and we can organize S4(F)

as follows

S4(δ�) = S4(δF) +O(δF3δ�̄) +O(δF2δ�̄2) +O(δFδ�̄3) + S4(δ�̄
4) (4.27)

in decreasing order of significance. We mainly focus on the leading O(δF4) terms. The mixed 
terms describes interactions of F with the background flux �̄; they may e.g. modify the propaga-
tor for the fluctuations F . Finally S4(δ�̄

4) corresponds to the self-interaction of the background 
as discussed in the previous section.

14 As explained in [50], the coupling of the brane to all the supergravity fields such as Bμν etc. follows via T-duality 
from the well-known results that fundamental strings and lower-dimensional branes can be described in terms of the field 
strength of the U(N) gauge field in the world-volume of a Dp-brane.



370 H.C. Steinacker / Nuclear Physics B 910 (2016) 346–373
O(F4) term The O(F4) term on a background M has the same structure as the S4(�) term, 
with the propagator defined by the background M. It is most transparent for widely separated 
field configurations F(x) =FA(x) +FB(x) where FA,B(x) have non-overlapping support. Then 
the interaction terms for such configurations have the by now familiar form

�1loop;4[FA,FB ]∼ π5
∫

M×M

dxdyρ(x)ρ(y)
(

2S4(FA(x)) D(x − y)

+ 16
(
Fae

A (x)FAef (x)Ff b
A (x)

+ 1

4
Fab

A (x)Fef
A (x)FAef (x)

)
D

(AS)
ab;cd(x, y)Fdc

B (y)

− 8T ab
A (x)D

(S)
ab;cd(x, y)T cd

B (y)

+ 4Faab
A (x)Fef

A (x)D
(AS)
abef ;cdgh

(x, y)Fcd
B (y)Fgh

B (y)
)
. (4.28)

There is a factor 2 which arises from the two possible associations x ↔ A, y ↔ B and vice versa. 
This can again be interpreted as interactions due to the exchange of IIB sugra modes between 
the excitations A and B . Specifically, the first line is associated with a dilaton exchange with the 
background, the 2nd and 3rd lines with the exchange of an antisymmetric rank 2 field, the 4th
line with a graviton exchange, and the last line with exchange of a rank 4 tensor field.

We could also obtain a derivative expansion of the above interaction by expanding the 
δF = F(x) − F(y) into powers of (x − y). Then the effective action for F becomes a 4-th 
order derivative interaction with interaction strength given by �−4, which was elaborated di-
rectly in [47]. Hence the above form provides a closed form for its long-distance behavior. For 
the nonabelian case, this one-loop action is known to provide the leading F4 term in an ex-
pansion of the DBI action (cf. [47]), and the present technique should allow to corroborate this 
connection in more detail.

4.3. Non-supersymmetric matrix models

Finally consider briefly the case of generic (non-supersymmetric) matrix models and their 
relation with NC gauge theory. As long as all fields are in the adjoint, the one-loop effective 
action can still be expressed in a similar way as (4.8), however starting at O(δF2) rather than 
O(δF4). At short distances, this leads to a derivative expansion starting with 2 derivatives of F . 
At long distances, the propagators lead to a non-local interaction decaying like (|x−y|2+�2)−2.

We can now make contact with the emergent gravity picture of NC gauge theory [35]: The 
U(1) sector of such a NC gauge theory defines (in the local, semi-classical limit) a non-trivial 
effective (“open string”) metric for the remaining fields. In accord with the mechanism of induced 
gravity, the 1-loop integrals of any fields on such a background induces an Einstein–Hilbert-type 
action in the effective action (among others). In the case of NC field theory this arises due to IR 
modes in the loops as verified in [8,9], corresponding to the leading term in the above derivative 
expansion of F . The new insights in the present paper complement this picture by an explicit 
form for the induced long-distance interaction, which is due to the UV modes in the loops. In the 
case of maximal SUSY, this leads to 10D supergravity as shown above. In generic non-SUSY 
models this interaction will in general not lead to 4-dimensional Einstein gravity, but to a different 
type of shorter-range gravitational interaction. However as shown in a companion paper [24], the 
linearized 4D Einstein equations do emerge in the IKKT model, but only on more sophisticated 
“covariant” noncommutative backgrounds and by a different mechanism.
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5. Conclusion

One message of this paper is that noncommutative field theory is very different from lo-
cal field theory, and is more appropriately viewed as a theory of open strings ending on branes. 
Although this insight is not new [10], the formalism of bi-local string states makes this interpreta-
tion manifest and compelling from the noncommutative point of view. The bulk of the kinematic 
phase space consists of an UV sector whose degrees of freedom are described by string states 
|x〉〈y| ∈ End(H), introduced previously in [12]. These are naturally interpreted as open strings, 
and behave completely differently from classical fields. We develop a formalism based on inte-
grals over string states which greatly simplifies the computation of the loop integrals. This leads 
to a simple closed expression for the one-loop effective action in position space for generic fuzzy 
spaces, and provides a clear picture of the non-locality encoded in the UV/IR mixing, which 
arises from long strings with high energy. The extension to higher loops is also indicated. A rig-
orous proof or qualification of the overcompleteness relation (2.73) in the generic case is left as 
a challenge to future work.

In the maximally supersymmetric IKKT matrix model, the present formalism allows to de-
rive directly the position space interactions which arise from quantum effects on fuzzy brane 
backgrounds, confirming the interpretation in terms of IIB supergravity. This should provide 
an analytical tool to address the stabilization of 4-dimensional space–time in the matrix model, 
cf. [54]. It should also be possible now to derive directly the DBI action for branes in the matrix 
model. Finally, the techniques developed here are applied in [24] to the fuzzy 4-sphere, which 
exhibits 4-dimensional emergent gravity.

Even though generic non-commutative field theories defined by non-supersymmetric matrix 
models are non-local, this does not exclude applications in suitable contexts such as condensed 
matter physics with strong magnetic fields. Some of these models exhibit interesting phase struc-
tures [36–38,55–59], and the ’t Hooft-like formalism proposed here should allow to greatly 
improve the analytic understanding of these models. Furthermore, suitable limits of these mod-
els may lead to non-trivial and interesting applications [14]. Therefore the development of these 
powerful techniques should be useful also in these contexts.
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