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ABSTRACT 

An asymptotic formula which holds almost everywhere is obtained for the number of solutions to the 
Diophantine inequalities [[qA - p][ < ~(][qU), where A is an n × m matrix (m > 1) over the field of 
formal Lanrent series with coefficients from a finite field, and p and q are vectors of polynomials over 
the same finite field. 

1. INTRODUCTION 

Let  IF denote  the finite f ie ld  o f k  = pl  e lements ,  where  p is a p r ime  and I is a pos i t ive  

integer.  We def ine  

(1) £ = a _ i X - i :  n E •, ai E IF, an 5 ~ 0 U {0). 

t i=-n 
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Under usual addition and multiplication, this set is a field, sometimes called the field 

offormal Laurent series with coefficients from 1F. We may define an absolute value 
on/2 by setting 

oo 

Z a-iX-i =kn' II011 = 0 .  

i=-n 

This absolute value is ultra-metric. Under the induced metric, d(x, y) = IIx - y II, 
the space (£, d) is a complete metric space. 

The approximation of elements of/2 by ratios of elements in the polynomial ring 
FIX] has been studied extensively (see, e.g., the survey papers by Lasjaunias [4] 
and Schmidt [9]) and has been used in the analysis of pseudorandom sequences 
employed in cryptography by Niederreiter and Vielhaber [6]. 

In this paper, we are concerned with the metrical theory of such Diophantine 
approximations. Let ¢ : R +  --+ R+ be a function with O(x) non-increasing. In [1], 
de Mathan showed that the set of elements x 6/2 for which the inequality 

Ilqx - pll < g~(llqll) 

has infinitely many solutions q, p ~ ~[X], q ~ 0, is null or full (with respect to the 
Haar measure) accordingly as the series ZrCXZ=a ~ (r) diverges or converges. This was 
extended to systems of linear forms in Kristensen [3], as follows. 

T h e o r e m  1 [3, Theorem 3]. Let ap : R+ -+ R+ be decreasing. Let m, n E N, m/> 2. 
The set o f  m x n matrices A with entries from ~2for which the inequalities 

(2) IlqA - PII~ < ¢(llqlloo) 

have infinitely many solutions p 6 ~'[X] n, q 6 1FIX] m, q 7~ 0, is null or full  ac- 
cordingly as the series ~r=l  rm- l~(r )  n converges or diverges, where Ilqll~ = 

max{llqi II}for q = (ql . . . . .  qm). 

Here, we are concerned with the asymptotic number of solutions to the inequali- 
ties (2). In the real case, the analogous asymptotics were found by Schmidt, first in 
the case of simultaneous approximation as well as approximation of a single linear 
form in Schmidt [7] and since for systems of linear forms as well as for restricted 
sets of q's in Schmidt [8]. 

We will restrict ourselves to considering error functions ¢ taking their values in 
the set V = {k-n: n 6 N}. For general error functions, see the remark following the 
statement of the theorem. We will prove the following theorem: 

T h e o r e m  2. Let e > O, let 7t : R+ -+ V and let N(Q,  A) denote the number o f  
solutions to (2) with Ilqll~ ~< ka. Let 

a 
cb(Q) -=-m(k - 1)k m-1 y ~  krm~t(kr) n. 

r=O 
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Then 

N(Q,  A) = ~(Q)  + O(~(Q)  1/2 log3/2+~(~(Q))) 

for almost every m x n matrix A with entries from/2. 

The reason for restricting the choice of  error functions is that the only possible 
distances in the space/2 are of  the form k r where r s Z. For other error functions, 
we could define a function, L'] :R+ --+ V say, mapping x 6 R to the unique 

number LxJ ~ V such that Ix] ~< x < k[xl .  On replacing 7t(.) with [~p(-)J at every 
occurrence, we would obtain the theorem for general decreasing error functions. 
However, for ease of  notation we consider only the restricted case. 

2. PROOF OF MAIN THEOREM 

The proof has two main ingredients. The first has to do with the geometry of  the 
underlying vector spaces. The second is a purely probabilistic theorem. We first 
prove the geometrical results. 

We identify Matin×n(~2) with/2ran. Define for any q 6 FIX] m the set 

(3) Bqm-[A ~Imn: inf I[qA-pl[~ <Vz(llqll~)}, 
p~ ' [X]  n 

where Imn denotes the I[" I[~-unit ball in/2mn. The Haar measure o n  /2mn, nor- 

malised so that the measure of  I mn is equal to 1, will be denoted by/x. 
We will prove the following propositions: 

Proposition 3. 

~ ( B q )  : ~(llql[~) n. 

Proposition 4. Let q, q' ~ ~ [ X ]  m be linearly independent over/2. Then 

/ z ( B q  A Bq,)  : ] z ( B q ) / z ( B q , ) .  

In both proofs, we follow the method from Dodson [2]. 

Proof of Proposition 3. By the rank equation, the solution curves to the equations 
qA = p are (m - 1)n-dimensional affine spaces over/2. We begin by calculating the 
number of  affine spaces which pass through the unit ball. First, note that if  there is 
a solution to the equation qA = p with A ~ I ran, then 

(4) IIPlI~ : IIqAll~ ~< Ilqll~llAIl~ < [[qll~. 

Therefore, the condition IlPlI~ < Ilqll~ is certainly necessary. We claim that it is 
also sufficient. 
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For this, it suffices to find a solution A e Imn which satisfies the equation. Sup- 

pose that I]Plloo < Ilqll~. We assume that [[qlloo = [[qa 11 without loss of generality. 
Now, 

/ pl/q I ... Pnlql ) 
. . .  

(5) q a  = q . . = p 

\ 0 " ' "  

and A e Imn . 
As in Dodson [2], we consider the simplest non-trivial case where q = (ql, q2) 

and p = p and subsequently extend this to the general case. In this case, the solution 
curves to the equations qA = p define Ilql[~ affine 1-dimensional spaces in I 2. 
These partition 12 into [[q[[oo strips, Si say, defined by inequalities IlqA - pll < 1. 
The measure of each such strip may be calculated using a characterization of 
a translation invariant measure due to Mahler (see [5]), which implies that the 
measure of a parallelogram is 1/det(w~, w2), where wl and w2 are the spanning 
vectors. Since the distance between each affine 1-space is 1/llqll~, the solution 
curves partition 12 into sets of the same size, /z(Si) = 1/llqll~. By the same 
characterization, we find that around each solution curve we have a component, 
Bi say, of  the set Bq of measure 7t(q)/llqll~. Hence 

/z(Bq) tz(U Bi) lz(Bi) aP(llqll~)/llqll~ : aP(llqll~). 
(6) /z(Bq)- /z(12~- t L ( U S i  ~ ) - -  ].L(S5 ) - -  1/llqlloo 

To obtain the proposition for general m, n e N, consider n copies of the span 
of q and apply the above argument to resulting prisms in I ran. This implies the 
proposition. [] 

Proof of Proposition 4. Again, we consider the simplest non-trivial case, m = 2, 
n = 1. Let q, ql e IF[X] 2 be linearly independent. We calculate the number of 
intersections between the solution curves to the equations qA = p and the equations 
qrA = p~, where p, p'  rtms over the possible values. This amounts to solving the 
system 

(q l  q 2 ) ( a l ) ( ; i )  
ql 1 q12 a2 = , Ilpll~ < [[qll~, ]]p']l~ < Ilqlll~. 

are exactly I]det(~ I There qG)ll such solutions. To each such solution, we may assign 
q2 

a parallelogram defined by the inequality 

max{ IIqA - PlI, IIq'A - PlI} < 1. 

The parallelogram is seen to be of measure 1/lldet(~ I q2 II, and the parallelograms 
are mutually disjoint. 
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To show that these parallelograms partition i2, it remains to be shown that each 
of  the parallelograms defined above is a proper subset of  12. But this is the case, 
since any parallelogram may be written as 

{x 6 £2: X = qltl + q2t2 + P, tl, t2 E I} 

for some ql, q2 E/~2. Clearly, 

{x E •2: x = qltl + q2t2 + P, tl, t2 E I} C B(p, max(l[411100, IIc)21l~)), 

so by the ultrametric property, the parallelogram is either fully contained in 12 
or disjoint with 12 . Since the parallelograms bounded by the solution curves are 
disjoint, there can be no more than the required number. 

Furthermore, around each intersection point, there is another parallelogram of 
measure ~(q)~(q')/lldet(~ I q2 qj)H, constituting a part of  Bq ~ Bq, whenever it is a 

subset of 12 . 
With the above tools, we may apply a proportionality argument analogous to (6) 

to obtain the proposition in this case. For the general case, we consider n copies of  
the span of  q and q: and apply the above to the mn-dimensional prisms to obtain 
the proposition. [] 

We are now ready to prove the main theorem. 

Proof  of Theorem 2. The final ingredient in the proof is Lemma 10 in Sprind- 
~.uk [10]. 

Let fq(A) be the characteristic function of  Bq, fq --- ~t([]q]l) n and let r(q) = 
@(q)nd(q), where d(q) denotes the number of  common divisors in Y[X] of the 
coordinates of  q. Clearly, by Propositions 3 and 4 for s < t, 

f q ( A ) -  E fq d A  << E Z'q, 
kS<ll <k t U <llqll~ <<k t kS <llqlloo <~k t 

as we only get contributions from the diagonal and elements that corresponding 
to pairs of  parallel q's. By Lemma 10 in Sprind~uk [10], we then have for almost 
every A, 

(7) N ( Q , A ) =  E fq(A) = E f q + O ( T ( Q ) l / Z l ° g 3 / 2 + e T ( Q ) )  ' 

Ilqlloo~<kQ Ilqlloo ~<kQ 

where T ( Q )  = ~ l lq l l~ka  r(q). We need to prove that the right-hand side is 
dominated by the first term. 

We begin with this term. By formula (1.4) in Kristensen [3], 

a a 
Z f q =  E Z ~(kr)n=m(k- 1)km-1 Z krm~(kr)n=c~(Q)" 

Ilqlloo~<kQ r=0 Hqlloo=k r r=0 
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Thus we need only worry about the error term T(Q). Clearly, it suffices to prove 
that 

T(Q) = O(qb(Q)). 

We first observe that by denoting q = ( q l  . . . . .  q m )  and again applying (1.4) from 
Kristensen [3], 

#{q e fix]m: Ilql[~ = kr} = m(k - 1)k m- l+rm,  

which gives the number of q of given height k r , we immediately obtain 

T(Q) = y ~  

I lql l~<ka 

a 

r=O c¢=0 

~/([Iq][~)" ~ 1 
dt(ql ..... qm) 

Z ~(Hq[]~) n Z 1 
Ilqll~=k r dla 

GCD(ql ..... qrn )=a-~k ~ 

a r 

r=0  c~=0 Ilvlloo=kr-c~ 
GCD(v 1 ..... Vm) = 1 

Q r 

<< ~"~ lp(kr)  n ~ r n ( k  - 1)km-Xk (r-c~)m 

r=O ~=0 

Q r 
<< m(k - 1)k m-1 ~ ~(kr)nk rm Z k -~m 

r=O ~=0 

Q 
<<m(k - 1)k m - 1 Z ~ ( k r ) n k  rm << O(Q), 

r=0  

as required. [] 
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