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In this paper we first briefly review the very high order ADER methods for solving
hyperbolic conservation laws. ADER methods use high order polynomial reconstruction
of the solution and upwind fluxes as the building block. They use a first order upwind
Godunov and the upwind second order weighted average (WAF) fluxes. As well known the
upwind methods are more accurate than central schemes. However, the superior accuracy
of the ADER upwind schemes comes at a cost, one must solve exactly or approximately
the Riemann problems (RP). Conventional Riemann solvers are usually complex and are not
available for many hyperbolic problems of practical interest. In this paper we propose to
use two central fluxes, instead of upwind fluxes, as the building block in ADER scheme.
These are the monotone first order Lax–Friedrich (LXF) and the third order TVD flux.
The resulting schemes are called central ADER schemes. Accuracy of the new schemes
is established. Numerical implementations of the new schemes are carried out on the
scalar conservation laws with a linear flux, nonlinear convex flux and non-convex flux.
The results demonstrate that the proposed scheme, with LXF flux, is comparable to those
using first and second order upwind fluxes while the scheme, with third order TVD flux,
is superior to those using upwind fluxes. When compared with the state of art ADER
schemes, our central ADER schemes are faster, more accurate, Riemann solver free, very
simple to implement and need less computer memory. A way to extend these schemes to
general systems of nonlinear hyperbolic conservation laws in one and two dimensions is
presented.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Hyperbolic conservation laws arise in areas as diverse as compressible gas dynamics, shallow water flow, weather pre-
diction, plasma modelling, rarefied gas dynamics and many others. Analytical solutions are available only in very few special
case and numerical methods must be used in practical applications. It is well known that the solutions of hyperbolic equa-
tions laws may develop discontinuities in finite time even when the initial condition is smooth. A successful method should
compute such discontinuities with the correct position and without spurious oscillations and retain high order of accuracy
in smooth regions.

As is well known from the theorem of Godunov [9,11,16], high order linear schemes will generate spurious oscillations
near discontinuities or sharp gradients of the solution. These oscillations pollute the numerical solution and are thus highly
undesirable. To avoid generating spurious oscillations, nonlinear solution-adaptive schemes must be constructed. Over the
last thirty years or so much work has been done to circumvent Godunov theorem, which involves the design of schemes
that must necessarily be nonlinear, even if applied to linear problems. Amongst successful development in this direction we
have TVD methods [2], ENO [3] and WENO methods [1,4] and more recently, ADER methods [8–17].
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TVD schemes are second order (or higher) accurate and avoid oscillations by locally reverting to first order accuracy
near discontinuities and extrema. Therefore TVD schemes are unsuitable for special applications areas such as acoustics,
compressible turbulence and problems involving long time evolution wave propagation. In these applications extrema are
clipped as time evolves and numerical dissipation may become dominant.

Uniformly very high order methods, in time and space, are needed for such applications. Examples include the class of
essentially non-oscillatory (ENO), weighted essentially non-oscillatory WENO schemes and ADER methods. ENO and WENO
schemes are essentially non-oscillatory. That is, to the eye, the solution is free from spurious oscillations and such oscilla-
tions can be shown to decay as the mesh is refined.

ADER approach is recently developed as a generalisation of the upwind Godunov’s method and rely on the solution of a
generalised Riemann problem (GRP) with initial condition consisting of polynomial functions of arbitrary order. The solution
of this difficult problem is reduced to the solution of a sequence of m conventional Riemann problems (RP). For nonlinear
problems the first of these is a nonlinear RP and the remaining ones are linear RPs for the kth order spatial derivatives of
the initial conditions, with k = 0,1, . . . ,m − 1, where m is arbitrary and is the order of accuracy of the resulting scheme.
The ADER schemes are conservative, one step, explicit and fully discrete, requiring only the computation of the intercell flux
to advance the solution by a full time step. To evaluate the numerical flux, in the ADER schemes, one solves the generalised
RP, exactly or numerically with initial condition consisting of two arbitrary but smooth functions using a semi-analytical
method. To avoid the Gibbs phenomenon the ADER approach relies on WENO reconstructions of the data from cell averages.
However, the superior accuracy of the ADER upwind schemes comes at a cost, one must solve exactly or approximately,
the RP. Conventional Riemann solvers are usually complex and are not available for many hyperbolic systems of practical
interest. It is thus desirable to construct a numerical flux that emulates the upwind best flux available (ADER) with the
simplicity and generality of central fluxes.

In [8,12,16] Toro and Takakura presented a new version of ADER approach in which the Taylor expansion is performed
in terms of the flux function. They built the flux rather than the state expansion in time to achieve an arbitrary order of
accuracy in space and time. Also, Titarev and Toro [12,16] and Takakura [8] proposed to use the second order upwind TVD
weighted average flux (WAF) [13] flux, instead of first order upwind Godunov flux as the building block. The scheme is
called ADER-WAF scheme.

The main motivation of this paper is to enhance the accuracy and simplicity of the ADER schemes by making use of the
central fluxes as part of the flux expansion of the solution of the GRP. In this paper we propose to use central flux, instead
of upwind fluxes, as the building block. We call the new improved schemes CENTRAL-ADER schemes. There appear to be
two candidate fluxes that can be readily used as the building block. These are the first order monotone Lax–Friedrich (LXF)
flux and the third order TVD flux [19]. Both fluxes are central and therefore avoid the solution of the RPs. When compared
with the state of art ADER schemes, our central schemes are faster, more accurate, Riemann solver free, very simple to
implement and need less computer memory. We carry out a systematic assessment of the constructed numerical schemes.
We do so for a set of carefully selected test problems, with particular emphasis on testing the accuracy of the schemes for
very long time evolution, as it is long time evolution for which the sophistication high order must be justified and for the
problems of complicated wave formation and interaction in the nonlinear cases corresponding to convex and non-convex
fluxes. We compare the results against exact solutions. The new schemes are systematically compared with ADER-WAF and
original ADER schemes.

The rest of the paper is organised as follows. In Section 2 we review the original ADER methods. The central ADER
scheme with first order flux is described in Section 3. In Section 4 we introduce the central ADER scheme with third order
TVD flux. Accuracy of the new schemes is discussed in Section 5. Numerical results are given in Section 6. Extension of
the schemes for systems equations in one dimension is presented in Section 7. Finally the extension in two dimension is
described in Section 8.

2. ADER approach

In this section the ADER approach is reviewed for the following hyperbolic conservation law

ut + f (u)x = 0, −∞ < x < ∞, t � 0, (2.1a)

along with the initial condition

u(x,0) = u0(x) (2.1b)

Eqs. (2.1) may be written in the form

ut + λ(u)ux = 0, (2.2)

where λ(u) is the characteristic speed defined by λ(u) = df
du . Integration of (2.1) over the control volume in x–t space

[x j− 1
2
, x j+ 1

2
] × [tn, tn+1], of dimensions Δx = x j+ 1

2
− x j− 1

2
, Δt = tn+1 − tn we obtain

un+1
j = un

j − Δt [
F j+ 1 − F j− 1

]
, (2.3)
Δx 2 2
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where un
j is the space average of the solution in the cell I j = [x j− 1

2
, x j+ 1

2
] at tn and the flux F j+ 1

2
is the time average of

the physical flux at the cell interface x j+ 1
2

:

un
j = 1

Δx

x
j+ 1

2∫
x

j− 1
2

u
(
x, tn)

dx, F j+ 1
2

= 1

Δt

tn+1∫
tn

f
(
u(x j+ 1

2
)
)

dt. (2.4)

The description of the scheme is complete when a proper non-oscillatory flux is chosen.
The ADER approach defines numerical fluxes in such a way that the explicit conservative one step formula (2.3) computes

numerical solutions of (2.1) to arbitrary high order of accuracy in both space and time.
The ADER approach in state series expansion consists of the following steps:

(i) Reconstruction. To avoid spurious oscillations ENO or WENO reconstruction can be used. In general, WENO reconstruc-
tion produces more accurate results and therefore it is used in design of our schemes. By means of the reconstruction step
the conservative variable is represented by polynomials P j(x) in each cell I j . At each cell interface x j+ 1

2
we then have the

following GRP:

ut + f (u)x = 0,

u(x,0) =
{

uL(x) = P j, x < x j+ 1
2

uR(x) = P j+1, x > x j+ 1
2

⎫⎪⎪⎬
⎪⎪⎭ . (2.5)

We remark that for the mth order accurate scheme the reconstruction polynomials must be of (m − 1)th order. In all
numerical examples given here we use the 5th order WENO reconstruction [1,4].

(ii) State expansion. We find an approximate solution for the interface state u(x j+ 1
2
, τ ), where τ is local time τ = t − tn

assumed to be sufficiently small. First we write a Taylor expansion of the interface state in time:

u(x j+ 1
2
, τ ) = u(x j+ 1

2
,0+) +

m−1∑
k=1

{
∂k

∂tk
u(x j+ 1

2
,0+)

}
τ k

k! , (2.6)

where 0+ = limt→0+ t . If Eq. (2.2) is linear with constant speed λ, time derivatives are

∂ku

∂tk
= (−λ)k ∂ku

∂xk
. (2.7)

When Eq. (2.2) is nonlinear, the Cauchy–Kowalewski (see [8]) procedure is then applied to replace all time derivatives in
expansion by space derivatives as follows:

u(1)
t = −λu(1)

x , u(2)
t = λ2u(2)

x + 2λλu
(
u(1)

x
)2

,

u(3)
t = −λ3u(3)

x − 9λ2λuu(1)
x u(2)

x − 6λ(λu)2(u(1)
x

)3 − 3λ2λuu
(
u(1)

x
)3

,

u(4)
t = λ4u(4)

x + 16λ3λuu(1)
x u(3)

x + 12λ3λu
(
u(2)

x
)2 + 72λ2(λu

)2(
u(1)

x
)2

u(2)
x

+ 24λ(λu)3(u(1)
x

)4 + 24λ3λuu
(
u(1)

x
)2

u(2)
x + 36λ2λuλuu

(
u(1)

x
)4 + 4λ3λuuu

(
u(1)

x
)4

,

u(k)
t = A(k)

(
u(0)

x , u(1)
x , . . . , u(k)

x
)
. (2.8)

Therefore, the time Taylor series expansion becomes

u(x j+ 1
2
, τ ) = u(x j+ 1

2
,0+) +

m−1∑
k=1

{
A(k)

(
u(0)

x (x j+ 1
2
,0+), . . . , u(k)

x (x j+ 1
2
,0+)

)}τ k

k! . (2.9)

The leading term u(x j+ 1
2
,0+) accounts for the first instant interaction of the boundary extrapolated values uL(x j+ 1

2
,0) and

uR(x j+ 1
2
,0). This leading term is computed by solving the conventional (piece wise constant) RP:

ut + f (u)x = 0,

u(x,0) =
{

uL(x j+ 1
2
), x < x j+ 1

2

uR(x 1 ), x > x 1

⎫⎪⎬
⎪⎭ (2.10)
j+ 2 j+ 2
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by using the upwind Godunov method. The remaining terms u(k)
x (x j+ 1

2
,0+) (k = 1,2, . . . ,m − 1) are the solutions of the kth

order derivative RP locally linearised around the leading term u(0)
x (x j+ 1

2
,0+) of (2.9):

vt + λ
(
u(x j+ 1

2
,0+)

)
vx = 0,

v(x,0) =
{

u(k)
L (x j+ 1

2
), x < x j+ 1

2

u(k)
R (x j+ 1

2
), x > x j+ 1

2

⎫⎪⎪⎬
⎪⎪⎭ , (2.11)

where v = u(k)
x and they are given as Godunov state. Finally, having all spatial terms we form the Taylor expansion (2.9).

The numerical flux is evaluated by using an appropriate mth order accurate Gaussian rule

F j+ 1
2

=
N∑

α=0

F
(
u(x j+ 1

2
, γαΔt)

)
Kα, (2.12)

where γ j and K j are properly scaled nodes and weights of the rule and N is the number of nodes [8,16].
A key ingredient here is the availability of an exact or approximate solver to provide the terms of (2.9).

3. Central ADER approach

Now, we propose to use central fluxes, instead of upwind fluxes, as building block. We call the new scheme CENTRAL-
ADER scheme. There appear to be two candidate fluxes that can be used as the building blocks. These are the monotone
first order LXF flux and the third order TVD flux [19].

3.1. ADER method with first order central fluxes

To compute the terms of (2.9) we proceed as follows:
The leading term of (2.9) should be computed by a monotone method, to avoid entropy violation. Probably the most

well-known centered monotone method is the Lax–Friedrich method.
The leading term u(x j+ 1

2
,0+) accounts for the first instant interaction of the boundary extrapolated values uL(x j+ 1

2
,0)

and uR(x j+ 1
2
,0) and it is the solution the conventional (piece wise constant) RP:

ut + f (u)x = 0,

u(x,0) =
{

uL(x j+ 1
2
), x < x j+ 1

2
uR(x j+ 1

2
), x > x j+ 1

2

⎫⎪⎬
⎪⎭ . (3.1)

Here we use the staggered form of LXF scheme [5] of Eq. (3.1)

u0+
j+ 1

2
= 1

2

[
uL(x j+ 1

2
,0) + uR(x j+ 1

2
,0)

] − α0Δt

Δx

[
f
(
uR(x j+ 1

2
,0)

) − f
(
uL(x j+ 1

2
,0)

)]
. (3.2)

In the limiting case of piece wise constant data uL(x j+ 1
2
) = un

j and uR(x j+ 1
2
) = un

j+1 this scheme leads to a monotone first

order LXF in staggered form [5]

u0+
j+ 1

2
= 1

2

[
u0

j + u0
j+1

] − α0Δt

Δx

[
f
(
u0

j+1

) − f
(
u0

j

)]
. (3.3)

Expression (3.2) is a generalised of (3.3) to higher order reconstructions. u(k)
x (x j+ 1

2
,0+) (k = 1,2, . . . ,m−1) are the solutions

of the kth order derivative RP (2.11) locally linearised around the leading term u(x j+ 1
2
,0+) of (3.3) and they are computed

by staggered LXF scheme:

v0+
j+ 1

2
= 1

2

[
v L(x j+ 1

2
,0) + v R(x j+ 1

2
,0)

] − λ
αkΔt

Δx

[
v R(x j+ 1

2
,0) − v L(x j+ 1

2
,0)

]
. (3.4)

Here the time weight αk = 1

(k+1)
1
k

, k � 1, see [14]. It is easy to see that αk lie in the interval [0.5,1] and we take

α0 = 0.36788.
In the limiting case this scheme leads to a monotone first order LXF in staggered form

v0+
1 = 1 [

v0
j + v0

j+1

] − λ
αkΔt [

v0
j+1 − v0

j

]
. (3.5)
j+ 2 2 Δx
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Having obtained all spatial derivatives we form the Taylor expansion (2.9). Two options exist to evaluate the numerical flux
F j+ 1

2
of Eq. (2.3). The first one is state expansion ADER [8,11,13], in which an appropriate mth order accurate Gaussian rule

is used to evaluate the numerical flux

F j+ 1
2

=
N∑

α=0

F
(
u(x j+ 1

2
, γαΔt)

)
Kα, (3.6)

where γ j and K j are properly scaled nodes and weights of the rule and N is the number of nodes. When F j+ 1
2

is used with

the conservative form (2.3), the mth order ADER state series expansion is obtained.
The second option will be discussed in the next section.

3.1.1. Flux expansion
The idea of the flux expansion is to use the Taylor expansion of the flux directly, instead of using the Gaussian proce-

dure (3.6). Firstly, by multiplying (2.1) by λ(u) we get the conservative law for the flux f :

ft + λ(u) fx = 0. (3.7)

At t = tn we reconstruct the fluxes to piece-wise smooth functions g j(x) = f (P j(x)), then near each cell interface x j+ 1
2

we

consider the following GRP:

ft + λ(u) fx = 0,

f (x,0) =
{

g j(x j+ 1
2
), x < x j+ 1

2

g j+1(x j+ 1
2
), x > x j+ 1

2

⎫⎪⎪⎬
⎪⎪⎭ . (3.8)

We seek Taylor time expansion of the physical flux at x j+ 1
2

:

f (x j+ 1
2
, τ ) = f (x j+ 1

2
,0+) +

m−1∑
k=1

{
∂k

∂tk
f (x j+ 1

2
,0+)

}
τ k

k! . (3.9)

For linear case, i.e., λ is constant, all derivatives can be replaced with space derivatives of f :

∂k f

∂tk
= (−λ)k ∂k f

∂xk
. (3.10)

When Eq. (2.2) is nonlinear, the Cauchy–Kowalewski (see [7]) procedure is then applied to replace all time derivatives in
expansion by space derivatives as follows:

f (1)
t = −λ f (1)

x , f (2)
t = λ2 f (2)

x + 2λu
(

f (1)
x

)2
,

f (3)
t = −λ3 f (3)

x − 9λλu f (1)
x f (2)

x − 3

λ
(λu)2( f (1)

x
)3 − 3λuu

(
f (1)

x
)3

,

f (4)
t = λ4 f (4)

x + 16λ2λu f (1)
x f (3)

x + 12λ2λu
(

f (2)
x

)2 + 48(λu)2( f (1)
x

)2
f (2)

x

+ 24λλuu
(

f (1)
x

)2
f (2)

x + 20

λ
λuλuu

(
f (1)

x
)4 + 4λuuu

(
f (1)

x
)4

,

f (k)
t = B(k)

(
f (0)

x , f (1)
x , . . . , f (k)

x
)
. (3.11)

Therefore, the time Taylor series expansion becomes

f (x j+ 1
2
, τ ) = f (x j+ 1

2
,0+) +

m−1∑
k=1

{
B(k)

(
f (0)

x (x j+ 1
2
,0+), . . . , f (k)

x (x j+ 1
2
,0+)

)}τ k

k! . (3.12)

The leading term f (x j+ 1
2
,0+) is computed as flux of Eq. (2.10):

f (x j+ 1
2
,0+) = f

(
u(x j+ 1

2
,0+)

)
, (3.13)

where u(x j+ 1
2
,0+) is given in (3.3). f (k)

x (x j+ 1
2
,0+) (k = 1,2, . . . ,m − 1) are the solutions of the kth order derivative RP

locally linearised around the leading term u(x j+ 1
2
,0+):

wt + λ
(
u(x j+ 1

2
,0+)

)
wx = 0,

w(x,0) =
⎧⎨
⎩

f (k)
L (x j+ 1

2
), x < x j+ 1

2

f (k)
(x 1 ), x > x 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.14)
R j+ 2 j+ 2
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where w = f (k)
x and f (k)

L (x j+ 1
2
,0+) = limx→x−0

j+ 1
2

∂
(k)
x g j, f (k)

R (x j+ 1
2
,0+) = limx→x+0

j+ 1
2

∂
(k)
x g j+1 and they are given by staggered

LXF method (see [5]):

w0+
j+ 1

2
= f (k)0+

j+ 1
2

= 1

2

[
w0

j + w0
j+1

] − λ
αkΔt

Δx

[
w0

j+1 − w0
j

]
. (3.15)

The mth order ADER numerical flux is given by time average

F j+ 1
2

= 1

Δt

Δt∫
0

f
(
u(x j+ 1

2
, τ )

)
dτ = f (x j+ 1

2
,0+) +

m−1∑
k=1

{
B(k)

(
f (0)

x (x j+ 1
2
,0+), . . . , f (k)

x (x j+ 1
2
,0+)

)} (Δt)k

(k + 1)! . (3.16)

Substituting of the flux (3.16) into (2.3) gives the sought solution at time tn+1 and the full scheme may be written as:

un+1
j = un

j − (Δt)0

Δx

{
f (0)

j+ 1
2

− f (0)

j− 1
2

} −
m−1∑
k=1

{
B(k)

j+ 1
2

− B(k)

j− 1
2

} (Δt)k

Δx
(3.17)

with (Δt)k = (Δt)k+1

(k+1)! and f (0)

j+ 1
2

= f (u(x j+ 1
2
,0+)).

Then Eq. (3.17) can be interpreted as summation of the solutions evolutional equations of state variable u = ∂
(0)
x u (first

line) and its gradients ∂
(k)
x u (second line) by LXF first order central scheme.

This leads to the idea to replace the LXF scheme by the third order TVD scheme [19] in all terms in the Taylor expansion.

4. ADER method with third order TVD flux

The main motivation of this paper is to enhance the accuracy and simplicity of the ADER schemes by making use of the
central third order TVD flux [19] as part of the flux expansion of the solution of GRP (2.5). That is, we propose to use a
central third order TVD flux rather than a first order flux as the building block of our high order methods.

In the next section we firstly briefly review the third order TVD flux [19] which will be incorporated in the framework
ADER schemes.

4.1. Third order TVD scheme

In this section the third order TVD scheme presented in [19] is reviewed.
First let us consider the linear case, i.e., λ is a constant wave speed.
The conservative third order TVD numerical fluxes introduced in [18] has the form:

f j+ 1
2

= 1

2
(λu j + λu j+1) − 1

2
|λ|Δ j+ 1

2
u + |λ|{A0Δ j+ 1

2
u + A1Δ j+L+ 1

2
u}φ j + |λ|A2Δ j+M+ 1

2
uφ j+M , (4.1)

where L = −1, M = 1 for c > 0 and L = 1, M = −1 for c < 0.
Here c = λ Δt

Δx is the Courant number and Δ j+ 1
2

u = u j+1 − u j and

A0 = 1

2
− |c|

4
, A1 = −|c|

8
− c2

8
, A2 = −|c|

8
+ c2

8
. (4.2)

Here φ j and φ j+M are flux limiter functions see [7] and [19].
For nonlinear scalar problems λ = λ(u), we define the wave speed

λ j+ 1
2

=

⎧⎪⎨
⎪⎩

Δ
j+ 1

2
f

Δ
j+ 1

2
u , Δ j+ 1

2
u �= 0,

∂ f
∂u

∣∣
u j

, Δ j+ 1
2

u = 0.

(4.3)

The numerical flux (4.2) takes the form

f j+ 1
2

= 1

2
( f j + f j+1) − 1

2
|λ j+ 1

2
|Δ j+ 1

2
u + |λ j+ 1

2
|{A0Δ j+ 1

2
u + A1Δ j+L+ 1

2
u}φ j + |λ j+ 1

2
|A2Δ j+M+ 1

2
uφ j+M . (4.4)

The coefficients A j are the same (4.2) with replacing c by c j+ 1
2

= Δt
Δx λ j+ 1

2
.

The stability condition for the above schemes is

CFL � 1, (4.5)

where CFL = max j(Sn Δt ). Here Sn is the maximum propagation speed in I j at time level n.
j Δx j
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4.2. Central ADER with third order flux

The scheme depends on the Taylor series expansion directly for flux n by Eq. (3.12).
The leading term f (x j+ 1

2
,0+) is computed as flux of equation

ut + f (u)x = 0,

u(x,0) =
{

uL(x j+ 1
2
), x < x j+ 1

2

uR(x j+ 1
2
), x > x j+ 1

2

⎫⎪⎪⎬
⎪⎪⎭ . (4.6)

Here we use the two step method in which the first step is the non-staggered LXF method and the second step is the third
order TVD flux:

(i) u0+
j = 1

2

[
u0

j+1 + u0
j−1

] − αkΔt

2Δx

[
f 0

j+1 − f 0
j−1

]
,

(ii) f 0+
j+ 1

2
= 1

2

(
f 0+

j + f 0+
j+1

) − 1

2
|λ j+ 1

2
|Δ j+ 1

2
u0+ + |λ j+ 1

2
|{A0Δ j+ 1

2
u0+ + A1Δ j+L+ 1

2
u0+}

φ j

+ |λ j+ 1
2
|A2Δ j+M+ 1

2
u0+φ j+M , (4.7)

f (k)
x (x j+ 1

2
,0+) (k = 1,2, . . . ,m − 1) are computed as fluxes of the kth order RP on f locally linearised:

wt + λ
(
u(x j+ 1

2
,0+)

)
wx = 0,

w(x,0) =
⎧⎨
⎩

u(k)
L (x j+ 1

2
), x < x j+ 1

2

u(k)
R (x j+ 1

2
), x > x j+ 1

2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4.8)

where w = u(k)
x .

They are given by the two step method:

(i) w0+
j = 1

2

[
w0

j+1 + w0
j−1

] − αkΔt

2Δx

[
f 0

j+1 − f 0
j−1

]
,

(ii) f 0+
j+ 1

2
= 1

2

(
f 0+

j + f 0+
j+1

) − 1

2
|λ j+ 1

2
|Δ j+ 1

2
w0+ + |λ j+ 1

2
|{A0Δ j+ 1

2
w0+ + A1Δ j+L+ 1

2
w0+}

φ j

+ |λ j+ 1
2
|A2Δ j+M+ 1

2
w0+φ j+M , (4.9)

where f j = λw j . Substituting of the flux (4.9) into (2.3) gives the sought solution at time tn+1 and the full scheme may be
written as:

un+1
j = un

j − (Δt)k

Δx

{
f (0)

j+ 1
2

− f (0)

j− 1
2

} −
m−1∑
k=1

{
B(k)

j+ 1
2

− B(k)

j− 1
2

} (Δt)k

Δx
(4.10)

with (Δt)k = (Δt)k+1

(k+1)! and f (0)

j+ 1
2

= f (u(x j+ 1
2
,0+)).

The solution is advanced in time by updating the cell averages according to the formula (2.3).

5. Accuracy

In this section we study the accuracy of the central ADER schemes based on flux expansion.
Firstly, with r stencils, polynomial P j(x) of degree at most (r − 1) can be reconstructed, and the spatial accuracy is

(2r − 1)th order in the case of the WENO interpolations:

P j(x) = u
(
x, tn) + o(Δx)2r−1 (5.1)

but the spatial accuracy for the kth order derivative for u is (r − k)th order

∂
(k)
x P j(x) = u(k)

x
(
x, tn) + o(Δx)r−k. (5.2)

Also, for the function g j(x) = f (P j(x)), the following order of accuracy is estimated [8]

g j(x) = f
(
x, tn) + o(Δx)2r−1, (5.3)

∂
(k)
x g j(x) = f (k)

x
(
x, tn) + o(Δx)r−k. (5.4)

For the ADER method (2.3) and (3.16), the truncation error is defined by



Y.H. Zahran / J. Math. Anal. Appl. 346 (2008) 120–140 127
T
(
x j, tn) = (un+1

j − un
j )

Δt
+ 1

Δx
{F j+ 1

2
− F j− 1

2
} = (un+1

j − un
j )

Δt
+

m−1∑
k=0

(Δt)k

(k + 1)!
1

Δx

[
β

(k)
j (x j+ 1

2
) − β

(k)
j (x j− 1

2
)
]
, (5.5)

where β
(k)
j (x) are given by

β
(0)
j (x) = g j(x), (5.6)

β
(k)
j (x) = β

(k)
j

(
∂

(1)
x g j(x), . . . , ∂(k)

x g j(x)
)
, k = 1, . . . ,m − 1. (5.7)

The accuracy will be discussed on the assumption of smooth solution.
In the WENO case, the accuracy is given by

β
(k)
j (x) = f (k)

t (x, t) + o(Δx)r−k, (5.8)

∴ 1

Δx

[
β

(k)
j (x j+ 1

2
) − β

(k)
j (x j− 1

2
)
] = (

f (k)
t (x, t)

)
x + o(Δx)r−k. (5.9)

The time Taylor series expansion gives

(un+1
j − un

j )

Δt
=

m−1∑
k=0

(Δt)k

(k + 1)! u(k+1)
t

(
x j, tn) + o(Δt)m. (5.10)

Therefore, the truncation error (5.5), by using (5.8) and (5.10), takes the form

T
(
x j, tn) =

m−1∑
k=0

(Δt)k

(k + 1)!
[
u(k+1)

t

(
x j, tn) + (

f (k)
t

)
x

((
x j, tn) + o(Δx)r−k)] + o(Δt)m =

m−1∑
k=0

o
(
ΔtkΔxr−k) + o(Δt)m, (5.11)

since from (2.1),

u(k+1)
t

(
x j, tn) + (

f (k+1)
t

)
x

(
x j, tn) = 0. (5.12)

If the ratio Δt
Δx is constant, we have∣∣T (

x j, tn)∣∣ � C1(Δx)r + C2(Δt)m. (5.13)

By using the WENO reconstruction of order r and ADER method (3.16) of order m, we obtain the ADER scheme of order r
in space and m of time. For the central ADER (4.10), in which the third order TVD flux is used, we will see the accuracy
empirically.

6. Numerical experiments

In this section, we numerically study the convergence properties of the new schemes proposed here. We compare the
results of these schemes with those of other state of the art high order shock capturing methods, such as WENO5 [4], third
order TVD scheme [19], ADER and ADER-WAF schemes. Here we use the finite volume version of WENO5 method with third
order Runge–Kutta time stepping.

The linear stability condition for the all these methods is CFL � 1, where CFL is the maximum Courant number for each
time step; we use CFL = 0.95 for these methods.

In the numerical experiments we use very large output times, corresponding to hundreds of thousand time steps, with
solutions consisting of both discontinuities and smooth parts.

For all tests we use a uniform mesh, N denotes the number of cells and the exact solution is shown by the solid line
and the numerical solution by symbols.

We compare the following schemes:
1. ADER-r it is the rth order ADER scheme with the upwind Gudonov flux [16].
2. WENO-r it is fifth order WENO scheme with third order Runge–Kutta time stepping [16].
3. ADERr-WAF it is the rth order ADER scheme with WAF flux [16].
4. ADERr-LF it is the rth order ADER scheme with LXF flux.
5. ADERr-TVD it is the rth order ADER scheme with the third order TVD flux [19].

6.1. Accuracy tests

We first test the accuracy of the schemes on the linear scalar problems.
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Table 1a
Convergence study for Eq. (6.1) with initial condition (6.2) at t = 1

N EWNO5 WENO5 ADER3 ADER3 ADER3-WAF ADER3-WAF

L1 error L1 order L1 error L1 order L1 error L1 order

10 5.99E−2 3.92E−3 2.65E−3
20 5.52E−3 3.44 1.97E−4 4.32 1.62E−4 4.04
40 5.95E−4 3.21 2.06E−5 3.25 1.38E−5 3.55
80 7.04E−5 3.08 2.79E−6 2.89 1.55E−6 3.16

160 8.68E−6 3.02 3.56E−7 2.97 1.89E−7 3.04

Table 1b
Convergence study for Eq. (6.1) with initial condition (6.2) at t = 1

N ADER3-LF ADER3-LF ADER3-TVD ADER3-TVD

L1 error L1 order L1 error L1 order

10 2.05E−3 2.38E−4
20 2.21E−4 3.21 2.04E−5 3.54
40 2.63E−5 3.08 1.24E−6 4.04
80 3.35E−6 2.97 5.38E−8 4.53

160 2.83E−7 3.13 2.66E−9 5.34

Table 1c
Convergence study for Eq. (6.1) with initial condition (6.2) at t = 1

N ADER5 ADER5 ADER5-WAF ADER5-WAF

L1 error L1 order L1 error L1 order

10 1.45E−4 1.46E−4
20 7.84E−7 7.53 1.49E−6 6.61
40 2.52E−8 4.96 4.53E−8 5.04
80 7.73E−10 5.03 1.24E−9 5.19

160 2.34E−11 5.05 4.46E−11 4.80

Table 1d
Convergence study for Eq. (6.1) with initial condition (6.2) at t = 1

N ADER5-LF ADER5-LF ADER5-TVD ADER5-TVD

L1 error L1 order L1 error L1 order

10 7.37E−5 2.06E−6
20 2.21E−6 5.06 1.98E−8 6.70
40 6.87E−8 5.00 1.96E−10 6.66
80 2.22E−9 4.95 1.88E−12 6.70

160 6.54E−11 5.09 2.11E−14 6.48

Example 1. We solve the transport equation

ut + ux = 0, x ∈ [−1,1], (6.1)

subjected to periodic initial conditions

u(x,0) = sin(πx), (6.2)

u(x,0) = sin4(πx) (6.3)

defined on [−1,1] and periodic boundary conditions. We use the output times are t = 1. Tables 1 and 2 show the conver-
gence rates and errors in L1 norm. We observe that ADER-r, ADERr-WAF and ADERr-LF schemes reach the designed order
of accuracy while, as expected, WENO5 scheme decreases with third order only. This is due to WENO5 uses a third order
Runge–Kutta time stepping. We notice that ADERr-LF schemes are comparable with ADERr-WAF schemes. The simplicity
and efficiency of the central schemes, as compared with upwind schemes, should be taken into account. As expected the
ADERr-TVD schemes are the most accurate in both error sizes and order of accuracy (approximately = 4.3 for r = 3 and 6.7
for r = 5). This is due to using a third order TVD flux instead of first order flux.

Another way of interpreting the results of Tables 1 and 2 is this: by using central, LXF flux as building block for very
high order ADER methods one approaches the accuracy of the corresponding methods used with upwind fluxes based on
Riemann solvers, while the use of a central third order TVD flux as a building block one obtains more accurate results. The
attraction of the central, monotone and TVD, fluxes is that they are simpler, much faster and more general than a good
upwind fluxes.
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Table 2a
Convergence study for Eq. (6.1) with initial condition (6.3) at t = 1

N EWNO5 WENO5 ADER3 ADER3 ADER3-WAF ADER3-WAF

L1 error L1 order L1 error L1 order L1 error L1 order

10 3.68E−1 9.02E−2 9.21E−2
20 1.20E−1 1.61 1.25E−2 2.85 8.17E−3 3.50
40 2.15E−2 2.48 1.47E−3 3.09 1.22E−3 2.75
80 2.34E−3 3.20 1.35E−4 3.44 1.20E−4 3.34

160 2.78E−4 3.08 1.42E−5 3.25 9.97E−6 3.59

Table 2b
Convergence study for Eq. (6.1) with initial condition (6.3) at t = 1

N ADER3-LF ADER3-LF ADER3-TVD ADER3-TVD

L1 error L1 order L1 error L1 order

10 2.39E−1 1.98E−3
20 2.85E−2 3.07 8.97E−5 4.46
40 3.12E−3 3.19 3.62E−6 4.63
80 3.25E−4 3.26 1.58E−7 4.52

160 3.51E−5 3.15 7.41E−9 4.41

Table 2c
Convergence study for Eq. (6.1) with initial condition (6.3) at t = 1

N ADER5 ADER5 ADER5-WAF ADER5-WAF

L1 error L1 order L1 error L1 order

10 6.17E−2 6.01E−2
20 2.84E−3 4.44 2.29E−3 4.71
40 1.35E−4 4.40 1.29E−4 4.15
80 1.02E−6 7.01 1.09E−6 6.90

160 1.32E−8 6.27 1.92E−8 5.82

Table 2d
Convergence study for Eq. (6.1) with initial condition (6.3) at t = 1

N ADER5-LF ADER5-LF ADER5-TVD ADER5-TVD

L1 error L1 order L1 error L1 order

10 7.69E−2 5.12E−5
20 2.02E−3 5.25 4.25E−7 6..91
40 5.11E−5 5.30 3.65E−9 6.86
80 1.27E−7 5.32 3.71E−11 6.62

160 3.28E−8 5.28 3.98E−13 6.54

6.2. Test cases with shocks

Example 2. Now we solve (6.1) for the following initial data (see [16])

u(x,0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
6 [G(x, z − δ) + G(x, z + δ) + 4G(x, z)], −0.8 � x � −0.6,

1, −0.4 � x � −0.2,

1 − |10(x − 0.1)|, 0 � x � 0.2,

1
6 [F (x,a − δ) + F (x,a + δ) + 4F (x,a)], 0.4 � x � 0.6,

0, otherwise,

(6.4)

with periodic boundary condition on [−1,1].
Where G(x, z) = exp(−β(x − z)2), F (x,a) = {max(1 − α2(x − a)2),0} 1

2 .
The constants are taken as a = 0.5, z = −0.7, δ = 0.005, α = 10 and β = (log 2)/36δ2.
This initial condition consists of several shapes which are difficult for numerical methods to resolve correctly. Some of

these shapes are not smooth and the other are smooth but very sharp. We compute the solution at the output time t = 20
and very long time t = 2000. We use a baseline mesh of 200 cells.

Figs. 1–4 show the results of ADER3-LF, ADER3-TVD, ADER5-LF and ADER5-TVD schemes respectively at t = 20. Compar-
ing the results obtained with WENO5, original ADER3, ADER5, ADER3-WAF and ADER5-WAF schemes (see [16]), the results
obtained by ADERr-LF (r = 3,5) are comparable with ADERr-WAF schemes and they are more accurate than WENO5 scheme
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Fig. 1. Solution of Example 2 using ADER3-LF scheme at t = 20.

Fig. 2. Solution of Example 2 using ADER3-TVD scheme at t = 20.

Fig. 3. Solution of Example 2 using ADER5-LF scheme at t = 20.

Fig. 4. Solution of Example 2 using ADER5-TVD scheme at t = 20.
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Table 3a
Convergence study for Eq. (6.1) with initial condition (6.4) at t = 2000

N EWNO5 WENO5 ADER3-WAF ADER3-WAF ADER4-WAF ADER4-WAF

L1 error L1 order L1 error L1 order L1 error L1 order

200 6.73E−1 1.23E−1 4.69E−2
400 3.82E−1 0.82 6.17E−2 0.99 2.33E−2 1.00
800 2.13E−1 0.84 3.14E−2 0.97 1.17E−2 0.99

1600 1.23E−1 0.79 1.62E−2 0.95 5.71E−3 1.03

Table 3b
Convergence study for Eq. (6.1) with initial condition (6.4) at t = 2000

N ADER3-LF ADER3-LF ADER3-TVD ADER3-TVD ADER4-LF ADER4-LF ADER4-TVD ADER4-TVD

L1 error L1 order L1 error L1 order L1 error L1 order L1 error L1 order

200 1.56E−1 7.96E−2 3.71E−2 4.49E−3
400 8.33E−2 0.905 3.71E−2 1.105 1.66E−2 1.16 1.93E−3 1.22
800 4.46E−2 0.901 1.76E−2 1.072 7.88E−3 1.075 9.54E−4 1.014

1600 2.31E−2 0.955 8.44E−3 1.061 3.81E−3 1.045 4.66E−4 1.033

Fig. 5. Solution of Example 2 using ADER3-LF scheme at t = 2000.

Fig. 6. Solution of Example 2 using ADER3-TVD scheme at t = 2000.

overall the solution. Again, we should take into account that the central schemes are simpler and faster than the upwind
schemes. As expected the ADERr-TVD schemes are superior to those obtained with all the other methods.

To show the long time behaviour of the resulting schemes, Table 3 shows convergence studies for different schemes
at very long time t = 2000. We present the errors of cell averages of the solution in L1 norm. We observe that WENO5.
ADER3-WAF, ADER4-WAF, ADER3-LF schemes achieve approximately first order of accurate as the mesh is refined while
ADER3-TVD achieve approximately third order accurate. The ADER4-TVD scheme is the most accurate in both error sizes
and order of accuracy. It achieves more than third order accuracy.

Figs. 5–8 depict graphical results the results of ADER3-LF, ADER3-TVD, ADER5-LF and ADER5-TVD schemes respectively,
at t = 2000. Comparing the results in [16], we note that both ADER3 and WENO5 produce unacceptable results. They smear
the square pulse into a smooth Gaussian-like wave. The ADER3-WAF and ADER5-WAF produce much more accurate results.
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Fig. 7. Solution of Example 2 using ADER5-LF scheme at t = 2000.

Fig. 8. Solution of Example 2 using ADER5-TVD scheme at t = 2000.

As expected ADER3-TVD and ADER5-TVD produce the most accurate (especially ADER5-TVD) for all parts of the solution,
including the square pulse. These observations are in agreement with the convergence study in Table 3. Moreover, the
results obtained with ADERr-TVD (with 200 cells) are comparable with ADERr-WAF with 400 and 1600 cells in [16] which
means that the ADERr-TVD are more efficient than ADERr-WAF schemes.

6.3. Burgers’ equation

Example 3. This example considers the numerical solution of the inviscid Burgers’ equation

ut +
(

u2

2

)
x
= 0, (6.5)

with the initial condition

u(x,0) =
{

−1, |x| � 0.5,

2, |x| < 0.5.
(6.6)

It is well known that the Burger equation governs simple acoustic waves and hence allows shocks. In this case the jump
at x = −0.5 creates a simple centered expansion fan with a sonic point and the jump at x = 0.5 creates a shock wave with
speed 0.5. At t = 2/3 the rarefaction hits the shock and then the solution has a rarefaction wave only. The numerical solution
is displayed at t = 0.4 (before collision of the head of the rarefaction with the shock) and t = 1 (after collision). Numerical
results are shown in Figs. 9–11, with 80 grid points, obtained with ADER5-WAF, ADER5-LF and ADER5-TVD, respectively. We
notice that ADER5-LF is still well comparable with ADER5-WAF. The simplicity and efficiency of the ADER5-LF (central) must
be taken into account. Again, the ADER5-TVD is clearly superior to the other schemes.

In Table 4 we give the errors given by ADER5-WAF, ADER5-LF and ADER5-TVD at t = 1. We note that ADER5-TVD scheme
is superior to the other schemes.
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Fig. 9. Solution of Example 3 using ADER5-WAF scheme.

Fig. 10. Solution of Example 3 using ADER5-LF scheme.

Fig. 11. Solution of Example 3 using ADER5-TVD scheme.

Table 4
Convergence study for Eq. (6.5) with initial condition (6.6) at t = 1

N ADER5-WAF ADER5-WAF ADER5-LF ADER5-LF ADER5-TVD ADER5-TVD

L1 error L1 order L1 error L1 order L1 error L1 order

20 4.42E−1 4.47E−1 4.98E−2
40 2.13E−1 1.05 2.21E−1 1.10 2.04E−2 1.28
80 1.07E−1 1.00 9.68E−2 1.19 9.08E−3 1.17

160 5.38E−2 0.99 4.88E−2 0.99 4.19E−3 1.12
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Fig. 12. Solution of Example 4 using ADER5-WAF scheme at t = 0.4.

Fig. 13. Solution of Example 4 using ADER5-LF scheme at t = 0.4.

6.4. Buckley–Leverett equation

Example 4. The fourth test is Buckley–Leverett equation. It is a non-convex problem and is given by [6]

ut +
(

4u2

4u2 + (1 − u)2

)
x
= 0, (6.7a)

with the initial condition

u(x,0) =
{

1, −0.5 � x � 0,

0, elsewhere.
(6.7b)

The solution is computed at t = 0.4. The exact solution is a shock-rarefaction-contact discontinuity mixture. We notice
that some high order schemes fail to converge to the correct entropy solution for this problem. Figs. 12–14 show the
numerical results of ADER5-WAF, ADER5-LF and ADER5-TVD respectively on the mesh of 81 cells. As expected ADER5-TVD
produce the most accurate for all parts of the solution while the ADER5-LF is well comparable with ADER5-WAF. Moreover,
the results obtained with ADER5-TVD is more accurate than the results obtained by WENO5 and WENO9 given in [6], see
Fig. 2 in [6].
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Fig. 14. Solution of Example 4 using ADER5-TVD scheme at t = 0.4.

Table 5
Convergence study for Eq. (6.7) at t = 0.4

N ADER5-WAF ADER5-WAF ADER5-LF ADER5-LF ADER5-TVD ADER5-TVD

L1 error L1 order L1 error L1 order L1 error L1 order

20 2.12E−1 5.27E−1 3.82E−2
40 1.09E−1 0.96 2.38E−1 1.142 1.75E−2 1.12
80 5.26E−2 1.05 1.18E−1 1.015 8.49E−3 1.04

160 2.67E−2 0.978 5.96E−2 0.983 4.23E−3 1.005

In Table 5 we give the results at t = 0.4. We note that ADER5-TVD yields better accuracy than ADER5-WAF and ADER5-LF
schemes.

7. Systems of conservation laws

We extend our schemes to solve hyperbolic systems of conservation laws of the form

Ut + F (U )x = 0. (7.1)

In this section we test our schemes on the system of Euler equations of gas dynamics where

U = (ρ,ρu, E)T and F (U ) = (
ρu,ρu2 + P , u(E + P )

)T
,

where ρ is the density, u is the velocity, P is the pressure, E = 0.5ρu2 +ρe is the total energy (sum of internal energy and
kinetic energy); e is the specific internal energy e = P

ρ(γ −1)
and γ is the ratio of specific heats.

There are two methods to extend the numerical schemes considered, namely by doing a component-wise extension or
using characteristic decomposition. In the present work, we adopt the component-wise extension which is less costly. Most
central schemes fix the CFL number differently for each gas dynamics problem solved. Here we adopt a general strategy to
advance in time by using an adaptive evaluation of the time step

Δt = 0.95Δx

max(c j + |u j |) ,

where c j and u j are the local sound speed and velocity, respectively. This step evaluation technique can accommodate for
problems where the characteristic speed change widely in time.

7.1. Lax’s problem

We solve (7.1) using the initial condition.
We solve the Lax problem [4] for Euler equations (7.1) and initial data consists of two states, left (L) and right (R)

(ρL, uL, EL) = (0.445,0.311,8.928) and (ρR , uR , E R) = (0.5,0.0,1.4275) (7.2)
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Fig. 15. Solution of Lax problem (7.2) using ADER5-WAF scheme at t = 0.16.

Fig. 16. Solution of Lax problem (7.2) using ADER5-LF scheme at t = 0.16.

separated by a discontinuity at x = 0.5. The computational domain is taken as the unit interval [0,1]. Figs. 15–17 show the
performance of ADER5-WAF, ADER5-LF and ADER5-TVD respectively at t = 0.16 with 100 cells. Comparing the results in
Figs. 15–17 we note that the ADER5-TVD scheme is still better than the other schemes.

7.2. Blast wave problem

The blast problem introduced by Woodward and Colella [18] is severe test problem and therefore a good problem to test
the robustness of numerical schemes. This problem has the initial condition consists of three states

U (x,0) =

⎧⎪⎨
⎪⎩

(ρL, uL, P L) = (1,0,1000), x < 0.1,

(ρM , uM , P M) = (1,0,0.01), 0.1 < x < 0.9,

(ρR , uR , P R) = (1,0,100), x > 0.9,

(7.3)

with γ = 1.4. Boundary conditions are reflective. The solution of this problem contains the propagation of strong shock
waves into low pressure regions, the collision of strong shock waves and interaction of shock waves and rarefactions, and is
thus a good test of the schemes.

We display the numerical results of the density and velocity of this complex problem in Fig. 18. The results are with 200
cells at time t = 0.28 and t = 0.38 and we get the exact solution from WENO [4] scheme on 4000 cells.
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Fig. 17. Solution of Lax problem (7.2) using ADER5-TVD scheme at t = 0.16.

Fig. 18. Velocity and density of blast problem (7.3) using ADER5-TVD at t = 0.028 (up) and t = 0.038 (down).

Fig. 18 shows the density and velocity obtained by ADER5-TVD scheme It is noticed that the ADER5-TVD scheme is able
to obtain such sharp resolution of the complex double blast problem, particularly, the density peaks have almost the correct
value.

7.3. Shock/turbulence interaction problem

To show the advantages of our scheme, we will solve a problem with a rich smooth structure and a shock wave. A typical
example for this is the problem of shock interaction with entropy waves.
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Fig. 19. Density of problem (7.4) using ADER5-WAF method.

Fig. 20. Density of problem (7.4) using ADER5-TVD method.

We solve the Euler equations (7.1) with a moving Mach = 3 shock interacting with sine waves in density; i.e., initially

(ρL, uL, P L) = (3.857143,2.629369,10.3333), for x � 0.1,

(ρR , uR , P R) = (1 + 0.2 sin 50x,0,1), for x > 0.1. (7.4)

The flow contains physical oscillations which have to be resolved by the numerical method. We compute the solution at
t = 0.18. Figs. 19 and 20 show the computed density by ADER5-WAF and ADER5-TVD schemes against the reference solution,
which is a converged solution computed by the fifth order finite difference WENO scheme [4] with 2000 grid points. Here
we use 200 grid points.

We observe that ADER5-TVD scheme produces the most accurate, which is very close to the reference solution and is
less expensive.
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Fig. 21. Solution of (8.3) at t = 0.5 (left) and t = 1.0 (right) using ADER5-TVD scheme.

8. Extension to multidimensional problems

The present schemes can be applied to multidimensional problems by means of space operator splitting. As an example
we consider the two-dimensional, Euler equations

Ut + [
F (U )

]
x + [

G(U )
]

y = 0. (8.1)

There are several versions of space splitting. Here we take the simplest one, whereby the two-dimensional problem (8.1) is
replaced by the sequence of two one-dimensional problems

Ut + [
F (U )

]
x = 0, (8.2a)

Ut + [
G(U )

]
y = 0. (8.2b)

If the data Un at time level n for problem (8.1) are given, the solution Un+1 at time level n + 1 is obtained in the following
two steps:

(a) solve Eq. (8.2a) with data Un to obtain an intermediate solution Ūn+1 (x-sweep);
(b) solve Eq. (8.2b) with data Ūn+1 to obtain the complete solution Un+1 (y-sweep).

For three-dimensional problems there is an extra z-sweep.

8.1. Linear equation in two dimensions

Firstly we solve the linear advection problem

ut + ux + u y = 0 (8.3a)

we consider the linear rotation of a square patch on (0,1)2, with initial condition

u0(x, y) =
{

1, |x − 0.5| < 0.5, |y − 0.5| < 0.5,

0, otherwise,
(x, y) ∈ [0,1] × [0,1]. (8.3b)

Fig. 21 shows the solution at t = 0.5 and t = 1 using ADER5-TVD scheme after a rotation of π/4 and π/2. The solution is
completely free of spurious oscillations and is well.

8.2. Double Mach reflection problem

Here we solve Eq. (8.1) with

U = (ρ,ρu,ρv, E)T , F (U ) = (
ρu, P + ρu2,ρuv, u(P + E)

)T
, G(U ) = (

ρv,ρuv, P + ρv2, v(P + E)
)T

.

The governing equation for this problem is the two-dimensional Euler equations (8.1). The computational domain of
interest is a region of 4 units long and 1 unit wide. At the initial time t = 0 a right-moving shock wave of shock Mach
number equal to 10 is set up. The reflecting wall lies at the bottom of the computational domain starting from x = 1

6 .

Initially a right-moving shock is positioned at (x, y) = ( 1
6 ,0) and makes 60◦ angle with the x-axis. For the bottom boundary,

the exact post-shock condition is imposed from x = 0 to x = 1
6 and a reflective boundary condition is used for the rest of

the x-axis. At the top boundary of the computational domain, the data is set to describe the exact motion of the Mach 10
shock; consult [18] for a detailed discussion of this problem. The solution is studied for the output time t = 0.2.

Figs. 22 and 23 show the computed density by ADER5-WAF and ADER5-TVD schemes on the 960 × 240 cells. We observe
that all the schemes produce the flow pattern generally accepted in the present literature [18] as correct. All discontinuities
are well resolved and correctly positioned. Comparing ADER5-WAF and ADER5-TVD schemes we observe that the numerical
results of the ADER5-TVD scheme are better and also we notice that the ADER5-TVD scheme is more efficient.
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Fig. 22. Density of the double Mach reflection problem using ADER5-WAF scheme. Meshes: 960 × 240 cells. 30 contour lines from 2 to 22.

Fig. 23. Density of the double Mach reflection problem using ADER5-TVD scheme. Meshes: 960 × 240 cells. 30 contour lines from 2 to 22.
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