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Abstract

Several commercial applications, such as online comparison shopping and process automation, require
integrating information that is scattered across multiple websites or XML documents. Much research has
been devoted to this problem, resulting in several research prototypes and commercial implementations.
Such systems rely on wrappers that provide relational or other structured interfaces to websites.
Traditionally, wrappers have been constructed by hand on a per-website basis, constraining the scalability
of the system. We introduce a website structure inference mechanism called compact skeletons that is a step
in the direction of automated wrapper generation. Compact skeletons provide a transformation from
websites or other hierarchical data, such as XML documents, to relational tables. We study several classes
of compact skeletons and provide polynomial-time algorithms and heuristics for automated construction of
compact skeletons from websites. Experimental results show that our heuristics work well in practice. We
also argue that compact skeletons are a natural extension of commercially deployed techniques for wrapper
construction.
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Several commercial applications, such as online comparison shopping and process automation,
require integrating information that is scattered across multiple websites or hierarchically
structured documents (e.g., in XML). Much research has been devoted to this problem, resulting
in several research prototypes and commercial implementations (e.g., [15,20,25,35]). Such systems
rely on components called wrappers that provide relational or other structured interfaces to
websites. Traditionally, wrappers have been constructed by hand on a per-website basis, because
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each website uses its own data vocabulary, organization, and access mechanisms. Constructing
these wrappers has been a major bottleneck preventing data-integration systems from scaling;
most systems today integrate tens rather than thousands of websites.
We introduce a website structure inference mechanism called compact skeletons that is a step in

the direction of automated wrapper construction. We focus on an important special case: given a
single relation scheme, we need to piece together information elements scattered across a website
to constitute the relation. For example, suppose our application integrates job listings from
websites on the Internet (FlipDog.com [34] is such an application). Let us say that each job listing
has a job title T ; a salary S; and an address A for candidates to send their resumes. The relation
scheme then is RðTSAÞ:
Fig. 1 shows a portion of a corporate website that lists job openings. For the moment, assume

that each node corresponds to a web page where we have eliminated all the irrelevant text, leaving
behind only the data element of interest. The website is oriented towards a human reader, and to a
person it is fairly obvious what the tuples in the relation are. However, even this extremely simple
website illustrates some of the difficulties encountered by a program trying to materialize the
relation R; such as superfluous information (the job location) and incomplete information (the
CEO’s compensation package is negotiable).
Given a website such as that in Fig. 1 and a target relation scheme, we break up the problem of

constructing a wrapper into three subproblems:

1. Identifying the data elements in the scheme, such as addresses, job titles, and salaries.
2. Deducing the principles that have been followed by the person who put together the website (in

effect, ‘‘reverse engineering’’ the website).
3. Constructing the relation corresponding to the website. In practice, we need only materialize

the portion of the relation that is relevant to the query at hand.
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Fig. 1. Data graph of a website advertising job openings and the corresponding relation.
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This three-step approach is commonly used in the industry. For example, Whizbang! Labs [35]
calls it the ‘‘C4 technique’’ (where the 4 C’s are crawl, classify, capture, and compile; we do not
include crawling in our taxonomy), while Junglee’s Virtual Database Management System [20]
has components called extractors, wrappers, and mappers corresponding to these three steps.
A simple way to tackle problem (1) is to use a library of patterns (such as regular expressions).

There are several approaches to constructing such patterns: ‘‘by hand’’ by studying several
examples [19]; machine learning techniques; and more novel pattern extraction techniques [7].
Our work deals with problems (2) and (3). Once we have identified the patterns of interest on

the pages of a website, we can model the website as a directed graph with data elements at the
nodes. We assume that the domains of the schema attributes are pairwise disjoint, so that we can
unambiguously associate each data value with it corresponding attribute. There are (unlabeled)
arcs in the graph corresponding both to structure within a web page (in the case where we identify
multiple data elements within a web page) and to hyperlinks between pages. We call such a graph
a data graph; Fig. 1 is an example. In the rest of the paper, we model websites as data graphs. Data
graphs have been used extensively in the literature to model semistructured data, e.g., in [1,6,
8–11,26,30].
Compact skeletons are labeled trees that function as transformations between data graphs and

relations. Intuitively, a compact skeleton describes the hierarchical layout of the corresponding
website: for example, the IBM site groups jobs first by division ðDÞ; and each listing includes a job
id ðIÞ; a job title ðTÞ; a job category ðCÞ; and the state where the job is in ðSÞ: The job title is
hyperlinked to details about the job ðJÞ and an address to send resumes to apply for the job ðAÞ:
This hierarchy is captured by the corresponding compact skeleton, shown in Fig. 15(a). Compact
skeletons are a natural extension of Junglee’s Site Description Language (SDL) [19], which has
been used to construct thousands of wrappers for Junglee’s VDBMS [20]. We describe the
relationship between SDL and compact skeletons in Section 9.
The rest of this paper is organized as follows. In Section 2 we introduce compact skeletons and

analyze the properties of perfect compact skeletons (PCS), which apply when the data graph has
complete information. In Section 3 we relax the completeness condition and introduce partially

perfect compact skeletons (PPCS) that apply when the data graph has incomplete information,
corresponding to null values in relations as in Fig. 1. For a given data graph, we show that the
PCS is unique but the PPCS is not; we introduce the notions of minimal and maximal PPCS that
provide upper and lower bounds on the relation associated with the data graph. We describe
polynomial-time algorithms to compute the PCS and the minimal and maximal PPCS. In Section
4 we present algorithms for querying websites given a compact skeleton; a special case is to
materialize the entire relation corresponding to the website.
Real-life websites often contain noise (i.e., superfluous information) in addition to incomplete

information. In Sections 5 and 6 we study best-fit skeletons (BFS) that apply in such cases. It turns
out that computing the BFS is an NP-complete problem. We examine two simple polynomial-time
heuristics, the greedy and the weighted greedy. Experimental results show that the heuristics work
well in practice. In Section 7 we discuss some of the practical issues that arise when applying the
skeleton technique, such as websites that use form inputs.
The skeletons we consider in Sections 2–7 are restricted to be labeled trees. Section 8 extends the

theory to graph skeletons, where we permit skeletons to be arbitrary labeled graphs. We show that
the PCS remains unique and provide a non-deterministic polynomial-time algorithm to compute
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it. Section 9 examines related work, and Section 10 concludes with some directions for further
investigation.

2. Data graphs and skeletons

2.1. Data graphs

We model websites using data graphs as shown in Fig. 1. We restrict our attention to data
graphs that are DAGs; we relax this restriction in Section 8 when we discuss generalized skeletons.
For simplicity, we assume that each node of the graph has at most one information element (in
our example, an instance of A; T ; or S). In practice, if a page contains multiple elements of
information, we create new nodes corresponding to each element and add an arc from the node
corresponding to the page to these newly created nodes. We also ignore information in nodes
other than that corresponding to the schema attributes. We assume, without loss of generality,
that if a data graph includes a node, then there is some information element that is reachable from
the node. In particular, this assumption means that a node with no outgoing arc must contain an
information element.
Let X be the set of attributes in our schema. For attribute A in X ; the domain of A; denoted by

DomðAÞ; is the (possibly infinite) set of all possible values that can appear in column A of relations
over the schema. For simplicity, we assume that domains of attributes in the schema are pairwise
disjoint. We use uppercase letters A;B;C;y for attribute names and corresponding lowercase
letters (often with subscripts) for data values corresponding to those attributes, e.g.,
a1; a2;yADomðAÞ:
Given a graph G; we use VG and EG to denote respectively the node set and the arc set of G: If v

is in VG; we denote by valðvÞ the value at node v: If there is no value at v; then valðvÞ ¼ >; where
> is a special value that is not in the domain of any attribute. If valðvÞ is in DomðAÞ; we say that A

is the attribute at node v; written as attrðvÞ ¼ A: We use the convention that if valðvÞ ¼ >; then
attrðvÞ ¼ >:

2.2. Skeletons

Suppose we are given a relation R over attribute set X ; and we wish to construct a data graph
that incorporates the contents of R: One way to do so is to work incrementally, using the
following imaginary process. We construct the data graph corresponding to the first tuple in R;
with some nodes and edges. The structure formed by these nodes and edges depends on how we
intend to lay out the web site. We then add nodes and edges corresponding to the second tuple,
and continue this process until we have the data graph corresponding to the entire relation. If we
have been consistent about this process (e.g., as is increasingly common, the website was
generated by a program), the manner in which we interconnected the values of the attributes
corresponding to the first tuple will be identical to that for the second tuple, and so on. We
formalize this notion as follows.
A skeleton K is a tree some of whose nodes are labeled with attribute names from X such that

each attribute labels exactly one node. If node v in VK is labeled with attribute A; we say that
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attrðvÞ ¼ A: There may be nodes of the skeleton that mention no attributes at all. If i is such a
node, we say attrðiÞ ¼ >: For any tuple t in R; the tree KðtÞ is obtained by constructing a tree
isomorphic to K; replacing each attribute with the corresponding value from t: For tuples t1 and
t2; nodes u1 and u2 in Kðt1Þ and Kðt2Þ are similar if they correspond to the same node of K; and
valðu1Þ ¼ valðu2Þ: We now describe the incremental process to construct a data graph for R: We
assume without loss of generality that either the root of K is unlabeled, or the roots of all the
KðtiÞ; tiAR; have the same value.

* For the first tuple, t1; the data graph G1 ¼ Kðt1Þ:
* Suppose we have constructed Gr�1; corresponding to the first r � 1 tuples of R: To construct Gr;

we add the nodes and edges of KðtrÞ to Gr�1; identifying the root of KðtrÞ with the root of Gr�1:
In addition, choose some arbitrary subset of nodes from KðtrÞ and identify each node with a
similar node from some KðtiÞ; where 1pior: When both ends of a pair of edges get identified,
identify the edges.

We may view a skeleton as a transformation from a relation to a data graph. Given a
relation R and a skeleton K ; there are several data graphs corresponding to the two, depending
on which sets of nodes and edges we choose to identify. If G is any such data graph, we write

R!K G:Note that even though a skeleton is a tree, data graphs constructed using the skeleton need

not be trees; tree skeletons can give rise to DAG data graphs. We can generalize the construction
process to allow for data graphs with more than one root. All our results generalize to such data
graphs.

2.3. Compact skeletons

Given a data graph G and a skeleton K ; let f be an isomorphism between K and some
subgraph G0 of G: We say that f is an overlay from K to G if the following conditions
are satisfied:

* f maps the root of G to the root of K :
* Suppose u is a node of G0 and v is the corresponding node in K : Then attrðuÞ ¼ attrðvÞ:
If f is such an overlay, we say that f includes all the nodes and edges in G0: For node u in G0; if
attrðuÞ ¼ A and valðuÞ ¼ a; then we say that fðAÞ ¼ a: The tuple t ¼ fðXÞ corresponding to the
overlay f is defined in the natural manner as the list of the values fðAÞ for all A in X : The relation
RðG;KÞ induced by the skeleton K is the set of all tuples t such that there is an overlay f from K

to G with fðXÞ ¼ t: We say that a skeleton K is perfect for data graph G if for every arc e in EG;
there is at least one overlay that includes e:

Example 2.1. Fig. 2 shows a simple data graph G and two perfect skeletons over the attribute set
ATS; let us call Fig. 2(b) K1 and Fig. 2(c) K2: In Fig. 2, there are 3 possible overlays of the
skeleton K1; and the corresponding relation is given by

R1 ¼ RðG;K1Þ ¼ fa1t1s1; a1t2s2; a2t3s3g:
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There are 4 possible overlays of the skeleton K2; and the corresponding relation is

R2 ¼ RðG;K2Þ ¼ fa1t1s3; a1t2s3; a2t3s1; a2t3s2g:

Note that f is an isomorphism, so it is not possible for two nodes of the skeleton to correspond to
the same node of the data graph. This observation explains why we do not find tuples such as
a1t1s1 in R2:

Given a data graph, there may be several perfect skeletons corresponding to it, each inducing a
different relation. In many cases, these relations do not conform to our common-sense notion of
the relation corresponding to the data graph. In Example 2.1, the relation corresponding to the
first skeleton seems intuitively to be ‘‘right’’ while that corresponding to the second skeleton does
not. It appears that the second skeleton violates some notion of locality: we expect information
elements that are ‘‘closer’’ to each other to combine to produce tuples in favor of combining

elements that are ‘‘far away’’ from each other. More formally, it can be verified that while R1 !
K1

G;

it is not true that R2!
K2

G; in fact, it can be verified that there is no relation R satisfying R!K2
G:

We now formalize this notion. A compact skeleton K for data graph G is a skeleton that satisfies
the following condition: for every node u in G; there is a node v in K such that in every overlay f
from K to G in which node u participates, u is mapped to v:We call v the K-image of u; denoted by
imageKðuÞ ¼ v: A skeleton K is a perfect compact skeleton (PCS) for a data graph G if K is
compact for G and K is perfect for G:

Example 2.2. The skeleton in Fig. 2(b) is a compact skeleton, while that in Fig. 2(c) is not. To
verify the latter, consider the overlays that result in the tuples a1t1s3 and a2t3s1: the children of the
root of G get mapped to different nodes of the skeleton by the two overlays.

Not every data graph has a perfect compact skeleton (PCS). However, every data graph
constructed in the manner described in the foregoing section has a PCS. In addition, perfect
compact skeletons possess two desirable properties: locality and uniqueness. The locality property
reflects the observation that large websites are typically constructed so that local fragments make
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sense independent of the global picture. The following sequence of lemmas, leading up to
Theorem 2.1, formalizes our results. We use the notation that if uAVG; then Gu is the subgraph of
G that is reachable from u:

Lemma 2.1. If R!K G; then K is a perfect compact skeleton (PCS) for G:

Proof. It is easy to verify that the construction process for G can never create a cycle, so G must
be a DAG. We use induction on the distance of node u in G from a sink (a node with no outgoing
arc) to prove that every overlay maps u to the same node of K : For the basis, let u be a sink in G:
By assumption, u contains an information element, and any overlay must map u to the unique
node in K labeled with the corresponding attribute.
Suppose that every node at distance less than d from a sink is mapped to a unique node of K in

every overlay, and let uAVG be at distance d from a sink. There is at least one node vAVG such
that ðu; vÞAEG and v is at distance less than d from a sink. By hypothesis, every overlay maps v to
a unique node xAK : It follows that every overlay must map u to the unique node that is the parent
of x in K : It follows by induction that K is a compact skeleton for G:
To see that K is perfect, let R ¼ ft1;y; tng and consider the overlays corresponding to

Kðt1Þ;y;KðtnÞ: Clearly every edge of G must have originated from some KðtiÞ; 1pipn; and so
this set of overlays covers every edge of G: It follows that K is a PCS for G: &

Lemma 2.2. If K is a PCS for G and uAVG; then there is a subtree K 0 of K that is a PCS for Gu; and

the distance of the root of K 0 from the root of K is equal to the distance of u from the root of G:

Proof. For each node uAVG with imageKðuÞ ¼ x; we show that Kx is a PCS for Gu by induction
on the distance of u from a sink. The assertion clearly holds for the sinks of G: Suppose the
assertion is true for nodes at distance less than d from a sink, and let uAVG be at distance d from a
sink. Let imageKðuÞ ¼ x; let y1;y; ym be the children of x in K ; and let v1;y; vn be the children of
u in G: It follows that for each vi; 1pipn; there is a yj; 1pjpm; such that imageKðviÞ ¼ yj; and by

induction hypothesis Kyj
is a PCS for Gvi

: Let e be an edge in Gu: We consider two cases to show

that for every edge e in Gu; there is an overlay of Kx that includes e:
Case 1: e ¼ ðu; viÞ; 1pipn: Since K is a PCS for G; there is an overlay f of K on G that includes

e; and maps x to u: The restriction of f to the subtree Kx of K is an overlay of Kx on Gu that
includes e:

Case 2: e is in Gvi
; 1pipn: Without loss of generality, let imageKðviÞ ¼ y1: Since Ky1

is a PCS for Gvi
; there is an overlay f1 of Ky1 on Gvi

that includes e: For 2pjpm; let fj

be any overlay of Kyj
on some Gvl

with imageKðvlÞ ¼ yj: Construct an overlay f of Kx on Gu as

follows: fðxÞ ¼ u; and fðyÞ ¼ fjðyÞ for yAKyj
; 1pjpm: Then f is an overlay of Kx on Gu that

includes e:
It follows by induction that for each node uAVG with imageKðuÞ ¼ x; Kx is a PCS for Gu: Since

K is a tree, there is a unique path of length l (say) from the root of K to node x: If imageKðuÞ ¼ x;
it follows by induction on l that all paths from the root of G to u must be of length l:We therefore
have the lemma. &
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Lemma 2.3. Every data graph G has either a unique PCS or no PCS.

Proof. The proof is by induction on the number of nodes in G: We can restrict ourselves
to DAGs since G has no PCS if it is not a DAG. For the basis, if G has a single node
with an information element, then it clearly has a unique PCS. Suppose the lemma is true for
DAGs of fewer than n nodes, and let G be a DAG with n nodes. Let r be the root of G
and let u1;y; um be the children of u: By hypothesis, each of Gu1 ;y;Gum

satisfies the
lemma. If any one of the Gui

has no PCS, it follows from Lemma 2.2 that G has no PCS,
and so G satisfies the lemma. Otherwise let K1;y;Km denote the unique PCS respectively of
Gu1 ;y;Gum

: From Lemma 2.2, in any PCS K of G; each of K1;y;Km must be a subtree
of the root. There is only one tree K that can satisfy this property: the root of K is labeled
with attrðrÞ; and the children of the root are the unique Ki; 1pipm (formally, choose the set
of Ki such that KjaKi for joi). It follows that either K is the unique PCS for G or G

has no PCS. &

Lemmas 2.1–2.3 imply the following theorem.

Theorem 2.1. For any relation R; data graph G; and skeleton K :

* If R!K G; then K is the unique PCS for G:

* Conversely, if K is a PCS for G; there is a relation R such that R!K G:

* If K is a PCS for G and uAVG; then there is a subtree K 0 of K that is a PCS for Gu:

2.4. Computing the PCS

Given a data graph G; there is a simple algorithm to determine if it has a PCS and to compute
one if it exists. If uAVG; the attribute set associated with u; denoted by attrsetðuÞ; is the set of all
attributes whose values appear in nodes reachable from u: In what follows, for trees T1 and T2;
T1 
 T2 if T1 and T2 are isomorphic.

Algorithm. ComputePCS

1. For each sink u of G; Tu is the single-node skeleton labeled with attrðuÞ:
2. Process G bottom-up by successive elimination of sinks. Suppose u is the current node. Let

v1;y; vm be the children of u; and let Xi ¼ attrsetðviÞ and Ti ¼ Tvi
for 1pipm: Process u as

follows:
(i) If there is a pair i; j such that Xi-Xja| and TicTj; then G has no PCS.

(ii) If attrðuÞa> and attrðuÞAXi for some i; 1pipm; then G has no PCS.
(iii) Construct Tu as follows: the root of Tu is a node labeled with attr(u); the subtrees of the

root are given byfTi j 8joi;TicTjg:
3. Let r be the root of G: Then Tr is the unique PCS for G:

ARTICLE IN PRESS

A. Rajaraman, J.D. Ullman / Journal of Computer and System Sciences 66 (2003) 809–851816



Example 2.3. Fig. 3 shows a portion on the website from Fig. 2 with nodes labeled using numeric
identifiers, and the trees constructed by Algorithm ComputePCS after processing each node of the
website. The tree that results after node 1 (the root of the website) is processed is the unique PCS
for the website.

Theorem 2.2. For any data graph G; Algorithm ComputePCS either computes the PCS for G or
determines that G has no PCS, and runs in time OðkmjVGjÞ; where k is the number of attributes in
the relation scheme and m is the number of nodes in the PCS of the largest subgraph of G that has a

PCS.

Proof. We prove by induction on the order the nodes are processed that after node u is processed,
either Tu is the PCS for Gu or Gu has no PCS; correctness then follows from Lemma 2.2. For the
basis, note that the assertion is true for the sinks of G: Suppose the assertion holds after several
iterations and we are currently processing node u: The cases below correspond to the cases of Step
2 in the algorithm.

1. Suppose there is a pair of children of u such that Xi-Xja| and TicTj: We must prove that

Gu has no PCS. Suppose to the contrary that Gu has a PCS T ; Lemmas 2.2 and 2.3 imply that the
root of T has subtrees T 0

i 
 Ti and T 0
j 
 Tj: Let AAXi-Xj: Since A appears exactly once in T ; it

follows that if A appears both in T 0
i and T 0

j where neither T 0
i is not a subtree of T 0

j and T 0
j is not a

subtree of T 0
i ; then T 0

i ¼ T 0
j ; a contradiction.

2. Suppose attrðuÞa> and attrðuÞAXi for some node vi: There is some node v in Ti labeled with
attr(u). If Gu has a PCS T ; its root must be labeled by attr(u), and since T must contain a subtree
T 0

i 
 Ti (by Lemma 2.2), there is more than one node in T labeled by the same attribute, a

contradiction.
3. A case analysis similar to that used in the proof of Lemma 2.2 shows that Tu is a PCS for Gu:
Correctness thus follows by induction. To obtain the complexity bound, notice that each Ti

must have at least one leaf labeled with some attribute, and so each Xi is nonempty. There can be

at most k distinct nonempty values of Xi such that Xi-Xj ¼ |: Thus there are at most k distinct

trees among the Ti in Step 2. By a careful implementation, each tree Ti needs to be compared for

ARTICLE IN PRESS

Fig. 3. Running Algorithm ComputePCS.

A. Rajaraman, J.D. Ullman / Journal of Computer and System Sciences 66 (2003) 809–851 817



equality with at most k other trees. Each comparison takes time proportional to the sum of the
sizes of the trees, which is OðmÞ: The construction of Tu also takes time OðmÞ: Thus each iteration
of Step 2 takes time OðkmÞ; and there are at most jVGj iterations of Step 2, giving the complexity
bound. &

3. Partially perfect compact skeletons

In the real world, it often happens that a data graph has no PCS because it has incomplete
information. For example, the data graph in Fig. 1 is missing a salary for the CEO, and has no
PCS. Incomplete information can arise even when the relation R underlying a data graph G is
complete. It may happen that our algorithms for identifying data values in the website produce
false negatives e.g., we may not identify a job title because it does not match our patterns.
We model missing information in a data graph as follows. We start from a relation R that has

nulls, constructing data graph G using skeleton K in the usual manner. Given tuple t; possibly
containing nulls, the graph KðtÞ is obtained by replacing attribute names in K with the
corresponding values from t and then deleting redundant nodes, where a node is redundant if no
node with a non-null value is reachable from it. With this modification, the procedure for
constructing a data graph from a relation remains the same as before, and we use the same

notation R!K G:

For data graphs with incomplete information, we relax the notion of PCS as follows. Let G be a
data graph and K a skeleton over the same schema. Let f be an isomorphism between a connected
subgraph K 0 of K and a subgraph G0 of G: We say that f is a partial overlay from K to G if the
following conditions are satisfied:

* f maps the root of K to the root of G:
* Suppose u is a node of G and v is the corresponding node of K 0; then attrðuÞ ¼ attrðvÞ:

If f is such a partial overlay, we say that f includes the nodes and edges of G0; and that the
subgraph K 0 covers the nodes and edges of G0: The tuple t corresponding to f is defined in the
natural manner as the list of the information elements in G0; padded with nulls in those attributes

of K that do not appear in K 0: We call f a minimal partial overlay if there is no partial overlay f0

that uses a strict subset of the nodes in K and derives the same tuple t:
The relation RðG;KÞ is obtained by taking the union of the tuples produced by any partial

overlay of K on G and then performing tuple subsumption, defined in the usual manner. We say
that tuple t1 subsumes tuple t2 if the non-null attribute values in t1 are the same as those in t2; the
subsumption is strict if t1 has at least one additional non-null value. In RðG;KÞ we eliminate a
tuple t if there is another tuple t0 that strictly subsumes t:
We define K to be partially compact for G if for each node u in VG; there is a node v in VK such

that every minimal partial overlay maps u to v; and every node of K is mapped by some minimal
partial overlay. The latter condition eliminates skeletons containing spurious nodes that do not
appear in any minimal partial overlay, but which technically would still be compact otherwise. A
skeleton K is partially perfect for G if for every edge e in EG; there is a partial overlay of K that
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includes e: Combining these two definitions, K is a partially perfect compact skeleton (PPCS) for G
if K is partially perfect for G and partially compact for G:
The following sequence of lemmas leads up to Theorem 3.1, which generalizes Theorem 2.1 for

partially perfect compact skeletons. Note that while the locality property holds for partially
perfect compact skeletons, uniqueness does not (Fig. 4).

Lemma 3.1. For any relation R, possibly containing null values, and data graph G, if R!K G; then K is a

PPCS for R. Conversely, if K is a PPCS for a data graph G, then there is a relation R such that R!K G:

Proof. The proof is very similar to that of Lemma 2.1 Suppose R!K G: G must be a DAG, and we

use induction on the distance of node u in G from a sink (a node with no outgoing arc) to prove
that every minimal partial overlay maps u to the same node of K : For the basis, let u be a sink in
G: By assumption, u contains an information element, and any partial overlay must map u to the
unique node in K labeled with the corresponding attribute.
Suppose that every node at distance less than d from a sink is mapped to a unique node of K in

every minimal partial overlay, and let uAVG be at distance d from a sink. We consider two cases:
Case 1: If valðuÞa>; every minimal partial overlay must map u to the unique node in K labeled

with attrðuÞ:
Case 2: If valðuÞ ¼ >; any minimal partial overlay that includes u also includes at least one

node vAVG such that ðu; vÞAEG and v is at distance less than d from a sink (else we could delete u
from the overlay and derive the same tuple). By hypothesis, every overlay maps v to a unique node
xAK : It follows that any minimal partial overlay that includes u must map u to the unique node
that is the parent of x in K :
It follows by induction that K is a partially compact skeleton for G: To see that K is partially

perfect, let R ¼ ft1;y; tng and consider the partial overlays corresponding to Kðt1Þ;y;KðtnÞ:
Clearly, every edge of G must have originated from some KðtiÞ; 1pipn; and so this set of partial
overlays covers every edge of G: It follows that K is a PPCS for G:
For the converse, if K is a PPCS for G; set R ¼ RðG;KÞ to obtain a relation R such that

R!K G: &

Lemma 3.2. Let K be a PPCS for a data graph G, and let uAVG such that imageKðuÞ ¼ x: Then Kx

is a PPCS for Gu:
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Proof. To show that Kx is partially compact for Gu; let c be any minimal partial overlay of K on
G that includes u: Let H be the subgraph of G covered by c; and let PDVH be the set of nodes on
the path from the root of G to u in H: Let f be any minimal partial overlay from Kx to Gu: Then
c½P�,f is a minimal partial overlay from K to G; and for every node v in Gu; imageKx

ðvÞ ¼
imageKðvÞ: Since K is partially compact for G; Kx is partially compact for Gu:
We show that Kx is partially perfect for Gu by induction on the distance of u from a sink. The

assertion clearly holds for the sinks of G: Suppose the assertion is true for nodes at distance less
than d from a sink, and let uAVG be at distance d from a sink. Let imageKðuÞ ¼ x; let y1;y; ym be
the children of x in K; and let v1;y; vn be the children of u in G: Since K is a PPCS, for each edge
ei ¼ ðu; viÞ; there is a partial overlay fi that includes e; since fiðuÞ ¼ x; 1pipn; it must be the
case that fiðviÞ ¼ yj; for some j; 1pjpm; and so imageKðviÞ ¼ yj; by the induction hypothesis Kyj

is partially perfect for Gvi
: Let e be an edge in Gu: We consider two cases to show that for every

edge e in Gu; there is a minimal partial overlay of Kx that includes e:
Case 1: e ¼ ðu; viÞ; 1pipn: Since K is a PPCS for G; there is a minimal partial overlay f of K

on G that includes e; with fðuÞ ¼ x: The restriction of f to the nodes in Gu is a minimal partial
overlay of Kx on Gu that includes e:

Case 2: e is in Gvi
; 1pipn: Without loss of generality, let imageKðviÞ ¼ y1: Since Ky1 is partially

perfect for Gvi
; there is a minimal partial overlay f1 of Ky1 on Gvi

that includes e: Let f0 be the

partial overlay defined by f0ðuÞ ¼ x; and let f ¼ f0,f1: Then f is a minimal partial overlay of
Kx on Gu that includes e:
Thus Kx is partially perfect for Gu: Since Kx is partially perfect for Gu and partially compact for

Gu; Kx is a PPCS for Gu: &

Theorem 3.1. For any relation R, possibly containing null values, and data graph G:

* If R!K G; then K is a PPCS for G.

* Conversely, if K is a PPCS for G, then there is a relation R such that R!K G:

* If K is a PPCS for G, and uAVG such that imageKðuÞ ¼ x; then Kx is a PPCS for Gu:

3.1. Minimal and maximal skeletons

A data graph can have more than one PPCS; Fig. 4 shows a data graph and two partially
perfect compact skeletons corresponding to it. One PPCS induces a relation with no nulls while
the other induces a relation containing null values. There are two interesting cases:

* A PPCS K is minimal for data graph G if for every other PPCS K 0 of G; RðG;K 0Þ subsumes
RðG;KÞ:

* A PPCS K is maximal for data graph G if for every other PPCS K 0 of G; RðG;KÞ subsumes
RðG;K 0Þ:

Anticipating Theorem 3.2, the maximal and minimal PPCS for a given data graph G; if they
exist, are unique. For the data graph in Fig. 4(a), the skeleton in Fig. 4(b) is the unique minimal
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PPCS and the skeleton in Fig. 4(c) is the unique maximal PPCS. The minimal PPCS is
‘‘conservative’’ in the sense that its relation contains just those tuples that are in the relations for
every PPCS for G; while the maximal PPCS is ‘‘aggressive’’ in the sense that it contains every tuple
in the relation for every PPCS for G: Thus the minimal and maximal PPCS give us upper and
lower bounds on the relation corresponding to G:

3.2. PPCS algorithms

Let G be a data graph. Let p1 and p2 be paths in G that are isomorphic in the graph-theoretic
sense. We say that p1 and p2 are attribute isomorphic if they satisfy the following property: for any
node u in p1; let v be the corresponding node in p2; then attrðuÞ ¼ attrðvÞ: A DAG data graph G is
regular if it satisfies the following conditions:

* Let p1 and p2 be paths from the root of G to the same node u: Then p1 and p2 are attribute
isomorphic.

* Let u; vAVG such that attrðuÞ ¼ attrðvÞa>; and let p1 and p2 be paths from the root of G to u

and v; respectively. Then p1 and p2 are attribute isomorphic.
* Let u and v be nodes at the same distance from the root of G: If attrsetðuÞ-attrsetðvÞa|; then

attrðuÞ ¼ attrðvÞ:

An interesting characterization of partially perfect compact skeletons is that a data graph G has a
PPCS if and only G is regular (Theorem 3.2). The following lemma proves one side of the
characterization. We next present an algorithm to compute the maximal partially perfect compact
skeleton for a regular data graph G; thus completing the characterization. The algorithm to
compute the minimal partially perfect compact skeleton is similar in flavor.

Lemma 3.3. If a data graph G is not regular, then G has no PPCS.

Proof. Suppose K is a PPCS for G: The following cases correspond to those in the definition of
regularity:

* Let p be some path from the root of G to u: Let v ¼ imageKðuÞ and let q be the unique path
from the root of K to v: Since K is a PPCS for G; there is a minimal partial overlay from K to G
that includes p: Since f maps the root of G to the root of K and u to v; it follows that f maps
the path p to the path q (since q is the unique path from the root of K to v). Thus p is attribute
isomorphic to q: Thus paths p1 and p2 are attribute isomorphic to q and therefore to each other.

* Let x be the unique node in K labeled with attrðuÞ (or attrðvÞ), and let q be the unique path from
the root G to x: Then as in the previous case, p1 and p2 are attribute isomorphic to q and
therefore to each other.

* Suppose u and v are such that they are the same distance d from the root of G and let
AAattrsetðuÞ-attrsetðvÞ: In K there is a unique path from the root of K to the node labeled A;
and there is a unique node x (if any) on the path and at distance d from the root. It follows that
imageKðuÞ ¼ imageKðvÞ ¼ x and therefore attrðuÞ ¼ > or attrðuÞ ¼ attrðxÞ; and attrðvÞ ¼ > or
attrðvÞ ¼ attrðxÞ: &
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Algorithm. ComputeMaximalPPCS

1. If G is not regular, then G has no PPCS.
2. Process nodes of G in decreasing order of their distances from the root. Let Sd be the set of

nodes at distance d from the root.
3. Process node uASd as follows:

(i) If u is a leaf, set Tu to be the tree with a single node with label attrðuÞ:
(ii) Otherwise let T1;y;Tm be the set of distinct trees corresponding to the children of u: Set

Tu to be the tree with root labeled attrðuÞ and subtrees T1;y;Tm:
4. For each pair of nodes u; vASd with attrsetðuÞ-attrsetðvÞa|; do the following:

(i) If attrðuÞa>; set A ¼ attrðuÞ: Otherwise set A ¼ attrðvÞ:
(ii) Construct T as follows: the root of T is a node labeled A; each distinct subtree of the root

of either Tu or Tv is a child of the root of T :
(iii) Set Tu :¼ T and Tv :¼ T :

5. Let r be the root of T : Tr is a maximal PPCS for G:

Example 3.1. Fig. 5 shows a data graph and the partial skeletons constructed at different stages of
processing. The figure labeled (2,3) is obtained after running Step 4 on the skeletons labeled (2)
and (3). The final skeleton, corresponding to the root of the data graph, is a maximal PPCS for the
website, and the corresponding relation is fab>;>bcg:

Lemma 3.4. Let G be a regular DAG data graph. When Algorithm ComputeMaximalPPCS

terminates, Tr is the unique maximal PPCS for G.

Proof. By induction on the order in which nodes are processed, we prove the following assertions
after node u is processed:

1. Tu is a PPCS of Gu

2. if S is any PPCS of Gu and f is any partial overlay of S on Gu that covers a subgraph H of Gu;

there is partial overlay f0 of Tu on Gu that covers H:
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Clearly, the assertions are true after nodes at the maximum distance from the root are processed
(since these must all be leaf nodes containing non-null values). Suppose the assertions hold after
processing all nodes at distance less than d: Let uASd in Step 2.
After Step 3, we claim that Tu is a PPCS for Gu: Let v1;y; vn be the children of u; and let xi be

the root of the subtree corresponding to Tvi
in Tu: Let e be any edge in Gu: If e ¼ ðu; viÞ for some

1pipn; the partial overlay from the edge ðu; xiÞ includes e: Else e is in Gvi
; 1pipn: Since Tvi

is a
PPCS for Gvi

(by induction hypothesis), there is a subgraph S of Tvi
that covers e in Gvi

: Add the
edge ðu;xiÞ to S to construct a subgraph S0 of Tu; clearly S0 covers e in Gu: Thus Tu is partially
perfect for G: To see that Tu is also partially compact, note that each Tvi

is partially compact for
Gvi

; and any partial overlay of Tu maps the root of Tu to u and nodes in Tvi
to nodes in Gvi

;
1pipn: Thus Tu is a PPCS for G after Step 3.
Suppose Tu is set to T in Step 4. Note that Tu is a subgraph of T with the same root, and so T is

also perfect for Gu: Moreover, the subtrees of the root of T have disjoint attribute sets (otherwise
they would have been identified in Step 4(c)), so that the only nodes from Tu can participate in any
minimal partial overlay from T to Gu; and so T is also partially perfect for Gu: Thus T is a
partially perfect compact skeleton for Gu after Step 4; since Tu is set to T ; Tu is a PPCS for Gu

after Step 4.
To show that assertion (2) holds after Step 3, let S be any PPCS of Gu and consider some partial

overlay f of S that covers subgraph H of Gu: Let x1;y;xl be the children of the root s of S: From
Lemma 3.2, each Sxi

; 1pipl; is a PPCS for some Gvi
; 1pipn: Thus f can be decomposed as

follows: fðsÞ ¼ u; and the rest of f agrees with some collection of partial overlays of partially
perfect compact skeletons for Gvi

; 1pipn: By induction hypothesis, f agrees with some set of

partial overlays of Tvi
; 1pipn: Thus, we can construct a partial overlay f0 of Tu that covers the

same subgraph H: Thus assertion (2) holds after Step 3. If Tu is set to T in Step 4, note that Tu is a
subgraph of T with the same root, and so any partial overlay of Tu is also a partial overlay of T :
Thus assertion (2) also holds after Step 4.
Assertions 1 and 2 follow by induction and imply the lemma. &

Theorem 3.2. For any relation R; possibly containing null values, data graph G; and skeleton K :

* G has a PPCS if and only if G is regular.
* If G has a PPCS, then it has a unique maximal PPCS and a unique minimal PPCS.
* There is a polynomial-time algorithm that determines whether G has a PPCS and, if so, computes

the minimal and maximal PPCS for G:

4. Answering queries using compact skeletons

Suppose data graph G has PCS or PPCS K : We now show how to answer queries over the data
graph (and the underlying website). We start with the important special case of materializing the
entire relation. For simplicity we present our algorithm in the context of perfect compact
skeletons; it is straightforward to extend it to partially perfect compact skeletons and also to best-
fit skeletons (to be described in Section 6).
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Algorithm. ComputeRelation

1. For every node u of G such that attrðuÞa>; R0
u is the relation over the single attribute attrðuÞ

that contains the single tuple valðuÞ:
2. For every sink u of G; Ru :¼ R0

u:
3. Process the nodes of G bottom up by successive elimination of sinks. Suppose we are currently

processing node u:
(i) Let v ¼ imageKðuÞ; and let v1;y; vn be the children of v in K : Process each vi in sequence,

for 1pipn:
� Let Ci ¼ fx j ðu;xÞAEG and imageKðxÞ ¼ vig
� Set Si :¼

S
xACi

Rx:

(ii) Set Ru :¼ S1 �?� Sn:
(iii) If attrðuÞa>; set Ru :¼ R0

u � Ru:
4. If s is the root of G; then Rs is the desired result.

A useful way to visualize Algorithm ComputeRelation is as a transformation that converts a
data graph G into a relational operator DAG. Fig. 6 shows the operator DAG and result relation
obtained by running Algorithm ComputeRelation on a portion of the data graph in Fig. 2(a)
using the compact skeleton shown in Fig. 2(b).

Theorem 4.1. Algorithm ComputeRelation computes the relation R corresponding to a data graph G
and runs in time OðkjVGjjRjlog jRjÞ where k is the number of attributes in the schema.

Proof. The proof of correctness is by induction on the number of iterations of the outer loop of
the algorithm; after node u is processed, we show that Ru is the relation corresponding to Gu: For
the basis, note that Ru computed for the sinks of G in Step 2 is the relation at those nodes.
Suppose the assertion is true for all the children of node u; and we are currently processing node u

in Step 3. Let u1;y; um be the children of u:
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Let tARðGu;KvÞ: There is an overlay f of Kv on Gu that produces t: Let Xi ¼ attrsetðviÞ;
1pipn: From the proof of Theorem 2.2, Xi-Xj ¼ f and attrðuÞeXi; 1pipn; so the cross

products in Steps 3(b) and (c) are well-defined. Define fi; 1pipn to be the restriction on f to the
nodes in Kvi

: Then each fi corresponds to an overlay of Kvi
on some Guj

such that imageKðujÞ ¼ vi:

By induction hypothesis, there is a tuple ti ¼ t½Xi�ARuj
corresponding to overlay fi; and so tiASi

after Step 3(a). If attrðuÞ ¼ >; the tuples ti; 1pıpn; will combine in the cross product at Step 3(b)
to yield the tuple t: If attrðuÞa>; then ti; 1pipn and the single tuple in R0

u will combine in the

cross product at Step 3(c) to yield the tuple t: Thus tARu:
Conversely, let tARu: Then for each i; 1pipn; ti ¼ t½Xi�ARx for some xACi: Each ti

corresponds to an overlay fi of Kvi
on Gx: Define f as follows: fðuÞ ¼ v and f ¼ fi on the nodes

in Kvi
: Then f is an overlay of Kv on Gu that derives tuple t; and so tARðGu;KvÞ:

We have thus shown that Ru ¼ RðGu;KvÞ: Correctness follows by induction. The complexity
follows from the observation that each cross product can be done in time proportional to the
size of the output, and each union (with duplicate elimination) can be done in time
OðkjRjlog jRjÞ: &

To extend Algorithm ComputeRelation to partially perfect compact skeletons, we need only
modify Step 3(a) as follows. Whenever the set Ci is empty, we set Si to be the relation over the set
of attributes in attrsetðviÞ that has a single tuple with null values for all columns. The proof of
correctness is extremely similar to that of Theorem 2.5 and the running time remains unchanged.
In an earlier section, we had asked whether we can characterize those data graphs G for which

there is a unique relation R such that R!K G: We now provide such a characterization.

Corollary 4.1. Given data graph G with PCS K ; there is a unique relation R such that R!K G if and

only if whenever Algorithm ComputeRelation is required to compute a cross product, at most one
relation in the cross product is non-singleton.

Proof. The relation associated with G is not unique iff there is more than one set of overlays of K
that include every edge of G such that each set of overlays induces a different relation. It is a
straightforward induction that if there is a unique relation for G; there is a unique relation at every
node of G:
Suppose u is a node of G such that S1 and S2 are non-singleton in Step 3. As in the proof of the

preceding theorem, we can construct an overlay f of Gu corresponding to every combination of
tuples in S1;y;Sn: Suppose, without loss of generality, that S1 ¼ ft11; t12g; S2 ¼ ft21; t22g; and
Si ¼ ftig; 3pipn (the case where more than two of the sets are non-singleton is similar). Let f1

be the overlay corresponding to t11; t21; t3;y; tn; f2 the overlay corresponding to t12; t22; t3;y; tn;
c1 the overlay corresponding to t11; t22; t3;y; tn; and c2 the overlay corresponding to
t12; t21; t3;y; tn: It can be verified that ff1;f2g and fc1;c2g are sets of overlays that include
every edge of e and induce different relations.
Conversely, suppose the relation associated with G is not unique. Let u be a node of G at the

least distance from a sink such that the relation at Gu is not unique. It can be shown that the there
is more than one non-singleton relation in the cross product at Step 3 for u: Suppose not; without
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loss of generality, S1 is non-singleton and Si is singleton for 2pipn: Constructing overlays as
before, there is a unique set of overlays that covers every edge of G; each such overlay corresponds
to some tuple from S1 and the unique tuple in Si; 2pipn: Thus there is a unique relation
associated with Gu; a contradiction. &

4.1. Answering queries

Often in a mediation scenario, the query to a wrapper does not materialize the entire relation
but some subset of it. We could answer such queries by first computing the relation corresponding
to the website, and then evaluating the query on the materialized relation. However, it may be the
case that the entire relation is large while the result of the query is relatively small; thus, it would
be helpful to have output-size sensitive algorithms to answer arbitrary queries on a data graph.
Suppose G is a data graph with PCS K ; corresponding to relation R over attribute set X : We

now consider query plans for select-project queries on R; that is, queries of the form pY ðsA¼aRÞ;
where YDX and A is in X : The most expensive operation in such cases is fetching web pages, so
we look for query plans that fetch as few pages as possible. In the interest of conciseness, we
sketch here the intuition behind the query-answering algorithm, and omit a full listing of the
algorithm.
A select-project query on R can be seen as a transformation on the PCS K : Consider the project

query pY ðRÞ: Let K ½Y � be the unique connected subgraph of K that includes the root of K and a
path from the root to every node labeled with some A in Y : Let Y 0 be the attribute set of K ½Y �;
clearly YDY 0 and K ½Y � ¼ K ½Y 0�: It can be verified that pY 0 ðRÞ is the relation corresponding to
subgraph of G that has K½Y 0� as its PCS. To construct this relation, we can avoid fetching pages
that do not contain an information element from Y 0: We then project out attributes in Y 0 � Y to
obtain pY ðRÞ:
The query sA¼aðRÞ can be seen as adding the constraint A ¼ a to the node in K labeled by

attribute A; call the resulting constrained skeleton K 0: We extend the definition of overlays to
skeletons with constraints in the natural manner. Now the answer to the query sA¼aðRÞ is the
relation corresponding to the constrained skeleton K 0: We may modify Algorithm ComputeRela-
tion to first fetch pages containing values of attribute A and avoid fetching pages corresponding to
cross product operands when we can determine that one of the operands of the cross product is
the empty relation. An equivalent view is that we push the selection condition A ¼ a down the
operator DAG induced on G by K :
To answer a general select-project query, we combine the techniques for selections and

projections.

5. Noisy data graphs

In addition to incomplete information, real websites contain noise, i.e., superfluous
information. Such a noisy website may not have a PPCS. Noise in websites can be purely
random, but can also result from false-positive matches from the patterns used to identify data
elements. For example, a pattern to identify US states might match the ‘‘MS’’ in the text ‘‘MS
Word,’’ and a pattern to identify salaries like ‘‘70K’’ might match the text ‘‘401K,’’ which in most
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cases refers to a retirement plan rather than a salary. In addition, there are sometimes links in
websites that do not correspond to skeleton links. For example, consider a website for an online
retailer, with products organized by category, then by subcategory. There might be non-skeleton
links directly from the home page to some of the product pages because these are ‘‘featured
products’’ on a given day.
When confronted with a noisy website, we look for a skeleton that covers as much of the data

graph as possible. In doing so we must relax both the compactness condition and the perfect
coverage condition for skeletons. We relax the compactness condition as follows. Given a data
graph G and a skeleton K; a set S of overlays is consistent if for every node u in G that is included
in some overlay in S; there is a unique node v in K such that every overlay fAS that includes u

maps u to v: The cover of set S is the set of nodes and edges of G that are included in some overlay
fAS; and the coverage of S is some metric that measures the goodness of the cover. Possible
coverage metrics include the cardinality (i.e., the number of nodes and edges) of the cover, the
number of nodes in the cover, and the number of non-null data values in the cover. In the rest of
this chapter, we define the coverage as the number of nodes in the cover; our results, however,
extend to the other metrics as well.
The coverage of skeleton K ; denoted coverageðG;KÞ; is the maximum coverage across all

consistent sets of overlays. A skeleton K is a best-fit skeleton for a data graph G if for any other
skeleton K 0; coverageðG;KÞXcoverageðG;K 0Þ:
Unfortunately, the problem of finding a best-fit skeleton for a given data graph is NP-complete,

even when the data graph is restricted to be a tree of depth no greater than 3. We formally define
the BFS decision problem as follows: Given a data graph G and a constant c; determine whether
there is a skeleton K such that coverageðG;KÞXc: We show that the BFS decision problem is NP-
complete through a reduction from the set cover problem, which is known to be NP-complete [16].
The set cover problem is defined as follows: Given a collection of sets S ¼ S1;y;Sm; and a
constant kpm; determine whether there is a collection of k sets, Si1 ;y;Sik ; such that

S
1pjpk Sij ¼S

1pipm Si: We assume that
S

1pipm Si ¼ fA1;y;Ang:

Theorem 5.1. The BFS decision problem is NP-complete for tree data graphs of depth 3.

Proof. To verify membership in NP, note that we can guess nondeterministically a skeleton K ; a
set S of k nodes in G; and partial overlays that cover every node in S (we need to guess at most k

consistent partial overlays). To prove NP-hardness, we show that the set cover problem can be
reduced to the BFS problem. Given an instance S of the set cover problem, construct a tree data
graph G as follows (Fig. 7 suggests the construction). The schema has the attributes
S1;y;Sm;A1;y;An; and additional attributes B; C1;y;Cn; and D1;y;Dm: The root r of G

has attrðrÞ ¼ >; and has m þ 1 children u1;y; umþ1; with attrðuiÞ ¼ Si; 1pipm and attrðumþ1Þ ¼
B: Whenever AjASi; ui has a child vji with attrðvjiÞ ¼ Aj: Each node vji has 2m þ 1 children, each

with a data value corresponding to attribute Ci: The node umþ1 has m children, w1;y;wm; with
attrðwiÞ ¼ Si; 1pipm: Each node wi; 1pipm; has one child with a data value corresponding to
attribute Di:
Observe that for each value of i; the nodes vij all have the same attribute Ai; while the parent of

vij has attribute Sj: Therefore in any set of consistent overlays, at most one of the nodes vij for
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some value of j can be in the cover for each i; 1pipn: Counting the nodes in G with this
restriction in mind, the maximum number of nodes in any cover of G is N ¼ 2mn þ 3m þ 2n þ 2:
We claim that there is a skeleton K with coverageðG;KÞXN � m � k if and only if S has a set
cover of size k:

IF: Suppose S has a set cover of size k: Assume without loss of generality that the set cover is
S1;y;Sk: Construct skeleton K as follows: The root of K has no data value, and has k þ 1
children x1;y;xkþ1; with attrðxiÞ ¼ Si; 1pipk and attrðxkþ1Þ ¼ B: There are nodes yi; 1pipn;
attrðyiÞ ¼ Ai; and nodes zkþ1;y; zm; with attrðziÞ ¼ Si; k þ 1pipm: Each node yi has a single
child with attribute Ci; while each node zi has a single child with attribute Di: Since S1;y;Sk is a
set cover, for each Ai; 1pipn; there is at least one Sj; 1pjpk; with AiASj (if there is more than

one set that contains Ai; pick one arbitrarily). Make xi the parent of yi in K: It is clear that for
each i; 1pipn; there are overlays of K on G that cover at least one node with attribute Ai and its
children, while all other nodes with attribute Ai and their children are not covered. All other nodes
of G are covered except the nodes ukþ1;y; um; and the nodes w1;y;wk and their children.
Counting these nodes gives

coverageðG;KÞ ¼ N � ðm � kÞ � 2k ¼ N � m � k:

ONLY IF: Suppose G has a skeleton K with coverageðG;KÞXN � m � k: Observe that in
this case, for each i; 1pipn; at least one node with attribute Ai must be in the cover; if not,
the maximum possible coverage is N � ð2m þ 2Þ; which is strictly less than N � m � k since
kpm: Observe also that for 1pipm; both ui and wi cannot be in the cover, since
attrðuiÞ ¼ attrðwiÞ ¼ Si; and ui and wi are at different distances from the root of G: We claim
that at most k of the nodes among the ui; 1pipm; are in the cover. Suppose not, if k04k nodes
among the ui; 1pipm; are in the cover. Then at most m � k0 nodes among the wi are in the cover,
and so

coverageðG;KÞpN � ðm � k0Þ � 2k0 ¼ N � m � k0oN � m � k

since k04k: Thus the cover must include exactly one node with attribute Ai; 1pipn; and at most
k of the nodes among the uj; 1pjpm: The sets in S corresponding to the nodes uj that are in the

cover constitute a set cover for S of cardinality at most k: &
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Given this negative result, there are two approaches to constructing a ‘‘good’’ skeleton for a
data graph:
1. Semi-automatic: Given a data graph, a human uses a visualization technique to ‘‘eyeball’’ the

data graph and guesses a skeleton. The system computes the coverage of the skeleton. If the
coverage is large enough as a ratio of the data graph size, the skeleton is accepted as a good
skeleton.
2. Automatic: Given a data graph, use heuristics to compute a good skeleton that is as close to

the best-fit skeleton as possible.
In this section, we explore computing the coverage of a skeleton to aid the semiautomatic

approach. Section 6 consider heuristics to compute best-fit skeletons.

5.1. Computing the coverage of a skeleton

Given a data graph G; the best-fit skeleton is not necessarily unique; this observation
ollows from our experience with partially perfect compact skeletons, which are a special case
of best-fit skeletons with perfect coverage. It turns out that we can restrict our attention to a
class of skeletons that we call canonical skeletons. A skeleton K is canonical if each labeled node
in K has at most one unlabeled child. Canonical skeletons are a natural generalization
of minimal partially perfect compact skeletons, and are important because of the following
result.

Lemma 5.1. Given an arbitrary data graph G and skeleton K ; there is a canonical skeleton K 0 such
that coverageðG;K 0ÞXcoverageðG;KÞ:

Intuitively, given a non-canonical skeleton we can identify unlabeled siblings to construct a
canonical skeleton with the same or better coverage. It can be shown that every partial overlay of
the original skeleton is also a partial overlay of the modified skeleton. The following example
provides a flavor of the constructive proof.

Example 5.1. Consider the data graph G in Fig. 8(a) and the skeleton K in Fig. 8(b). It can
be verified that coverageðG;KÞ ¼ 6: The canonical skeleton K 0 in Fig. 8(c) is obtained by
identifying unlabeled siblings of K : It can be verified that coverageðG;K 0Þ ¼ 7; and so
coverageðG;K 0ÞXcoverageðG;KÞ:
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It turns out that the problem of computing the coverage of a skeleton for a data graph
is NP-complete in the general case. We formally define the skeleton coverage decision problem as
follows: Given a data graph G; a skeleton K ; and a constant c; determine whether
coverageðG;KÞXc:

Theorem 5.2. The skeleton coverage decision problem is NP-complete.

Proof. To verify membership in NP, note that we can guess nondeterministically a set S of k

nodes in G; and partial overlays that cover every node in S (we need to guess at most k consistent
partial overlays).
To show NP-hardness, we prove that the set cover problem can be reduced to the

skeleton coverage problem. Consider an instance S ¼ S1;y;Sm of the set cover problem, and
let

S
1pipm Si ¼ fA1;y;Ang: Construct a data graph G and a skeleton K as follows. The

schema has attributes S1;y;Sm;B1;y;Bm;C1;y;Cm; and an attribute Aij whenever AiASj;
1pipn; 1pjpm: The root of data graph G has no data value, and has children u1;y; um;
with attrðuiÞ ¼ Si; 1pipm: Each node ui has one child vi with attrðviÞ ¼ >: Each node vi

has a child wi with attrðwiÞ ¼ Bi: Each node wi has a single child with data value corresponding to
attribute Ci: There is a node xi corresponding to each Ai; 1pipn; with attrðxiÞ ¼ >:
The arc ðvj;xiÞ is in G whenever AiASj: Whenever AiASj; the node xi has 2m þ 1

children with data values corresponding to attribute Aij: Fig. 9(a) suggests the data

graph G:
Construct skeleton K as follows. The root of K has no data value and has m children, one each

with attribute Si; 1pipm: Each child labeled Si has two children, yi and zi; with null attributes.
The child yi has a single child with attribute Bi; which in turn has a single child with attribute Ci:
The child zi has a single child z0i with a null attribute, and z0i has a child Aij whenever AiASj:
Fig. 9(b) suggests the skeleton K :
Observe that in any set of consistent overlays that covers node xi in G; xi is mapped to some

node z0j in K : Therefore the corresponding cover includes all the nodes with data values

corresponding to attribute Aij; but none of the nodes with data values corresponding to attributes

Ail for laj: Therefore, any cover includes at most 2m þ 1 children of each node xi; 1pipn:
Counting the nodes of G with this restriction in mind, we determine that coverageðG;KÞp2mn þ
4m þ 2n þ 1: Let us define N ¼ 2mn þ 4m þ 2n þ 1:We claim that coverageðG;KÞXN � 2k if and
only if S has a set cover of size k:

If: Suppose S has a set cover of size k: Assume, without loss of generality, that the set cover is
S1;y;Sk: Consider the set of overlays that maps each vi; 1pipk; to the corresponding node zi in
K ; and each node vi; k þ 1pipm; to node yi in K: Extend this set of overlays into a cover. Since
S1;y;Sk is a set cover for S; each node xi; 1pipn; can be mapped to some z0ij for 1pjpk; and

so the cover includes some 2m þ 1 children of xi with attributes Aij: A simple count shows that the

number of nodes in the cover is N � 2k:
Only if: Suppose coverageðG;KÞXN � 2k: The maximal cover must include each node xi;

1pipn; if not, the size of the cover would be at most N � ð2m þ 2ÞoN � 2k since kpm: An
argument similar to that used in the corresponding case in the proof of Theorem 5.1 shows thatS
has a set cover of size k: &
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It is natural to ask whether we can impose some practical restrictions on the structure of the
data graph and the skeleton to yield tractable cases. We consider two such tractable cases:
1. Data graphs that are trees. In this case, there is a simple linear algorithm to compute the

coverage.
2. A class of DAG data graphs called unambiguous data graphs that we define in Section 5.3.

Informally, a data graph G is unambiguous if we can partition its null-valued nodes into
equivalence classes, such that every null-valued node has all its parents in the same equivalence
class. In this case, there is a polynomial-time algorithm to compute the coverage of a canonical
skeleton. This case is interesting because in practice many data graphs corresponding to real
websites are unambiguous.

5.2. Tree data graphs

Given a tree data graph G and a skeleton K over the same schema, there is a simple bottom-up
algorithm to compute coverageðG;KÞ:
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Fig. 9. Data graph G and skeleton K for proof of Theorem 5.2.
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Algorithm. TreeCoverage

1. Process each leaf node u of G as follows:
(i) Let x be the node in K with attrðxÞ ¼ attrðuÞ:
(ii) Set coverageðu;xÞ :¼ 1:
(iii) Set coverageðu; yÞ :¼ 0 for all nodes yAVK with yax:

2. Process nodes of G bottom-up, and let u be a node all of whose children have been processed.
Process u as follows:
(i) Let P ¼ fxAVK j attrðxÞ ¼ attrðuÞg
(ii) Set coverageðu;xÞ :¼ 1 for each xAP and coverageðu; yÞ :¼ 0 for yAVK with yeP:
(iii) For each xAP; update coverageðu;xÞ as follows:

a. Let C ¼ childrenðxÞ
b. For each child v of u set

coverageðu; xÞ :¼ coverageðu;xÞ þmax
yAC

coverageðv; yÞ

3. coverageðG;KÞ ¼ coverageðrG; rKÞ; where rG is the root of G and rK is the root of K :

Example 5.2. Consider the skeleton K and data graph G shown in Fig. 10. We have used numbers
1; 2;y to identify nodes in K and G: In Algorithm TreeCoverage, we compute the following non-
zero coverages:

* For the leaf nodes, coverageð4; 4Þ ¼ coverageð5; 5Þ ¼ coverageð6; 5Þ ¼ coverageð7; 6Þ ¼ 1
* For node 2, coverageð2; 2Þ ¼ 3; coverageð2; 3Þ ¼ 1; and coverageð2; 1Þ ¼ 1:
* For node 3, coverageð3; 2Þ ¼ 2; coverageð3; 3Þ ¼ 2; and coverageð3; 1Þ ¼ 1:
* For the root, coverageð1; 1Þ ¼ 6; coverageð1; 2Þ ¼ 1; and coverageð1; 3Þ ¼ 1:

Therefore we have coverageðG;KÞ ¼ coverageð1; 1Þ ¼ 6:

Theorem 5.3. Given a tree data graph G and a skeleton K ; Algorithm TreeCoverage computes
coverage ðG;KÞ and runs in time OðjVK jjVGjÞ:
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Proof. We use induction on the number of nodes of G that have been processed by the algorithm,
and show that after node u has been processed, for any node x in K ; coverageðu; xÞ ¼
coverageðGu;KxÞ: For the basis, note that after Step 1, the assertion holds for the leaf nodes of G:
Suppose that the assertion holds for the children of node u and that we have processed node u:

Let xAVK : We consider two cases:
Case 1: If xeP after Step 2(i), it is easy to see that coverageðGu;KxÞ ¼ 0; since attrðuÞaattrðxÞ

and so u cannot be mapped to x by any partial overlay. Since we set coverageðu;xÞ ¼ 0 for xeP in
Step 2(ii), in such cases we have coverageðu; xÞ ¼ coverageðGu;KxÞ:

Case 2: Suppose xAP after Step 2(i), and consider any partial overlay f of Kx on Gu: f maps u
to x; and if fmaps any child v of u it must map it to some child y of x:Moreover, the mapping for
each child v of u is independent of the mapping for any other child (since G is a tree and the
children do not share any descendants). Thus for each child v of u; we can choose to map v to
some child y of x in such way as to maximize the coverageðGv;KyÞ: Finally, the coverages of the

children of u are additive since the children do not share any descendants, and so Step 2(iii)
computes coverageðGu;KxÞ:
Correctness follows by induction. For the complexity, we note that the algorithm processes

each node of G once and does work proportional to the number of nodes in K : &

5.3. Unambiguous data graphs

Given a data graph G and a skeleton K; suppose the root of either has a null attribute; we can
invent a new attribute and associate it with the roots of G and K ; and not affect the value of
coverageðG;KÞ or any of the results in this chapter. Therefore, in what follows we assume without
loss of generality that data graphs and skeletons have non-null attributes at their roots.
Informally, a data graph G is unambiguous if we can partition its null-valued nodes into

equivalence classes, such that every null-valued node has all its parents in the same equivalence
class. We formalize this notion using a process called labeling that we now define.
Given a skeleton K ; we associate a label with each node of K as follows. We assume without

loss of generality that the root r of K has attrðKÞa>: For each node xAVK ; the label function is
defined as follows:

* If attrðxÞ ¼ Aa>; for some attribute A in the schema, labelðxÞ ¼ fA0g:
* If attrðxÞ ¼ >; let y be the parent of x in K ; with labelðyÞ ¼ Ai for some attribute A and iX0:

Then attrðxÞ ¼ Aiþ1:

Note that if K is canonical, then each node of K has a unique label; if K is not canonical, then
each pair of siblings in K with null attributes share the same label.
We now extend the label function to DAG data graphs. The difference is that in a data graph, a

node may have more than one parent, and so we must allow for a set of labels associated with
each node. Let G be a data graph, and we assume without loss of generality that the root of G has
a non-null data value. The label function recursively associates a set of labels with each node u in
G as follows:

* If attrðuÞ ¼ Aa>; labelðuÞ ¼ fA0g:
* If attrðuÞ ¼ >; let P be the set of parents of u in G: Then for each node vAP; if AiAlabelðvÞ;

then Aiþ1 is in labelðuÞ:
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A data graph G is unambiguous if for each node u in G; labelðuÞ is a singleton set. As a special case,
a data graph G is unambiguous if all its nodes have non-null values. In addition, every tree data
graph is an unambiguous data graph. In practice, it turns out that many data graphs
corresponding to websites, especially those that have database backends, are unambiguous. Since
unambiguous data graphs have singleton label sets for each node, we drop the set notation and
say labelðuÞ ¼ A to mean labelðuÞ ¼ fAg:

Example 5.3. Fig. 11(a) shows a canonical skeleton K : Fig. 11(b) shows the labels computed for
the nodes of K: Fig. 11(c) shows a data graph G; while Fig. 11(d) shows the result of labeling the
nodes of G: Since each node of G has a unique label, G is unambiguous.

Lemma 5.2 states an important property of unambiguous data graphs and leads to a simple
algorithm to compute the coverage of a canonical skeleton K for an unambiguous data graph G;
which we present below.

Lemma 5.2. Let G be an unambiguous data graph and K a canonical skeleton. Let uAVG; xAVK

with labelðuÞ ¼ labelðxÞ: Then in any partial overlay of K on G that includes u; u is mapped to x:
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Fig. 11. Algorithm CanonicalCoverage.
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Proof. Let f be a partial overlay of K on G that includes u: If attrðuÞa>; then attrðuÞ ¼
labelðuÞ ¼ labelðxÞ ¼ attrðxÞ; and so fðuÞ ¼ x: If attrðuÞ ¼ >; let labelðuÞ ¼ labelðxÞ ¼ Ai; i40;
for some attribute A in the schema. We use induction on i to complete the proof. &

Algorithm. CanonicalCoverage

1. Delete from G all nodes u such that there is no node x in K with labelðxÞ ¼ labelðuÞ:
Recursively, delete any nodes and edges of G that get disconnected from the root of G:

2. Process the edges of G in any order. Let e ¼ ðu; vÞ be any edge in G:
3. Let y be the node in K with labelðyÞ ¼ labelðvÞ; and let x ¼ parentðyÞ:
4. If labelðuÞalabelðxÞ; delete edge e from G: Recursively delete any nodes and edges of G that get

disconnected from the root of G:
5. coverageðG;KÞ ¼ jVGj; where jVGj is the set of nodes that remain in G:

Example 5.4. Let us run Algorithm CanonicalCoverage using the labeled data graph and skeleton
from Fig. 11. Fig. 11(e) shows the portion of G that remains at the conclusion of the algorithm.
There are 8 nodes remaining in the data graph, and so coverageðG;KÞ ¼ 8:

Theorem 5.4. Given an unambiguous data graph G and a canonical skeleton K ; Algorithm

CanonicalCoverage computes coverageðG;KÞ and runs in time OðjVK j þ jEGjÞ:

Proof. Correctness follows from Lemma 5.2. For the complexity, note that we process each edge
of G once to compute the label function and once in Algorithm CanonicalCoverage. Similarly, we
process each edge of K exactly once to compute the label function for K : &

5.4. Complexity

Table 1 summarizes the complexity of the coverage problem.

6. Computing the best-fit skeleton

We turn now to the BFS problem and ask whether we can restrict the structure of G; as in the
case of the coverage problem, to come up with tractable cases. Unfortunately, such is not the case.
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Complexity of the coverage problem

Tree data

graphs

Unambiguous

DAGs

General DAGs

Canonical skeletons P P NP-complete

Arbitrary skeletons P NP-complete NP-complete
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From Theorem 5.1, the best-fit problem is NP-complete even when the data graph G is restricted
to be a tree of depth 3 with no unlabeled nodes.
We look therefore for polynomial-time heuristics that can approximate a best-fit skeleton. For

simplicity, we restrict our attention to unambiguous data graphs. We also make a further
simplifying assumption, as follows. Let G be a data graph. The ancestor relation among the
attributes in the schema is defined in the following manner: attribute A is an ancestor of attribute
B if there are nodes u; vAVG with attrðuÞ ¼ A; attrðvÞ ¼ B; and u is an ancestor of v in G: The
ancestor relation on G is the transitive closure of such pairwise ancestor relationships. If the
ancestor relation is acyclic (i.e., it is a partial order), we call G label-acyclic. In what follows, we
restrict our attention to unambiguous, label-acyclic data graphs. In practice, this assumption is
reasonable because many websites of interest have data graphs that fit this model. Our heuristics
can be modified for more general data graphs.
Given a data graph G; our algorithms to construct best-fit skeletons work in three steps:

1. Transform G into a fully-labeled data graph G0 (as defined in Section 6.1).
2. Construct a ‘‘good’’ skeleton K 0 for G0:
3. Transform K 0 into a skeleton K for G:

We first describe the label transformation process involved in Steps 1 and 3. We then propose two
different heuristics for Step 2 and study how well they perform in practice.

6.1. Labeled data graphs

Let G be an unambiguous data graph over schema X : Label each node in G using the label

function defined in Section 5.3. Let L be the set of labels. It is useful to think of L as the set of
attributes in a new schema. We construct a new data graph G0 ¼ labelðGÞ as follows: G0 is a copy
of G; but its attributes are the set of labels in L: For each node u in G with labelðuÞ ¼ Ai; for some
AAX and iX0; the corresponding node u0 in G0 has attrðu0Þ ¼ A:
We also define a reverse, unlabeling transformation on skeletons. Let K 0 be a skeleton on

schema L: Then K ¼ unlabelðK 0Þ is the skeleton over schema X whose node and edge set are
copies of K 0; and whose nodes are labeled as follows:

* For each node u0 in K 0 with attrðuÞ ¼ A0AL; the corresponding node u in K has attrðuÞ ¼ A:
* For each node u0 in K 0 with attrðuÞ ¼ AiAL; i40; the corresponding node u in K is unlabeled.

When searching for a best-fit skeleton, Lemma 5.1 allows us to restrict our attention to canonical
skeletons. The following lemma follows from Lemma 5.2 and allows us to work with fully labeled
data graphs.

Lemma 6.1. Let G be an unambiguous data graph, and let G0 ¼ labelðGÞ: Suppose K 0 is an canonical
skeleton for G0 and K ¼ unlabelðK 0Þ: Then coverageðG;KÞ ¼ coverageðG0;K 0Þ:

6.2. The greedy heuristic

Let G be an unambiguous, label-acyclic, fully labeled data graph over schema (label set) L: We
now present a simple polynomial-time heuristic that computes a canonical skeleton K for G: Since
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K is a tree all of whose nodes are labeled, it can be specified completely by the parent function on
labels, as follows: suppose u is a node in K with attrðuÞ ¼ AiAL; and v is the parent of u in K with
attrðvÞ ¼ BjAL; then parentðAiÞ ¼ Bj: As a special case, if R is the label of the root of K ; then
parentðRÞ ¼ >:

Algorithm. GreedySkeleton

1. For all pairs of labels X ;YAL; set parentCountðX ;YÞ ¼ 0:
2. Traverse G and process each arc ðu; vÞ as follows: if attrðuÞ ¼ X and attrðvÞ ¼ Y ; set

parentCountðX ;YÞ :¼ parentCountðX ;YÞ þ 1:

3. Process each label in XAL as follows:
(i) Let YAL be the label with the largest value of parentCountðY ;XÞ:
(ii) Set parentðXÞ ¼ Y :

Since G is label-acyclic, the parent function computed by Algorithm GreedySkeleton is guaranteed
to be acyclic. The following example illustrates the algorithm.

Example 6.1. Fig. 12(a) shows a fully labeled data graph G: The non-zero parent count are as
follows:

* parentCountðA1;C0Þ ¼ 1; and parentðC0Þ ¼ A1:
* parentCountðA1;D0Þ ¼ 1; parentCountðB1;D0Þ ¼ 2; so parentðD0Þ ¼ B1:
* parentCountðA0;A1Þ ¼ 2; parentðA1Þ ¼ A0:
* parentCountðB0;B1Þ ¼ 1; parentðB1Þ ¼ B0:
* parentCountðR0;A0Þ ¼ 2; parentðA0Þ ¼ R0:
* parentCountðR0;B0Þ ¼ 1; parentðB0Þ ¼ R0:

The resulting skeleton K 0 is shown in Fig. 12(b). Unlabeling K 0 yields the skeleton K in
Fig. 12(c).

ARTICLE IN PRESS

Fig. 12. Running Algorithm GreedySkeleton.

A. Rajaraman, J.D. Ullman / Journal of Computer and System Sciences 66 (2003) 809–851 837



6.3. The weighted greedy heuristic

Fig. 13 shows an example of a data graph in which the greedy algorithm does not pick the
optimal skeleton. Intuitively, the reason why greedy does badly on the data graph in Fig. 13 is that
all its decisions are made independently, so that the effects of a prior decision are not factored into
subsequent decisions. We can tweak the greedy heuristic to avoid some of these situations; at each
step, we compute the benefit of a decision taking into account all prior decisions. The benefit is
measured by data graph coverage, the metric we seek to maximize. At each stage, we greedily pick
the decision with largest benefit. We present below this weighted greedy heuristic.

Algorithm. WeightedGreedy

1. Process labels in L ‘‘bottom-up,’’ so that label X is processed after all labels YAL with
XAancestorðYÞ:

2. Suppose we are currently processing label X :
(i) For each label YAancestorðXÞ:

a. Set H to be the empty graph.
b. Traverse G and visit each arc ðu; vÞ such that labelðvÞ ¼ X and labelðuÞ ¼ Y :
c. Let G0 be the subgraph of G reachable from node v:
d. Set H ¼ H,G0:
e. Set benefitðX ;YÞ ¼ jVH j; where jVH j is number of nodes in H:

(ii) Let ZAancestorðXÞ be the label with largest value of benefitðX ;ZÞ:
(iii) Set parentðXÞ ¼ Z:
(iv) Traverse G and delete all edges of the form ðu; vÞ where labelðvÞ ¼ X and labelðuÞaZ:

Recursively, delete all nodes and edges that are disconnected from the root of G by this
deletion.

Example 6.2. For the data graph G in Fig. 13, we process the labels in the order DCBAR: We
compute the following non-zero benefits:

* benefitðD;CÞ ¼ 4; and parentðDÞ ¼ C:
* benefitðC;AÞ ¼ 2; benefitðC;BÞ ¼ 5; so parentðCÞ ¼ B:
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Fig. 13. A data graph where the greedy algorithm does badly.
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* benefitðB;RÞ ¼ 6; and parentðBÞ ¼ R:
* benefitðA;RÞ ¼ 1; and parentðAÞ ¼ R:

The resulting skeleton is the best-fit skeleton with coverage 8.

6.4. Theoretical performance of heuristics

How badly can our heuristics perform, as a ratio of the optimal skeleton’s coverage (called the
competitive ratio)? We can modify the data graph in Fig. 13 to create data graphs where the greedy
algorithm’s competitive ratio is arbitrarily close to zero; that is, the greedy heuristic can perform
arbitrarily badly compared to the optimal result. The weighted greedy heuristic works well for the
data graph in Fig. 13, but we can construct data graphs where it does not pick the optimal
skeleton. Indeed, we should be surprised if this were not the case; the best-fit problem is NP-
complete, while the weighted greedy is a simple polynomial-time algorithm.
Fig. 14 shows a data graph where the weighted greedy algorithm picks a solution that has 0.625

the coverage of the optimal skeleton. We can modify this example to construct data graphs where
the competitive ratio of weighted greedy gets arbitrarily close to 0.5. Using data graphs of greater
depth, we can construct examples where the competitive ratio is arbitrarily close to zero: for each

depth dX2; we can construct an example where the competitive ratio approaches ð1
2
Þd�1: In

practice, however, we observe that the weighted greedy does much better than the theoretical
worst-case bound, as shown by the experimental results of the following section.

6.5. Experimental results

For our experiments, we chose as our application a system that integrates job listings from multiple
corporate websites into a single database. We chose a relation schema with a dozen attributes such as
Job Id, Job Title, Job Category, Division, Location, and Job Description. Not all websites include
information on all these attributes. We developed regular expression patterns that could identify these
patterns on a small set of websites, including those of IBM [22] and Sun Microsystems [33] (a real
system such as [20] or [35] incorporates more extensive heuristics to identify attributes).
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Fig. 14. A data graph where weighted greedy does badly.
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The data graphs we constructed had between 5000 and 10,000 nodes. Fig. 15 shows the
skeletons generated for the IBM and Sun websites. Notice that the Sun website has information
on many more attributes than the IBM website. The Sun website uses a form that is filled in at the
top level; we constructed the data graph for this site using the technique for forms outlined in
Section 7.2. The skeletons were constructed using the greedy and weighted greedy heuristics,
which both constructed the same skeleton. We also verified manually that these skeletons are the
optimal (best-fit) skeletons for these data graphs.
To study systematically how the greedy and weighted greedy heuristics performed as the noise

level in the data graph is increased, we came up with a technique to randomly mutate the data
graphs. We picked a single parameter, the error rate p; to model both the precision and the recall

of the pattern matching functions: p is both the probability of a false positive and the probability
of a false negative. We randomly mutated our data graphs assuming different values of p ranging
from 0 (perfect precision and recall) to 1.0 (random data graphs), as follows. Consider the pattern-
matching function that identifies instances of any attribute A in the data graph. In a mutated data
graph with error rate p; this function incorrectly identifies instances of other attributes as being
instances of A with probability p (i.e., has precision 1� p), and also misses actual instances of the
attribute A with probability p (i.e., has recall 1� p).
In each case, we ran the greedy and weighted greedy heuristics on the mutated data graph, and

we also ran an exhaustive enumeration algorithm that computes a best-fit skeleton.
Figs. 16 and 17 summarize the results of our experiments. We note that both heuristics compute

the best-fit skeleton, for error rates below 0.2. For error rates larger than 0.2, the greedy heuristic
decays linearly (we show a least-squares fit). Weighted greedy is always competitive to with a
factor of 0.95 of the optimal, and thus is a very good heuristic in practice. There is a big payoff for
the additional complexity of using weighted greedy versus the greedy heuristic, while there is very
little payoff in using the much more expensive exhaustive search algorithm to compute the
optimal skeleton.
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7. Practical considerations

In this section we discuss some of the practical considerations that arise when applying the
compact skeleton technique to construct wrappers for websites. We start with a discussion of how
to map websites to data graphs, then consider websites with forms.
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Fig. 16. Performance of greedy heuristic.

Fig. 17. Performance of weighted greedy heuristic.
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7.1. Structure within web pages

To model the structure of a website, data graphs must incorporate not only the links between
pages, but also the structure within each page. The simplest approach is to model each web page
as a single unlabeled node in the data graph. Each data element matched within the page is a child
node of this node. There are also links between unlabeled nodes corresponding to links between
webpages.
This simple model can be improved upon in several ways. It is possible to recognize structur-

ing elements within the HTML of web pages: for example, list elements, header elements,
and so on. When we encounter several data elements within a list, for instance, we might
have a single unlabeled node in the data graph corresponding to the list, with the data elements in
the list as its children. Constructing the data graph in this manner preserves more of the
structure of the web page. Wrapper construction systems such as Junglee’s VDBMS [20]
incorporate such heuristics to construct data graphs that preserve as much of the website’s
structure as possible.
A common occurrence is data elements that always occur together in close proximity,

for example, city, state, and zipcode. In such cases, there is often a single pattern that
extracts multiple data elements e.g., a regular expression that matches patterns of the
form ‘‘Beverly Hills, CA 90210.’’ With patterns of this sort, the data graph can contain an
unlabeled node corresponding to the entire pattern, whose children are the data values that were
matched.

7.2. Forms

Websites often have forms that when filled and submitted result in a web page whose contents
depend on the form values. Many websites with forms can be fit into the data graph model. For
example, in many cases a form input is a menu or a drop-down list that contains data values. In
other cases it is a radio button or a check box. In such cases, it possible by an automated
procedure to fill the form using all possible permutations of values. Such a form can be modeled
as follows: Create an unlabeled ‘‘form node’’ corresponding to each permutation of values. The
set of data values for this particular permutation of form inputs are children of the form node.
The root of the data graph corresponding (recursively) to the website whose root is the page
returned by the form submission is a sibling to the form data values.
We have successfully modeled several websites with forms in this manner. The only condition is

that the form have no ‘‘free-form’’ text inputs, because then its input permutations cannot be
enumerated exhaustively.

8. Graph skeletons

Thus far we have restricted our attention to skeletons that are trees. There are websites that can
be generated using more general skeletons, such as DAGs or even cyclic graphs. It turns out that
theory of perfect compact skeletons generalizes to such cases: in particular, Theorem 2.1
generalizes so that every data graph has either a unique PCS or no PCS, even when the PCS is a
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cyclic graph. We provide below an algorithm to construct a PCS for a data graph G if it has one,
and a proof that the PCS is unique. The algorithm is exponential in the size of G and it is unlikely
that we can do better: determining whether a data graph has a DAG PCS turns out to be an NP-
complete problem.

8.1. Distinguishing patterns

Given a data graph G; any PCS K induces a natural equivalence relation 
K on the nodes of G:
For u; vAVG; we define u 
K G if imageKðuÞ ¼ imagekðvÞ: We extend this equivalence relation to
the arcs of G in the natural manner: for arcs e1 ¼ ðu1; v1Þ and e2 ¼ ðu2; v2Þ; e1 
K e2 iff u1 
K u2

and v1 
K v2:
Let G be a data graph with PCS K : Our algorithm works by constructing 
K ; the equivalence

relation on the nodes and arcs of G induced by K: The following lemma summarizes some
straightforward observations.

Lemma 8.1. Let K be a PCS for a data graph G; and let u and v be distinct nodes of G: Then the
following statements are true:

* If attrðuÞ ¼ attrðvÞa>; then u 
K v:
* If u 
K v; then attrðuÞ ¼ attrðvÞ:
* If ðu; vÞAEG or ðv; uÞAEG; then ucKv:
* If u is the root of G; then ucK v:

Let K be a PCS for G: A K-pattern is a subgraph P of G such that each node of P
belongs to a different equivalence class with respect to K : Patterns P1 and P2 are isomorphic if
there is a 1–1 mapping f between their nodes such that fðuÞ ¼ v iff u 
K v and f
is an isomorphism in the graph-theoretic sense. Isomorphism between a K-pattern P and a
subgraph K 0 of K is defined in the analogous manner. The following two lemmas are about K-
patterns.

Lemma 8.2. Let K be a PCS for a data graph G; and let P be a K-pattern of G: Then P is
isomorphic to a subgraph of K :

Proof. Follows from the observation that every edge of G belongs to some equivalence class
under K ; and every edge in a K-pattern belongs to a different equivalence class. &

Lemma 8.3. Let e1; e2AEG such that e1 
K e2; and let P be any K-pattern that includes e1: Then
there is a K pattern P0 isomorphic to P that includes e2:

Proof. From the previous lemma P is isomorphic to some subgraph K 0 of K: Since K is a PCS,
there is a pattern Q that includes e2 and is isomorphic to K : Therefore there is some subgraph P0

of Q that is isomorphic to K 0: &

ARTICLE IN PRESS

A. Rajaraman, J.D. Ullman / Journal of Computer and System Sciences 66 (2003) 809–851 843



8.2. The candidate skeleton

Given a data graph G; we present an algorithm to compute a candidate skeleton K
corresponding to G: The candidate skeleton has the property that if G has a PCS, then the
candidate skeleton is a PCS for G: It may happen that G has no PCS but we are still able to
compute the candidate skeleton.
Our algorithm works by computing the equivalence relation 
K : We use a symmetric boolean

matrix M to encode this information, with Mij ¼ true if i 
K j: Initially, we set Mij to true for all

pairs of nodes except those mandated by Lemma 8.1. At each successive step, we use Lemma 8.3
to distinguish an additional pair of nodes in the following manner. At any stage in the algorithm,
suppose nodes u; v are such that Muv ¼ true: Nodes u and v are distinguishable if one of the
following conditions holds:

* There is an M-pattern P that includes u such that there is no isomorphic M-pattern P0 that
includes v:

* There is a node w with ðu;wÞAEG; ðv;wÞAEG; and there is an M-pattern P that includes ðu;wÞ
but not ðv;wÞ:

* There is a node w with ðw; uÞAEG; ðw; vÞAEG; and there is an M-pattern P that includes ðw; uÞ
but not ðw; vÞ:

Distinguishability is symmetric, so u is distinguishable from v iff v is distinguishable from u by the
symmetric conditions to those listed above.
When we can distinguish nodes u and v; we set Muv to false. If at any stage, we are able to

distinguish a pair of nodes that must necessarily be equivalent (i.e., nodes with the same non-null
attribute), then G has no PCS. Otherwise, when the algorithm terminates, we will have computed
the relation 
K : We show the full algorithm below. Since M is symmetric, whenever we assign
Mij in the algorithm, it is to be understood that we assign Mji the same value.

Algorithm. CandidatePCS

1. Initialize matrix M as follows:
(i) If r is the root of G; Mrs ¼ false for all nodes sar:
(ii) If u and v are nodes such that attrðuÞaattrðvÞ; Muv ¼ false:
(iii) If ðu; vÞAEG; then Muv ¼ false:
(iv) Mij ¼ true for all other pairs of nodes i; jAVG:

2. Repeat until there are no changes to M:
(i) Find a pair of nodes u; v such that u and v are distinguishable.
(ii) Set Mij to false.

(iii) If attrðiÞ ¼ attrð jÞa>; G has no PCS.
3. M is the equivalence relation corresponding to the candidate skeleton for G:

Lemma 8.4. If u and v are nodes of G such that Muv is set to false in Algorithm CandidatePCS, then

there is no PCS K of G such that u 
K v:

Proof. We use induction on the number of iterations of the loop in Algorithm CandidatePCS. For
the basis, Lemma 8.1 implies that the lemma is true for the pairs of nodes for which we set Muv to
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false before any iteration of the loop. Assume that the lemma holds after k � 1 iterations, and
suppose we set Muv to false in the kth iteration. Then Lemma 8.3 gives us the desired result. &

Let us say that Algorithm CandidatePCS terminates successfully if it gets to Step 3. In this case,
it is straightforward to see that M is an equivalence relation: M is reflexive and symmetric by
definition, and the definition of distinguishability ensures transitivity. We construct the skeleton K
corresponding to M as follows. There is a node corresponding to each equivalence class of M: Let
u and v be nodes of K : There is an arc ðu; vÞ in K whenever there are nodes x; yAVG with
u ¼ imageKðxÞ; v ¼ imageKðyÞ; and ðx; yÞAEG: In addition, node u in K is labeled with attribute A

whenever there is a node xAVG with u ¼ imageKðxÞ and attrðxÞ ¼ A: The labeling is consistent,
because if the algorithm terminates successfully then all nodes in the same equivalence class have
the same label.
To test whether K is a PCS for G; we test if for every edge eAEG; there is a K-pattern that

contains e and is isomorphic to K :We now prove that G has a PCS if and only if K is a PCS for G:

Lemma 8.5. If G has a PCS, then K is a PCS for G:

Proof. Suppose K is not a PCS for G; and G has a PCS L: From Lemma 8.4, it follows that 
L is
a strict refinement of 
K : By induction on the process of refinement to get from 
K to 
L; we
can show that K is a subgraph of L: Let eAVG; since L is a PCS, e is part of an L-pattern P:
Since K is a subgraph of L; there is a subpattern P0 of P that is isomorphic to K: We consider
two cases:

Case 1: e is in P0; in this case there is a K-pattern in G containing e:
Case 2: e is not in P0: Because 
L is a refinement of 
K ; there is some edge e0 satisfying Case 1

such that e 
K e0: Since e0 is part of a K-pattern, by construction of 
K it follows that e is also part
of a K-pattern.
Thus in either case e is part of a K-pattern. Since e is an arbitrary edge of G; we have shown that

every edge of G is part of some K-pattern, and so K is a PCS for G: &

Lemma 8.6. If K is a PCS for G and L is a skeleton such that 
L is a strict refinement of 
K ; then L
is not a PCS for G:

Proof. If K is a PCS for G and 
L is a strict refinement of 
K ; then we can show by induction on
the refinement process that K is a PCS for L when L is treated as a data graph (replacing each
attribute label with a value corresponding to that attribute). Let s1;y;sn be all possible overlays
of K on L:
Suppose L is a PCS for G: Consider some overlay f of L on G; corresponding to an L-pattern

P: Construct an overlay f0 of L on G corresponding to the same L-pattern P as follows:

* For each node u of L such that u is in s1; let v be the node of L in s2 such u 
K v: If fðuÞ ¼ w;
set fðvÞ ¼ w:

* For each node v of L such that v is in s2; let u be the node of L in s1 such that u 
K v: If
fðvÞ ¼ w; set fðuÞ ¼ w:

* For all other nodes of L; f ¼ f0:
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Now f and f0 are overlays of L that map some node w of G to different nodes of L; implying that
L is not compact for G: &

We define a skeleton K to be irreducible if there is no skeleton K 0 that is a PCS for K when K is
treated as a data graph. From the proof of Lemma 8.6, it follows that only irreducible skeletons
can be compact. Lemmas 8.4–8.6 imply the following theorem, which is the counterpart of
Theorem 2.1.

Theorem 8.1. For any relation R; data graph G; and irreducible skeleton K ; if R!K G; then K is the

unique PCS for G: Conversely, for any data graph G with PCS K ; there is a relation R such that

R!K G:

8.3. Complexity

Algorithm CandidatePCS is exponential in the size of the data graph G; as is the subsequent test
to check whether the candidate skeleton is a PCS. The following theorem shows that we cannot
hope to find a polynomial-time algorithm for the PCS problem, even for DAG-structured data
graphs with an information element at each node.

Theorem 8.2. The problem of determining whether a DAG-structured data graph has a DAG PCS is

NP-complete.

Proof. Let G be a data graph structured as a DAG with an information element at each node. To
see that the problem is in NP, note that we can guess in polynomial time a DAG PCS K and for
every edge in G an overlay that covers that edge. It follows that K must be compact because each
node u of G contains an information element and every overlay must map it to the node of K
labeled with attrðuÞ:
To show that the problem is NP-hard, we provide a reduction from the problem of determining

whether the natural join of several relations is non-empty, which is known to be NP-complete [36].
It can be verified that this problem remains NP-complete when it is constrained so that among the
relations R1;y;Rn there is a pair of join-consistent relations (without loss of generality, R1 and
R2) that each contain a single tuple.
Given such a collection of relations, create an instance of the DAG PCS problem as follows.

There is an attribute Ai corresponding to each relation Ri: Construct graph G as follows. For each
tuple tARi; create a node with some unique value a and include a in DomðAiÞ: Whenever tuples
tiARi and tjARj with corresponding node values ai and aj and ioj are join-consistent, add a

directed edge from ai to aj: Note that there will be exactly one node labeled with a value

corresponding to A1 and one node with a value corresponding to A2; with an edge e between
them.
Construct skeleton K as follows. There is a node ui labeled with Ai for each attribute name Ai:

Whenever Ri and Rj share an attribute and ioj; add a directed edge from ui to uj: Now add some

additional nodes and edges to G as follows.

ARTICLE IN PRESS

A. Rajaraman, J.D. Ullman / Journal of Computer and System Sciences 66 (2003) 809–851846



For each edge ðai; ajÞAEG with ðai; ajÞae; create a copy Kij of K with the attributes Ai and Aj

replaced by values ai and aj respectively; all other attributes are replaced by unique data values in

the domains of their corresponding attributes that do not appear elsewhere in G: Augment G by
adding Kij and identifying the nodes with values ai and aj in G with the corresponding nodes in K :
Repeat this process for every edge in G except for e:
It can be verified that G and K are both DAGs since all edges go from lower to higher

numbered nodes, and that the sizes of G and K are polynomial in the sizes of the relations. We
claim that R1t?tRn is nonempty if and only if K is a PCS for G:

IF: Suppose K is a PCS for G: Then there is an overlay of K on G that includes e: This overlay
includes a data value ai corresponding to each attribute Ai; 1pipn: Let ti be the tuple in relation
Ri corresponding to the data value ai; 1pipn: Due to the manner in which G was constructed,
each pair of tuples ðti; tjÞ that share an attribute agree on their common attributes (else there

would not be an edge between ai and aj in G). Thus the set of tuples t1;y; tn is join consistent and

so R1t?tRn is non-empty.
ONLY IF: Suppose R1t?tRn is non-empty. We show that there are overlays of K on G

that include every edge e0 of G: There are two cases:
Case 1: e0ae: Then e0 is in one of the subgraphs Kij isomorphic to K that was added to G in the

last step of the construction. Therefore there is an overlay of K that includes e (the corresponding
K-pattern is the subgraph Kij).

Case 2: e0 ¼ e: Since the R1t?tRna|; there are tuples tiARi; 1pipn; that are join
consistent. The subgraph H of G induced by the nodes corresponding to these tuples is a K-
pattern that includes e:
Thus every edge of G is included in some overlay of K ; and so K is a PCS for G: &

9. Related work

Integrating data across websites is an active area of research, with several research prototypes
and commercial implementations [12,15,20,25,35]. Constructing wrappers has been the major
bottleneck in most of these systems. Hammer et al. [21], one of the earliest systems, describes a
toolkit that helps the user manually code wrappers. The toolkit provides many constructs,
especially for HTML processing, that make it easier in many cases than writing parsers using Lex
and Yacc.
There has been much work in automating aspects of wrapper construction [2–5,13,

14,20,23,24,27,32]. Most of this work has focused on extracting document structure (as a
grammar or a finite state automaton) from HTML and text documents. Adelberg [2]
and Garofalakis et al. [17] describe systems that can infer structure from HTML and
XML documents, respectively, in a semiautomated manner. Ashish and Knoblock [3,4] present
a technique called wrapper induction that can infer simple grammars that combine HTML
elements and data elements on web pages. Kushmerick et al. [24], Muslea et al. [27] and Soderland
[32] describe machine learning approaches. In contrast to these works, which infer structure
within web pages, compact skeletons describe web site structure within and across web pages, and
in addition also enable automatic transformation between relational and web data.
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Gupta et al. [19] describes a system in which wrappers are expressed in a specialized language
called site description language (SDL). It can be shown that SDL corresponds to a restricted form
of canonical skeletons we call skinny skeletons: skeletons that are trees consisting of a single root-
to-leaf distinguished path such that every node is at distance at most 1 from this path. The
VDBMS system described in [20] has a wrapper toolkit that uses an algorithm similar to
Algorithm ComputeRelation in order to compute the relation corresponding to a website. This
algorithm is simpler than Algorithm ComputeRelation because the skeleton is restricted to be
skinny, and has the advantage that it can incrementally produce the tuples of the relation as it
traverses the pages of the website.
Although many data graphs cannot be modeled using skinny skeletons, such skeletons do

appear in practice to capture the structure of many useful websites; for example, both the IBM
and Sun skeletons shown in Fig. 15 are skinny skeletons. However, an important restriction of the
VDBMS system described above is that the SDL description for a website needs to be manually
generated, whereas this paper describes algorithms to automatically deduce the compact skeleton
from the website.
Jensen and Cohen [23] propose a language to describe how fields extracted from different

portions of a website are to be grouped together into records. This language describes hierarchical
structures in a manner similar to skeletons. In the system described in [23], the user can create and
modify different groupings and compare the results using a GUI tool, and manually pick the best
grouping.
Embley and Xu [13] propose a different approach to the problem discussed in this paper. They

study a technique based on the Vector Space Model, a common information-retrieval measure
of document relevance. They construct an ontology that describes a domain of interest (e.g.,
used car ads), and then consider how to rearrange the data on a website so as to maximize the
vector space model measure relative to the ontology. In contrast, our approach uses simple
graph-theoretic models and measures. It is our intuition that the skeleton approach is more
readily applicable to large programmatically generated websites, while the vector space
model approach works better on websites containing a substantial quantity of human-generated
textual data.
There has been much work on querying documents, semistructured data, and unstructured

data [1,6,8–11,26,30,31]. Many of these systems model semistructured data using data graphs.
Some consider schemas that are similar in spirit to compact skeletons. The focus of these works is
on query languages, testing whether a database conforms to a given schema, schema
subsumption, query optimization, and data translation, in contrast to our focus on schema
inference.
Nestorov et al. [28] presents a different approach to extract structure from semistructured data.

They model semistructured data using data graphs and construct a typing that fits the data within
an error threshold. Typings are defined in terms on monadic datalog programs, and nodes in the
data graph can play multiple ‘‘roles.’’ Compact skeletons by contrast provide a simple graph-
theoretic approach to schema inference that works well for data on the web, and lend themselves
to simple algorithms that perform well on large websites.
Representative Objects [29] and Data Guides [18] provide structural summaries of hierarchical

semistructured data in a manner similar to skeletons. The purpose of data guides is to facilitate
browsing and query optimization rather than mapping data into the relational model. Therefore,
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the data guide model allows more general structures than skeletons: data guides are not restricted
to be trees and the same label can appear more than once in a data guide. The different in-
tended applications lead to problems and algorithms of a different flavor from those presented
here.

10. Conclusion

Compact skeletons are a simple and effective model for ‘‘reverse-engineering’’ websites to
construct wrappers that expose relational interfaces. The model can equally well be applied to
XML documents where the DTD is not specified in advance. We are exploring several extensions
to the basic model:

* Feedback between feature (i.e., data element) extraction and structure extraction.
* Using domain knowledge about the relation e.g., functional dependencies, to refine our

heuristics for skeleton construction.
* Data graphs corresponding to multiple compact skeletons. In such cases, we must construct a

‘‘small’’ set of skeletons that cover as much of the data graph as possible, trading off between
coverage and the number of skeletons.
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