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Introduction 

This paper started from the following question raised by A. Day: What is the 
correct definition of an ultrafilter and an ultrapower in an elementary topos in the 
sense of Lawvere and Tierney (cf. [ 141, [ 19])? To be more precise, we are looking 
for a generalization of the set-theoretic ultrapower construction which is internal, 
i.e. which can be described within the topos. 

Thus an internd filter on an object X in a topos E should be a subobject of ax 
with appropriate closure properties, which can be given as preservation properties 
of the characteristic function u : SYlx + In. In particular, an ultrafilter will be a 
Heyting algebra morphism from Qx to 52 with a certain section. On the other hand, 
an external filter on X would be a filter on E( 1, ax), the set of subobjects of X. 

Therefore the construction of the ultrapower Ax/U should use the internal power 
AX rather than the external power A E(1vX) which might not even exist without 
further assumptions on e:<ternal limits. Usually the ultrapower AX/C/ of a set A with 
respect to an ultrafilter U on the set X is defined as the quotienf of AX, obtained 
by identifying two functions if they agree on a subset in the filter (cf. [3] ). Okhuma 
observed in [ 171 that the ultrapower may be viewed as the filtered colimit of the 
partial powers A y with Y in U. Rephrasing this idea we arrive at: the following 
definition. The ultrapower is defined as the quotient of ix1 U, the set of partial 
functions with domain in I/, obtained by identifying two functions if they agree on 
a subset in the filter. This is the approach we will use. 

In the first section we will study various types of filters. In particular, every 
topology j: C2 + CZ is a filter on 1. The main result of the second section can be stated 
as follows. The filterpower functor is left exact and it preserves a propositional 
operation iff the filter preserves it. The filterpower functor preserves 52 iff the Wer 
is an ultrafilter. As a corollary we obtain the left exactness of the associated sheaf 
functor, which is obtained by applying twice the filterpower functor. Another ap- 

plication yields the set of quotients with respect to a topology in the category of 
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M-sets, where M is a monoid. Moreover, in a topos with the internal axiom of choice 
the ultrapower functor i,s a first order functor i.e. it is left exact and preserves the 

propositional operations and the quantification. This is a generalization of the basic 
result on ultrapowers of sets which states that the diagonal morphism from A to 
Ax/U is an elementary embedding. 

A property which characterizes finite sets in the category of sets can be used to 
define a concept of finiteness in an arbitrary topos. In the third section we study 
the following two variants which depend on ultrafilters. An object will be called 
ultrafinite iff it is isomorphic to all its ultrapowers. It will be called principally 
finite iff every ultrafilter on it is principal. Ultrafinite objects in categories with 
external ultrapowers have been studied by Day and Higgs [4]. It will be shown that 
the class of ultrafinite resp. principally finite objects in a topos contains 52 and is 
closed under finite limits. The class of principally finite objects is in general not 
closed under the power set operation Q(-). However, we do not know whether the 
class of ultrafinite objects is closed under this operation. 

In *he following we will work in a fixed elementary topos E unless stated other- 
wise. The category of sets S is a llxed 2-valued topos with natural number object 
and the axiom of choice. Any model of ZFC will determine such a category. With 
regard to the basic results on elementary topoi, the rea+r is referred to Kock, 
Wraith [ 121 and Freyd [7]. A list of notations is given at the end of the paper. 

Last not least I wr nt to acknowledge the valuable help I received from A. Day, 
D. Higgs and R. Diaconescu during a visit to Lakehead University and to McGill 
University in fall 1973. 

I. Filters in a topos 

Let X be an object in a topos E. An internal filter on X is a subobject U of ax 
with appropriate closure properties which are presented as preservation properties 
of the characteristic function u : fix + Q in the following definitions. 

U resp. u is called a filter on X iff U is closed under finite intersections i.e. 
UA= A(U X u) and utx = t. A filter u is called proper iff u < 3 ! X. A proper 
filter u is called prime iff u vx = V(U X u). A proper filter u is called ultrafiker iff 
u a = * (u X u). A proper filter is called maximal iff for every proper filter u 
3 < u implies u = u. A filter u is called the principal fnter generated by the subobject 
k: K -+ X iff for every filter u u < u iff ul x(k)1 = t. Clearly, every filter u on X deter- 
mines an external filter on E( 1, ax), the set of subobjects of X, given by E( 1, u). 
Every topology j : 52 + Cl in E is a filter on 1, which is proper iff i = 52. 

The fol!owing proposition shows that internal filters have nearly all the usual 
properties. 

1.1. Letu:QX-+S2beafilteronX. 
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(l)uispr0periffu~!~=52ifftc~!~~~. 
(2) If u is proper then u and TX are epic. 
(3) If u is an ultrafilter then u is prime and maximal. 
(4) If u is a filter (proper, prime, ultra-) then t&f is a filter (proper, prime, ultra-) 

forevery f:X+ Y. 
(5) If u is a filter (proper, prime, ultra-) then u 3 k is c filter (proper, prime, ultra-) 

for every subobject k: K + X with u 1 x(k)1 = t. 
(6) u *x (1 X(k)1 ! ax, Inx) is the filter generated by u and the subobject k : K + X. 
(7) V! KJZk is the principal filter generated bj7 the subobject k: K + X. Moreover, 

u hasaleftadjointg:R+ six withgt = IX(k)/ iffu = V! K!Zk. V! KSZk is an 
ultrafilter iff ! K is an isomorphism. 

1) We have always 52 < I.&!~ because of uaix t = t. Moreover, the adjointness of 
3 !X and nix yields u G 3 !X iff uS2!x < Q. 

2) us2!X = s1 iv-.:plies 3 !XQix = Q. Hence !X must be epic, too. 
3) If u preserves * then u(Q1 v &) G up iff uq+ v U$Q G up because of 

(@I V $2) * N = ($I* u) A ($2 * P). Using x = &xX we obtain u& V ~$2 = u(@, V q$) 

as required. Let u be a proper filter with u G u. Since u preserves * we have 
u ex (h,, h2) = * (uhl, uhz) = tz, where (h,, h2) = kp(u). Then u < u and 
u+x<*(uX u)imply tz = uejX(hl,h2) G*(uh1,uh2)andhenceuh1 =uh,. 
Since u is epic there exists 4 with u = qu. However, 4 = quOix = uC~!~ = S2 implies 
u = u as required. 

4) Here we use that Inf is a Heyting algebra morphism and that SZfst!‘* = nix. 
5) 3 k preserves A and v and we have 3 k# G S21x, 3 k[tx] = X(k) and 

3Wp&l =X(W(3k[@Ql =,3wQl). 
6) Let uk abbreviate u qx (I dk)I !ax, ax). Obviously uk is a filter such that 

u&(k)/ = t and u G uk. Conversely, ul x(k)! = t and u G u imply uk = 
~*~(~x(k)~!~~,S2~)<~*~(~X(k)i~C2~ nx)=u . . 

7) Since V TX is the smallest filter on X, V !X ax (Ix(k)1 !ax, fix) is the filter 
generated by k: K + X. The result follows now from the identity 
V !X *x (lfik)l !Ox, fix) = V !KLnk. 3 k# is left adjoint to V !KQk and 
3 kSliK t = 1 x(k)l. On the other hand, g is left adjoint to u iff V !X ax (g X Qx) = 
* (a X u). This implies V !X ax (1 dk)I !CZx, ax) = * (t !$lx, u) = u as required. It 
follows from (4), (5) and Qk 3 k = S2 that V !K is a proper filter resp. ultrafilter iff 
V !KQk is proper filter resp. ultrafilter. However, V !KSt!K = S2 iff !K is epic, and 
V !K preserves * iff !K is manic. 

The following result generalizes the wellknown characterization of an ultrafilter 
as a falter such that either a set or its complement belongs to the fdter. It owes its 
f’inal form to an observation of C.J. Mikkelsen. 

1.2. A )?lter u is an ultrafilter iJu ex (ax, S&) = t ! !2x arzd 71 is epic. 
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If u is an ultrafilter then u ex (sZx, aixu) = * (u, dXu) = * (u, U) = t !SZx and 
u is epic since u is proper. Conversely, by transitivity u ex (fix, Ciix u) = t !Qx 

implies kp(u) < x-l (u ex). This yields u ex = * (u X u) since the other inclusion 
is true in general. Expressing implication by means of biimplication and intersection 

‘X we see that that u preserves implication. Since u is epic, * (u, ua- u) = t .s2 I X- rm- 

plies u = u@u and hence uS21x = 52. 

The following lemma of D. Higgs will be needed later. 

1.3.(1jIfj:C2+C2ismonic thenj2=S2. 
(2) lfj2 = 52 and 52 <j then j = CL 

1) The morphism j is manic iff * (j X j) = *. It suffices to prove the analogous 
result for a Heyting algebra H, i.e. if a map g:H + H satisfies g(a) *g(b) = a * b for 
all a, b in H then g is the identity. The equation g3 = g and hence g2 = H is obtained 
by applying several times the following equivalence: .?c% g(a) = x A g(b) iff 
xha=xI\b. 

2)a=fiA jandj2=S2implyj=jA j2=jAa. 

In the following we will study falters in particular topoi. Let G be a group. A 
filter u on an object X inSG corresponds to a ftiter U on the underlying set which 
is closed under the action of G. Analogous statements hold for the various types 
of filters. As a consequence we have that there is no ultrafflter on G itself if G has a 
nontrivial subgroup of finite index. 

Let M be a monoid. A filter u on an object X in 2? corresponds to a filter U on 
the underlying set of M X X which is closed under the action ofM in the following 
sense. If Y is in I/ then m- lYisinUforeveryminM,wherem-lY= 
{(n, x): (nm, x) E Y}. In particular every topology in @ determines such a filter 
Uon M. These are the topologies described by Stenstroem [ 181. 

Let Top(Y) be the category of sheaves over the topological space Y. Let p : X + ‘Y 
be an etale space over Y and let op(X) resp. op(Y) be the open subsets of X resp. 
Y. A filter on p :X -+ Y corresponds to a map u : op(X) + op(Y) which preserves 
intersection and satisfies op( Y) < up -l. The fdter is prime resp. an ultrafilter iff 
op(Y) = up-f. and v preserves union resy,. implication. 

In S2 a filter u on an object a:Au +A, determines a pair of filters uo, u1 on A, 
resp. A 1 which are defined as follows: uo( Y) = 1 iff uo(( Y, A 1)) = 1, u1 (Y) = 1 iff 
z+(Y)= 1. 

The various properties of the falter u are inherited by the filters u. and ul. More- 
over, there is a bijective correspondence between ultrafilters on cr : A0 +A 1 and pairs 
of ultrafilters uo, u1 satisfying ul = v,$P. 

In SN, where N is the ordered set of natural numbers, we have an analogous 
situation. A filter u on an object A with transition maps an :A, + An+1 determines 



H. Volger /I Ultrafilters, ultrapowers and finiteness in a topos 349 

a sequence of filters U, on An for n in N, which are defined as follows: 

U,(Y) = 1 iff U,(Y, An+1 3 . ..) = 1 . 

As above the various filterproperties are inherited by the filters Un for n in N. If A is 
increasing i.e. the transition maps are injective then there is a bijective correspondence 
between ultrafilters on A and sequences of countably complete ultrafilters Un on An 
satisfying Un+f = UnQan Car II in Iv. 

2. Filterpowers in a topos 

For an object A and a filter u on X in a topos E the filterpower AX/u will be 
defined as the quotient ofxxlu, the object of partial morphisms from X to A with 
domain in u, obtained by identifying two partial morphisms if they agree on a sub- 
object which is in the filter u. As we will see in the appendix, Ax/u can be viewed 
as the filtered colimit of the partial powers AK with K in u. 

Let u be a filter on dK The subobjeL, jlLJ :ixlu -+zx is determined by the 
characteristic function u(domA)X. The filterpower Ax/u with its projection 
&/i*~~+A~/uisdefinedbyq,,~ =coeq(k,,A),wherekU,A:K,(A)-+~xluX~Iu 
is determined by its characteristic fUnCti02u(d_omAflA)X(j~,A X jr&. Here we 
have used the intersection operation nA : A X A + Jon A. 

%,A 

Since there exists a’ fact;rization ju,AqU,A of (VA )x, we can define the diagonal 
morphism du,A :A +A lu by 4u+_&,A A !x. The above constructions are functorial. 
Thus we obtain a functor (-)x/u : E + E and a natural transformation d,: id, + ( -Jx/u. 

The following proposition gives basic properties of the filterpower Ax/u. 

2.1. ( 1) If u is proper then du,A is moylic for every A ; 
(2) u is a proper filter resp. ultrafilter iff du, s1 is manic resp. an isomorphism; 
(3) If k: K + X is a subobject of X then AK PII Ax/V !Klnk. In particular, 

A~A~/&fori:l +X . 

1) Since u is a filter we can verify that k,,, is an equivalence relation. Thus we 
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obtain tikp(d,J 1) = X&d& A ))@?u~@!~ x %,,4A ‘xl = 
U(domA ITA )x (VA A!x X y&i!9 = u(=A )x(A!x X A!x) = yp!” =A because of 

X VA) = zAe ThUS du,A has to be manic if ua* = in. 
v 

xl~ + Q be u(do)xjUea and let s: cxlu + fix(u be qU,&dop ju a -- , 
Making use of u ex G * (u X u), k= dorn,ll&fi X Q), damn = d and 
qndo 2 52 we obtain x(kp(v)) = * (u(d# jU a X u(d#jU a) 2 u 4(d0)xjU a 
X (doFjU n) =u(domnn,)x((~*doyri,~ X_(rl,do)fj&) = >C(k,,&(s X s) ’ 
2 dkU,s2)and hence k, st 
=Womn)Xi 

G kp(v). Moreover, a =ll& qado) yields t !fixlu 

st = u((i~~Jl~)x(i, 52 X iu ,)oxlu, vu 52(d&u al 

= x(kU &(fiqh, s). Therefore (fix(&) factors through k;,, and by transitivity 
dkU 52’) 2 x(kU &(s X s). Hence we can conclude that k, a = kp(v) iff 
U* 2 = * (u X h), since (do>x jU,n Is right invertible. ’ 

dX 
+ nx------+ i5xlu. 52 

%4,sL V 

%Lsz~ 
U $ r 

du,sz 

fix/Z4 

Therefore there exists t: ax/u + a such that v = rq, a. This implies rd, n = 
rqu,nqU,nslix = u(do)xjU n~u &Ifx = uS$~. If u is proper then dU ,‘is manic. 
Conversely, if dU,s2 is moni’c then * = x(kp(d, &) = x(kp(q, &)(q, &ix 

X% R Q!x) = u(domn fla )x (vn Q!x X Q~ &) = u ex (S$x X &) 
= u&x*. Hence uSI!x must be manic and thus uS~!~ = Q by 1.3. Here we have 
used again * = domnllsz(qn X Q). Combining the above results we obtain: d,,, 
is an isomorphism iff r is the inverse of dU,s, iff k, a = kp(v) and uaix = 5)1 iff 
u*x- - * (u X u) and u is proper iff u is an ultrafiiter. 

3) Let ,u 
exists #k: A k 

abbreviate V !K& Because of nk(domA)X = (domA)%@ there 
fu k &iKI ak with (&, jUk,A) = pb((?j/#, ik). Since Ahk iS epic !;k has 

to be epic, too. The equation ak(dOmAnA)X(jUk,A X j&k,A) = 
(domAr&& X ‘1A))K(& X [k) yields kp&) = kuk,A and hence AK = Ax/Q. 

The functor (-yY/u has the following preservation properties: 

2.2. (1) (-F/8 is left exact; 
(2) (--F/u preserves a: St X S2 + 52 iff u preserves a; 
(3) If u is phe then C ’ Tie 

(4) (--)Q presentes I J f\ 

p ii preserves finite coproducts; 
s if (z)xlu preserves epics; 

(5) (-)Q preserve.. ‘1 :,& ‘fu is an ultrafilter. 

1) First we want to show that (--F/u preserves binary products. The morphism 
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(&+&(A w- - 2 X i has a left inverse c determined by the partial morphism 
(Q~ X qg; A X B). Specializing to A = 1 and B = 1 yields A, : s2 -+ a X a and its left 
inverse A: 52 X a + Q. Since (& , &) and c commute with the intersection and 
domain operation, one obtains a morphism rU: (A X B)x/u + (Ax/u) X (Bx/u) with 
a left inverse c, from (pk &) and c. After rewriting rUc, with the help of the re- 
striction operations pA : A X s2 + i and pB: g X Q + Bh , it can be verified that rUc, 
is the identity. lx/u N 1 can be shown as follows. ‘i ti Q and Txlu cv U imply 
X(kU1)=u(dom$I~)X(jUIXjU1)=u~X(~-l(u)X~-l(u))= ~(u~-~(u)Xtix-~(u)) 
= t!(b X U) and hence l& = l’since U+ 1 is epic. 
Let m : A + B be manic. Since Gxlu is again manic and commutes with the inter- 
section operation, we obtain kp((%xlu)s, & = kp(q, B). This together with qU B 
being epic implies that mX/u is manic by a’lemma for kegular categories (cf. 12, ’ 
p. 1561). Let e be the equalizer of fi ,f2: A + B. Let h be the equalizer of $/u and 
$/u. pulling h back along the epic qU A we obtain g such that ((_@)g, 

(&“lu)g) factors through k,,,. ’ 

f+ 
- Bxlu 

fj% 

T 
%,B 

Making Use Of_p~ (pl, dOmAriA) = pA (p2, domAmA) we obtain g’ such that 
(fixIU)g’ = (@lu)g’ and qu Ag = qu A g’. Since (z)xlu preserves equalizers, g’ 
factors through ZxIu and h must facior through e*/u as required. 

2) As we have seen in 2.1.2 (Gxlu, qU n(do)XjU,n) factors through k,,, . Thus 
qU,sl = 4 ns,,-#O)X jU,sl implies that b, 51q,,52 is epic. Moreover, by 2.1.2 there 
exists r: B xlu + a such that rQU,s7r = u(d,)k jU,n and hence rq,,,quln = u. pulling 
back along the epic qu,s2 I)~,~. * ax-+ ax/u we are able to verify that Y is the charac- 
teristic function of G/u. Since (-)x/u is left exact, (-)x/u preserves Q! : 52 X S2 -+ Q 

iff r(&/u) = (x(r X r), where r = ~&x/u). The required equivalence follows from 

r(olxlWU,QV,,n X qU,nrlU,sl) = WU,,qU,& = ~9 and a(u X 4 = 
ol(r X r)(%l,nrl,,n X %,nrlu,*) since 4U,$-&,~ is epic. 

3) This follows from (2) since every left exact functor which preserves V has to 
preserve binary coproducts. Since u preserves se we have 6% = 0 and hence 
oqlf N 0. 
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4) If gxlu is epic then gx/u is epic, since every qu,A is epic. 
5) This is a restatement of 2.1.2. 

Diaconescu suggested to prove the left exactness of the fu;‘ytor (--F/u using the 
description of Ax/u as the internal colimit of the powers AK for K in U. This will be 
done in the appendix. 

As we have seen earlier, every topology is a filter on 1. This leads to the following 
corollary. 

2.3. (1) If j: S2 + Q is a topology in a topos E then ((-)1/j)2 is the associated sheaf 
finctor and it is left exact. 

(2) If j: C2 + s2 is a topology in S M, where M is a monoid, then (--)I /j is the 
finctor which associates with an M-set its set of quotients. 

1) It can be verified that (-)l/j coincides with the functor (-)+ described by 
Johnstone [ 1 O] . Hence the associated sheaf functor is obtained by applying twice 
(-)l/j. Moreover, ((-)1/j)2 is left exact by 2.2.1. 

2) Let J be the filter of right ideals corresponding to j. Then A l/j is the filtered 
colimit of the #(D, A) for D in J. However, this is the set of quotients of A des- 
cribed by Stenstroem [ 181. In particular, Ml/j is the monoid of quotients. 

If the internal axiom of choice holds in E then the functor (z)x preserves epics. 
Using results of Diaconescu L,md Freyd, we know that E is boolean in this case. Thus 
the above results give rise to the foilowing corollary. 

2.4. Let E be a topos with the internal axiom of choice and let u be an ultrafilter on 
X. Then (- F/u is a first order functor, i.e. it is left exact and preserves the proposi- 
tional operations as well the exisientiai and universal quanti’cation. 

Thus the theorem of Kock-Mikkelsen [ 1 l] on the factorization of first order func- 
tors can be applied in this case. The above corollary generalizes the wellknown fact 
that in the category of sets the diagonal morphism dA,* :A + Ax/u is an elementary 
embedding. 

3. Ultrafinite and principally finite objects 

Using the axiom of choice and in particular the existence of nonprincipal ultra- 
filters on the natural numbers, one can characterize finite sets in the category of sets 
as follows. 

(1) A is finite iff A is isomorphic to all its ultrapowers. 
(2) A is finite iff every ultrafilter on A is principal. 

This motivates the following def%ritions. 
An object A ina topos E’ is called principally jkite iff for every ultrafilter u on A 
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there exists a : 1 + A such that u = WY The object A is called ultrafinite iff for every 
X and every ultrafilter u on X the diagonal morphism dll,A :A *Ax/u is an isomor- 
phism. 

The two classes of finite objects have the following closure properties. 

3.1. (1) 332e fill subcategory of ultrafinite objects contains Q and is closed under 
finite limits and $nite coproducts. It is closed under quotients if the .functor 
(-F preserves epics for every X. 

(2) If A is ultrafinite then A is principally finite, but not conversely. 
(3) lTte full subcategory of principally finite objects contains Q and is closed 

under finite limits. It is closed under quotients if every proper filter can be 
extended to an ultrafilter. 

(4) The class of principallv finite objects is not closed under the power object . 
operation sZ(-), in general. 

It remains an open question whether the class of ultrafinite objects is closed under 
the operation C2W 

1) The closure properties of the ultrafinite objects follow from the preservation 
properties of the ultrapower functor given in 2.2. 

2) Let u be an ultrafilter on A. Since d, A : A + AA/u is an isomorphism we have 

qu,A%,AIAI = % Ab,A AMa. where a = id, &lqU,AqU A IAI. This implies 
t = X(~N,A)(IAI, ku a) = ux(IAl, AiAa) = u {I;} and hence h = aa by 1 .I -7. - The 
counterexample can be found in S*. In S* an ultrafilter on an object CI :A, -+ A l 
corresponds to a pair of ultrafilters uo. u1 on A, resp. A, with u1 = v,P. Hence 
CC A0 + Al is principally finite iff A0 is finite. If cy: A0 + A, is ultrafinite then not 
only A0 but also A, must be finite. Other ;e we could take a nonprincipal ultra 
ftiter on id*: X + X with X infinite, which yields (Ax/u)l N Af/ul #Al. Con- 
versely, if A0 and A l are finite then c11: A, + Al is ultrafinite. Thus any object 
CY: A0 + Al with A0 finite and A 1 infinite provides a counterexample. 

3) 1 and CZ are ultrafinite and hence principally finite. Let Al, A, be principally 
finite. If u is an ultrafilter on Al X A2 then uSZpl and uS2 p2 are again ultrafilters by 
1 .I .4. Hence there exist a1 and a2 with uS’-Zpl = fial and uQp2 = Sta2. This yields 
ulAl X a21 = t and u/al X A21 = t and hence u {(al, a*)} = t. Ry 1.1 7 we can conclude 
u = QCa19’2) as required Let m - A . . + B be manic and B principally tinit e. If u is an 
ultrafilter on A then zdStrn is an ultrafilter on B by 1.1.4 and there exists b: 1 + I? 

such that uQm = Inb. Since u is proper, t = uilrn {b} = ul X(W 1 @))I implies 
!A( x(mW1 (b))l = t and hence K N 1. This implies zc = aa with a = nt-l(b) as required. 
Let A be principally finite and let q:A + B be epic. If u is an ultrafilter on B then 

u V q is a proper filter on A because of u V qi2!A = u V qW@ E= zdB = SL Here 
we have used that q is epic. By assumption there exists an ultratYter u on A with 
u > tl V q. However, then ustQ is a proper filter with us2S 2 u V qs2q = u and hence 
uS2q = u by maximality of u. Since A is principally finite there exists a such that 
u = SIa, which yields u = Wa as required. 
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4) As we have seen irr (2) an object OK A0 + A 1 is principally finite iff A, is finite. 
In particular, O: 1 + N ii principally finite. However, its power set object is not prin- 
cipally finite since its o-th component is infinite. 

Moreover, it follows from the above that the natural number object in S2 is not 
principally finite! and hence not ultrafinite. However, the natural number object in 
Slv, where N is the ordered set of natural numbers, is principally finite. This follows 
from the descripjtion of ultrafrlters on increasing objects in SN given earlier. 

Appendix 

Following a suggestion of Diaconescu we will show that AX/u is the colimit of the 
internal contravariant functor A(-) from U to E. With regard to the concepts of 
category objects, internal functors and their colimits the reader is referred to Kock, 
Wraith [ 121 and Diaconescu [5] . 

The order relation on ax is given by (c$, c$) : c* + ax X a*, where do and 
dl are determined by the partial morphisms (Q, t; 1) and (q, ; !S2). In this way fl* 
becomes a category object. The contravariant functor A(-) from Q* to E is given 
by the triple ((doE 
order relation on A * 

)x, 08, a?), where (a& af) : ((A X s2)-)x +ix X A”x is the 
. Here a0 and al are determined by the partial morphisms 

(Qxn(A Xf);A)and(V&o(;P~). 

The induced order relation (ro, rl): R(U) + U X U is obtained by pulling (d& df) 

back along x-l(u) X J&). The restriction of the functor A(-) to U is given by 
the triple (d, gl , go) where d is obtained by pulling (domJx back along x-l(u) 
and g1 resp.gO is obtained by pulling r1 resp. ai back along d resp.j,,A. 
the colimit is obtained as the coequalizer of go and gl . 

Finally, 

Using the intersection operation on ix one verifies that (go, gl)*(go, gl)-l 
factors through kuJ1, where * and -1 are relational composition and inverse for- 
mation This proves that k, A 

This implies qu,A 
is the equivalence relation generated by (go,gl). 

= coeq(gi, gl) as required. 
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Let colimU:E(Uop) + E be the colimit functor with respect to U. where E(U*p) 
is the category of comravariant E-valued functors from U. Lei: L+: E + E(U*P) be 
the functor which associates with A the inter& functor A(-> defined above. We 
have shown that (-F/U is obtained by composing& with colim~. By Theorem 
1.25 in Diaconescu [5], the functor colimu is left exact iff PP is filtered. However, 
U*P is filtered in the sense of Diaconescu since U is a filter, Therefore (--F/U is 
left exact, since Du is left exact. Here we have used that ( -) preserves pullbacks. 

Notations 

Pb(f, g) 
kp(g) 
es(f3 s) 
coedf7 s) 
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