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1. Introduction

Let O be a groupoid with a neutral elemantWe say thatQ is a loop provided that
each of the two equations: = b andya = b has a unique solution forany b € Q. If a
loop Q is associative, thep is in fact a group (this is the reason why loops are sometimes
called nonassociative groups). In a lo@phe mappingd., (x) = ax (left translation) and
R, (x) = xa (right translation) are permutations @n for everya € Q. The permutation
groupM(Q) = (L4, R,: a € Q) is called the multiplication group of the loap. Clearly,

M (Q) is transitive onQ. The stabilizer of the neutral elements denoted byl (Q) and

this stabilizer is called the inner mapping group of the Ig@pThe definitions of the
multiplication group and the inner mapping group were given by Bruck [1] in an article
that was published in 1946. In this article, which was fundamental for loop theory, Bruck
also defined solvability in loops in the following way: a lo@p is solvable if it has a
series k= Qo C---C Q, = Q,whereQ;_; is a normal subloop of); andQ;/Q;_1 is an
abelian group. Normal subloops are naturally kernels of loop homomorphisms.

By using the notions of the multiplication group and the inner mapping group of a loop,
we get a very strong link between loop theory and group theory and one of the main targets
here is to consider the relation between the structure of the loop and the structure of the
corresponding group. Bruck was able to show that the group theoretical nilpotency of the
multiplication groupM (Q) implies the loop theoretical solvability of the logp. After
this, it was only in 1996 that Vesanen [22] managed to prove the following important and
deep result: ifQ is a finite loop such that the multiplication grog(Q) is a solvable
group, thenQ is a solvable loop. This result opens a large variety of possibilities to our
investigations. One direction is to study those properties of the inner mapping broup
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which guarantee the solvability of the multiplication groMfg Q) (and thus, in the finite
case, the solvability of the loo@).

A series of papers [3,4,10,13-17] by Csorgd, Kepka, Myllyla and Niemenmaa (between
1990 and 2000) showed us that the solvabilityMt Q) follows provided that/ (Q) is
cyclic, finite abelian, dihedral of ordef ®r dihedral of order 2, wherek is an odd number.

The purpose of this paper is to show that the following more general result holdg2 jf
is a finite dihedral group, them (Q) is a solvable group and, in the finite cage,is a
solvable loop.

In [16] Kepka and Niemenmaa showed that many properties of loops and their
multiplication groups can be reduced to the properties of connected transversals in groups.
Therefore in Section 2 we discuss these transversals and introduce the reader the theorem
that gives a purely group theoretical characterization of multiplication groups of loops by
using connected transversals.

In Section 3 we prove our main results. First we prove the following group theoretical
result: if G is a group with a finite dihedral subgrogépand with H -connected transversals,
then G is solvable. In the proof we need some understanding about the structure of
nonsolvable finite groups with Sylow 2-subgroups which are dihedral, semidihedral,
guaternion or generalized quaternion. The needed results can be found in the articles by
Glauberman [5], Gorenstein and Walter [7] and Wong [23]. After this we give a loop
theoretical interpretation of our group theoretical results.

Our notation in group theory is standard and follows [6] and [8]. For basic facts about
loop theory and its history the reader is advised to consult the articles by Bruck [1],
Pflugfelder [18] and Smith [20]. For more recent results in loop theory we recommend
the articles by Kinyon, Kunen and Phillips [11,12,19].

2. Connected transversals

Let Q be a loop and denoté = {L,: a € Q} andB = {R,: a € Q}. The two setsA
andB are left (and also right) transversalsit@Q) in M (Q). Simple calculations show that
the commutator subgroyp, B] is contained i/ (Q) and we say thatt andB arel (Q)-
connected transversals M(Q). Generally speaking, i is a group with a subgrouff
and with two left transversal$ andB to H in G such thafA, B] < H, then we say that
and B are H-connected transversals . In the following two lemmas we assume that
and B are H-connected transversals @n. By Hg we denote the largest normal subgroup
of G contained inH and we say thatl; is the core ofH in G.

Lemma 2.1. The setsA$ and B¢ are left(right) transversals taH in G for everyg € G.
Lemma22.If CCAUBandK = (H,C), thenC C Kg.

For the proofs, see [16, Lemmas 2.1 and 2.5].
In 1990, Kepka and Niemenmaa [16, Theorem 4.1] proved the following theorem that
gives a purely group theoretical characterization of multiplication groups of loops.
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Theorem 2.3. A groupG is isomorphic to the multiplication group of a loop if and only
if there exist a subgroupf satisfyingHs = 1 (thus the core off in G is trivial) and
H-connected transversal$ and B such thatG = (A, B).

We conclude this section by the following result of Vesanen [21, Chapters 3 and 4].

Theorem 2.4. If G = PSL2, ¢q), whereq > 5 is odd, thenG does not have connected
transversals to dihedral subgroups.

3. Main results
We are now ready to prove our main result.

Theorem 3.1. Assume tha6 is a finite group,H a dihedral subgroup o& and assume
further that there exist -connected transversals (6. ThenG is a solvable group.

Proof. From [15] and [13] it follows that the claim is true H is a 2-group or if H | = 2k,
wherek is an odd number. Thus here we may assume [tHat= 2'k, wherer > 2 and
k > 3is an odd number.

Let G be a minimal counterexample.Ms > 1, thenH /Hg is either cyclic or dihedral,
henceG/Hg and G are solvable. Thus we may assume tiigf = 1. If H is not a
maximal subgroup of5, then there is a proper subgro@pof G such thatH < T. By
Lemma 2.2,7 > 1. SinceHTs/ T is either cyclic or dihedral, we may conclude that
G/ Tg is solvable. By inductionT is solvable, which means thét is solvable. Thus we
may assume thdt is a maximal subgroup df. It is also clear thaNg(H) = H.

We now divide the proof into two parts: in the first part we assume that the ord#r of
is 2k, wheret > 3 and in the second part we assume that the ordér isf 4k.

(1) Let |H| = 2'k, wherer > 3 andk > 3 is odd. Assume then thad is a Sylow
2-subgroup ofA. If Q is not a Sylow 2-subgroup af, then we have a 2-subgroup of
G such thatQ < D and[D : Q] = 2. The subgrou@ is dihedral and since> 3 it has a
cyclic characteristic subgroup of order 2—1. SinceRr is normal inH and inD andH is
maximal inG, it follows thatR is normal inG. This is not possible, alg = 1.

Thus we may assume th&l is a dihedral Sylow 2-subgroup @f. If G is simple,
then we apply [7] and it follows that eith&r = PSL(2, ¢) (¢ > 5 odd) orG = A7. From
Theorem 2.4 we see that the groupSL(2, ¢) do not have connected transversals to
dihedral subgroups. It is also easy to check that the alternating gfewmes not have
a dihedral maximal subgroup. This means #fids not simple and there exists a nontrivial
minimal normal subgroup/ in G. Clearly, N is not contained irH , henceG = NH.

Denote byL the cyclic subgroup oH of order 2~ %. SinceN N H is normal inH,, it
follows that eithetv N H < L or N N H is a dihedral group of ordef 2%. If NN H < L,
then we writeE = NL. Now E is a proper subgroup &, Ng(L) = L and sincefg =1,
we may conclude that N L¢ = 1 for everye € E — L. ThusE is a Frobenius group with a
Frobenius complemetit, hence the groupB, N andG are solvable (for the properties of
Frobenius groups, see [8, pp. 495-507]). There remains the case€ that is a dihedral
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group of order 2-1k and[G : N] = 2. Of course N has a dihedral Sylow 2-subgroup of
order 21,

Now we wish to show thalv is simple. Assume tha¥V is not simple and leK < N
be a maximal normal subgroup of. Let L = (x) be the cyclic subgroup off of order
2'=1k. ThenG = N (x), x2 € N and the subgrouf has two conjugatek¥ andK~* in G.
As Kg = K N K* is normal inG, it follows that K N K* = 1. ThenN = KK* and
IN| = |K|% If pis an odd prime which dividek, then p divides|N| and|K|. ThusK
has a Sylowp-subgroups. If P is the Sylowp-subgroup ofH, then P is also a Sylow
p-subgroup ofN and there exists € N such thats” < P < (x). Clearly,S" < K" =K
and(S™)* = S§" < K*. ButthenS"” < K N K* =1, a contradiction. We conclude thaitis
a simple group.

SinceN has a dihedral Sylow 2-subgroup, we can again apply [7] and it follows that
eitherN ZPSL(2, ¢) (¢ > 5is odd) orN = A7.

If N = A7, thenN N H would be dihedral of orderi8and A7 would contain an element
of order 4. This is not possible and we may concentrate on the case Whef@SL(2, g).
For the structure of the grougdSL(2, ¢) and their subgroups we advise the reader to
consult [8, pp. 191-213]). For this proof we need to know R8L(2, g) has dihedral
subgroups of ordef + 1 and these subgroups are in the rolévofy H. Furthermore, the
orders of the elements &fSL(2, ¢) divideq or (¢ £ 1)/2.

Now |N| = (g+1)q(q—1)/2,|G| =2IN|, |H| = 2(g+1) and|A| = |B| = q(¢ F1)/2.

If AUB C N, thenA andB are(N N H)-connected transversals ¥ and by induction,
we conclude tha¥ is solvable. This is not possible, hence we may assume that there exists
a€ AUB— N.Ofcourseg?e N.

If |a| =29r, whered > 2 andr is odd, thenja’| = 2¢ anda” € Q8 < H$ for some
g € G (rememberthap < H is a Sylow 2-subgroup af). Furthera” € H8N H8%, hence
(a") is normal in(H8, H8%) = G. This is not possible, so we may assume taat 2r,
wherer > 1is odd. (If|a| = 2, thena$ € H for someg € G contradicting Lemma 2.1.)

Now assume thdtH|=2(q + 1), INNH|=q + 1 and|A| = |B| =¢q(q — 1)/2. Since
4k dividesg + 1, we may assume that eithge= 11 org > 19.

Sincea? € N, it follows that|a?| dividesq or (¢ & 1)/2. In any case|Cg(a)| < 2q.
SinceG’ < N, it follows thata—1b=1ab € N N H for everyb € B and thus:” € a(N N H)
for everyb € B. Leth andr be two different elements from. If a® = a’, then 1£ bt
Cg(a).

Thus we placelA| — IN N H| =qg(q — 1)/2— (¢ + 1) elements in the seE =
Cg(a) — {1}, which has at most— 1 elements. Clearly, there exist& E such that =
biby* = bsbyt. Thushy = cby andbs = cha. If d € A, then[d, cb;] = [d, b;1[d, c]” € H,
henceld, ¢] € Y (i =24).

But then|[d, c¢] is in the intersection of two different conjugates Hf. Since this
intersection has at most four elements, we are plagigg— 1)/2 commutators of type
[d, c] in the four places of the intersection and therefore we have an eleimsuath
thath = [dy,c]l =---=[dy, c], wheref > q(¢ — 1)/8 and the elementg; are fromA.

If [d1,c] = [d>, c], thendldgl € Cg(c) and we are placingg — 1 elements in the set
Cg(c) — {1}, which has at most@®— 1 elements.
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Now f —1>q(q —1)/8— 1 and ifg > 19, thenf — 1 > 2¢ — 1. But thendid; * =
dldj‘1 for somei # j and we have a contradiction.

We still have to consider the case where- 11 andN = PSL(2, 11). Then|H| = 24,
INNH|=12and/A| = |B| =55. Sincela| = 2r, wherer > 1 is odd anda?| divides 11,

6 or 5, we conclude thdi:| = 6, 10 or 22. If|a| = 6 or |a| = 10, then|Cg(a)| < 10 and
calculations similar to the ones in the preceding section lead us to a contradiction.

Then assume that| = 22. Nowa!! is an involution belonging tdi¢ — N for some
g € G andCy (a) > (a2, z), wherez € Z(H?). Then 22 divides the order @fy (a11) and
by looking at the maximal subgroups BSL(2, 11) we may conclude thaty (') = N.

As G = N (a'l), we conclude that!! € Z(G). But this is not possible a& ¢ has a trivial
core.

Inthe case thatH| =2(q — 1), INNH|=¢q —1and|A| = |B| =¢q(q +1)/2, we may
proceed in a similar way. Now we are ready with the first part and it is time to begin the
second part of our proof.

(2) Let |H| = 4k, wherek > 1 is an odd number. If 8 does not dividé€|, then the
Sylow 2-subgroups of; are of order four. IfG is simple, then we use [7] and it follows
thatG = PSL(2, q), whereg > 5 is odd. By Theorem 2.4 we know th&t does not have
connected transversals to dihedral subgroups. Then assun ivabt simple and lev
be a minimal normal subgroup ¢f. As in the first part of the proof we may conclude that
N is simple andG : N] = 2. But nowN has a Sylow 2-subgroup of order 2 contradicting
the simplicity of V.

Thus we may assume that 8 divide€s|. Let S be a Sylow 2-subgroup af such that
ISNH|=4.NowZ(H) = {1, t}, wheret is an involution. Sincéd; = 1 andH is maximal
in G it follows thatCs(r) = S N H. From [9, p. 316] it follows thas is either dihedral or
semidihedral.

If S is semidihedral ands is simple, then [23, Theorem 2] applies and the involutions
in G form a single conjugacy class. A8(S) < H, it follows that if u € Z(S) is an
involution, thent = u8 € Z(S%) for someg € G. But thenCg(¢) > (H, S8) = G and
Hg > 1, a contradiction. If§ is semidihedral and; is not simple, then we conclude from
[23] that we have a normal subgrowpof G such thafG : N] = 2. Calculations similar
to those in the first part of our proof show thatis simple. Now[S : SN N] =2 and
as a maximal subgroup ¢f, the subgrougs N N is either cyclic, quaternion, generalized
guaternion or dihedral (see [6, p. 191]). A Sylow 2-subgroup of a simple group cannot
be cyclic and by combining [8, pp. 624—627] and [5] the same is true for generalized
quaternion groups. All this means th&an N has to be dihedral.

If we assume thaf is dihedral, then we can use [7] and Theorem 2.4 to deduce&sthat
is not simple and as beforé, has a normal subgrouy of index 2,N is simple andS N\ N
is dihedral.

Thus from [7] it follows that eithetv = PSL(2, ¢), whereq > 5 is odd orN = A7.
First assume thaV = PSL(2, g). We know thatt H N N| =2k and H N N is a dihedral
subgroup. IfA U B C N, thenA and B are N N H-connected transversals M. By [13],

N is solvable. As this is not possible we may assume that there existsU B — N. Then
a® e N andCg (a) has at most 2 elements.

Assume thatN N H| =g + 1 (then|A| = |B| =q(q¢ — 1)/2). Now 2k = ¢ + 1 and it
follows that eithey =5 org > 9. We now employ the commutator-centralizer method and
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the notation that was used in the first part of our proofl § A, then we have an element
¢ € Cg(a) — {1} such that the commutatdd, c] is in the intersection of two different
conjugates ofV N H. Obviously, this intersection has at most two elementgi |t] = 1,
thend € Cg(c) — {1}. Thus atleasy (g — 1)/2 — (29 — 1) = (g% — 59 + 2) /2 elements of
the form[d, c] are equal to the involution in the intersection. It follows that we are placing
(¢° —5¢g +2)/2 — 1 elements in the s&ls (c) — {1}. The set has at mosy2- 1 elements,
hence we get a contradiction whern> 9.

The case wherg =5 has to be investigated separately. So assumevlEaPSL(2, 5),
|H| =12,|H N N| =6 and|A| = |B| = 10. As before, we assume that there exists
ac AUB — N.Thena? e N and|a| =4, 6 or 10. Ifla| = 10, thenG = (a)H and by [2],
G is solvable. Clearlyja| = 6 is not possible agV N H| = 6. Thus we must have € A
such thata| = 4 and|Cg (a)| = 4. Now the centralizer-commutator calculations lead us to
a contradiction.

If [ HNN|=¢qg—1and|A|=|B|=¢q(q + 1)/2 then we can proceed in a similar way.
Thus finally assume tha&f = A7. Now |H N N| = 2k and by looking at the subgroups.4f
we conclude thatH N N| < 10. Then|H| < 20 and|A| = | B| > 252. Again, calculations
based on the numbers of commutators and the size of centralizers give us a contradiction.
This is our final contradiction and so the proof is complete.

After this we shall have a look at the loop theoretical consequences of Theorem 3.1. We
are interested in solvable loops (as defined in the introduction) and we have the following
important solvability criterion proved by Vesanen [22].

Theorem 3.2. If Q is a finite loop whose multiplication group is solvable, th@nis a
solvable loop.

The relation between multiplication groups of loops and connected transversals was
givenin Theorem 2.3. By combining this result with Theorems 3.1 and 3.2, we immediately
have

Theorem 3.3. If Q is a finite loop whose inner mapping group is a dihedral group, tBen
is a solvable loop.
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