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We relate certain ladder determinantal varieties (associated to one-sided ladders)
to certain Schubert varieties in SL�n�/Q, for a suitable n and a suitable parabolic
subgroup Q, and we determine the singular loci of these varieties. We state a con-
jecture on the irreducible components of the singular locus of a Schubert variety in
the flag variety, which is a refinement of the conjecture of Lakshmibai and Sandhya
(Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 45–52). We prove the conjecture for
a certain class of Schubert varieties. © 2000 Academic Press

INTRODUCTION

Let k be the base field, which we assume to be algebraically closed
of arbitrary characteristic. Let X = �xba�, 1 ≤ b� a ≤ n be a matrix of
variables, and let L ⊂ X be an one-sided ladder with outside corners
�b1� a1�� � � � � �bh� ah�, i.e.,

L = �xba � there exists 1 ≤ i ≤ h such that bi ≤ b ≤ m� 1 ≤ a ≤ ai��
where 1 ≤ b1 < · · · < bh < n, 1 < a1 < · · · < ah ≤ n. We suppose that
n is large enough so that bi > ai, for all i, 1 ≤ i ≤ h. Let k
L� denote
the polynomial ring k
xba� xba ∈ L�, and let ��L� = ��L� be the associated
affine space. For 1 ≤ i ≤ l, let i∗ denote the largest integer in �1� � � � � h�
such that bi∗ ≤ si. Let s = �s1� � � � � sl� ∈ �l

+, t = �t1� � � � � tl� ∈ �l
+ be such

that b1 = s1 < · · · < sl ≤ n, t1 ≥ · · · ≥ tl, 1 ≤ ti ≤ min�n − si + 1� ai∗� for
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FIG. 1. The one-sided ladder L.

1 ≤ i ≤ l, and si − si−1 > ti−1 − ti for 1 < i ≤ l. For each 1 ≤ i ≤ l, let
Li = �xba � si ≤ b ≤ n�. Let Is� t�L� be the ideal of k
L� generated by all
the ti-minors in Li, 1 ≤ i ≤ l. Let Ds� t�L� ⊂ ��L� be the variety defined by
Is� t�L�, and we call it a ladder determinantal variety (the ladder being one-
sided). The variety Ds� t�L� is isomorphic to Ds′� t′ �L′� × �d, for suitable
l′-tuples s′, t′, a suitable one-sided ladder L′ ⊂ L in X defined by the out-
side corners �b′1� a′1�� � � � � �b′h′� a′h′ � such that �b′1� � � � � b′h′ � ⊂ �s′1� � � � � s′l′ �
and d = �L� − �L′� (see Section 1 for details). Thus it is enough to study
the variety Ds� t�L� under the assumption �b1� � � � � bh� ⊂ �s1� � � � � sl�. With-
out loss of generality, we can also assume that tl ≥ 2, and ti−1 > ti if
si �∈ �b1� � � � � bh� for 1 < i ≤ l.

For each 1 ≤ i ≤ l, let L�i� = �xba � si ≤ b ≤ n� 1 ≤ a ≤ ai∗�. It is easy
to see that the ideal Is� t�L� is generated by the ti-minors of X contained in
L�i�, 1 ≤ i ≤ l. First we relate the ladder determinantal varieties (associated
to one-sided ladders) to Schubert varieties as given by the following (cf.
Theorem 5.6).

Theorem 1. The variety Ds� t�L�×�r is identified with the “opposite cell”
in a certain Schubert variety X�w� in SL�n�/Q, for a suitable parabolic sub-
group Q of SL�n�, where r = dim SL�n�/Q− �L�.

As a consequence, we obtain (cf. Theorem 5.7)

Theorem 2. The variety Ds� t�L� is irreducible, normal, and Cohen–
Macaulay and has rational singularities.
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We also determine the singular locus of Ds� t�L�, as described below. Let
Vj , 1 ≤ j ≤ l, be the subvariety of Ds� t�L� defined by the vanishing of all
�tj − 1�-minors in L�j�. We prove (cf. Theorem 7.1)

Theorem 3. We have SingDs� t�L� =
⋃l
j=1 Vj .

We further prove the following (cf. Theorem 8.2).

Theorem 4. For 1 ≤ j ≤ l, the subvariety Vj × �r of Ds� t�L� × �r

(r being as above) is identified with the “opposite cell” in a certain Schubert
subvariety X�θj� of X�w�.

As a consequence, we obtain (cf. Theorem 8.3)

Theorem 5. The irreducible components of SingDs� t�L� are precisely the
Vj ’s, 1 ≤ j ≤ l.

Let X�wmax� (resp. X�θmax
j �, 1 ≤ j ≤ l) be the pull-back in SL�n�/B

of X�w� (resp. X�θj�, 1 ≤ j ≤ l) under the canonical projection π�
SL�n�/B→ SL�n�/Q (here B is a Borel subgroup of SL�n� such that
B ⊂ Q). Then using Theorems 1, 3, and 4, we obtain (cf. Theorem 8.4)

Theorem 6. The irreducible components of SingX�wmax� are precisely
X�θmax

j �, 1 ≤ j ≤ l.

We state a conjecture on the irreducible components of the singular locus
of a Schubert variety in SL�n�/B, which is a refinement of the conjecture
in [12] (see Section 9 for the statement of the conjecture). Using Theo-
rem 6, we prove (cf. Theorem 9.24)

Theorem 7. The conjecture holds for X�wmax�.
We now briefly describe how the above theorems are proved. Let Q =⋂h
i=1 Pai , where Pai is the maximal parabolic subgroup of SL�n� obtained

by “omitting” the simple root αai , the simple roots being indexed as in [2]
(see Section 2 for details). Let O− be the “opposite big cell” in G/Q (see
Section 2 for details). We identify O− (� �N , N = dimG/Q) as a subvari-
ety of the variety of lower triangular matrices in SL�n�. This in turn gives
rise to an embedding ��L� ⊂ O−. Let Zw = X�w� ∩ O− be the “opposite
cell” in X�w�, and let Iw be the ideal defining Zw in O−. Then one knows
that the Plücker coordinates vanishing on Zw generate Iw. Let I

∗
s� t�L� be

the ideal generated by Is� t�L� in k
�N�. We prove Theorem 1 by showing
that the Plücker coordinates vanishing on Zw belong to I∗s� t�L� and, con-
versely, a typical ti-minor in L�i�, 1 ≤ i ≤ l, belongs to Iw. Theorem 2 is
a consequence of Theorem 1 and the fact that Schubert varieties are irre-
ducible, normal, and Cohen–Macaulay and have rational singularities (cf.
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[10, 18–20]). Theorem 3 is proved using the Jacobian criterion for smooth-
ness. Toward this end, we first construct a Gröbner basis for Is� t�L�, which
then enables us to compute the codimension ofDs� t�L� in ��L�. Theorem 4
is proved in the same spirit as Theorem 1. As one sees, Theorem 5 is an
immediate consequence of Theorems 3 and 4, and Theorem 6 is an imme-
diate consequence of Theorems 1, 3, and 4. Theorem 7 is proved through
a relative study of X�wmax� and X�θmax

j �. Thus we have used the theory
of Schubert varieties to prove results on ladder determinantal varities, and
vice versa. To be more precise, geometric properties such as normality,
Cohen–Macaulayness, etc., for ladder determinantal varities are concluded
by relating these varieties to Schubert varieties. The components of singu-
lar loci of Schubert varieties are determined by first determining them for
ladder determinantal varieties and then using the above-mentioned rela-
tionship between ladder determinantal varieties and Schubert varieties.

An identification similar to that in Theorem 1 for the case t1 = · · · = tl
has also been obtained by Mulay (see [16]). Results similar to those of The-
orem 2 for certain other ladder determinantal varieties have been obtained
by several authors (see [4, 5, 7, 15, 17]). To the best of our knowledge,
Theorem 5 is the only result in the literature on the determination of the
singular locus of a ladder determinantal variety, except for the case of the
classical determinantal variety, i.e., h = 1 and l = 1 (see [13, 14, 21]).

The sections are organized as follows. In Section 1 we define ladder de-
terminantal varieties and set up a few notations. In Section 2, we recall
some generalities on G/Q. In Section 3, we recall some generalities on
Schubert varieties in the flag variety. In Section 4, we prove two lemmas
related to the evaluation of Plücker coordinates on the “opposite big cell.”
In Section 5, we bring out the relationship between ladder determinantal
varieties and Schubert varieties. In Section 6, we compute the dimension of
ladder determinantal varities by constructing Gröbner bases for their defin-
ing ideals. In Section 7, we determine the singular loci of ladder detrminan-
tal varieties. In Section 8, we determine the irreducible components of the
singular loci of ladder determinantal varieties. In Section 9, we state a con-
jecture on the irreducible components of the singular locus of a Schubert
variety in SL�n�/B and prove it for a certain class of Schubert varieties,
namely those Schubert varieties that are related to ladder determinantal
varieties as in Section 5. This conjecture is a refinement of the conjecture
in [12].

1. LADDER DETERMINANTAL VARIETIES

Let X = �xba�, 1 ≤ b ≤ m, 1 ≤ a ≤ n be a m × n matrix of indetermi-
nates.
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Given 1 ≤ b1 < · · · < bh < m, 1 < a1 < · · · < ah ≤ n, we consider the
subset of X, defined by

L = �xba � there exists 1 ≤ i ≤ h such that bi ≤ b ≤ m� 1 ≤ a ≤ ai��

We call L a one-sided ladder in X, defined by the outside corners ωi = xbiai ,
1 ≤ i ≤ h. For simplicity of notation, we identify the variable xba with just
�b� a�.

For 1 ≤ i ≤ l, let i∗ be the largest integer such that bi∗ ≤ si.
Let s = �s1� s2 � � � � sl� ∈ �l

+, t = �t1� t2 � � � � tl� ∈ �l
+ such that

b1 = s1 < s2 < · · · < sl ≤ m�

t1 ≥ t2 ≥ · · · ≥ tl�

1 ≤ ti ≤ min�m− si + 1� ai∗� for 1 ≤ i ≤ l� and

si − si−1 > ti−1 − ti for 1 < i ≤ l�

(L1)

For 1 ≤ i ≤ l, let

Li = �xba ∈ L � si ≤ b ≤ m��

Let k
L� denote the polynomial ring k
xba � xba ∈ L�, and let ��L� = ��L�

be the associated affine space. Let Is� t�L� be the ideal in k
L� generated by
all the ti-minors contained in Li, 1 ≤ i ≤ l, and let Ds� t�L� ⊂ ��L� be the
variety defined by the ideal Is� t�L�. We call Ds� t�L� a ladder determinantal
variety (associated to an one-sided ladder).

Let & = �ω1� � � � � ωh�. For each 1 < j ≤ l, let

&j =
{
ωi � 1 ≤ i ≤ h such that sj−1 < bi < sj and sj − bi ≤ tj−1 − tj

}
�

Let

&′ =
(
& \

l⋃
j=2

&j

) ⋃
&j �=�

��sj� aj∗ ���

Let L′ be the one-sided ladder in X defined by the set of outside corners &′.
Then it is easily seen that Ds� t�L� � Ds� t�L′� × �d, where d = �L� − �L′�.

Let ω′
k = �b′k� a′k� ∈ &′, for some k, 1 ≤ k ≤ h′, where h′ = �&′�. If

b′k �∈ �s1� � � � � sl�, then b′k = bi for some i, 1 ≤ i ≤ h, and we define sj− =
bi, tj− = tj−1, sj+ = sj , tj+ = tj , where j is the unique integer such that
sj < bi < sj+1. Let s′ (resp. t′) be the sequence obtained from s (resp. t)
by replacing sj (resp. tj) with sj− and sj+ (resp. tj− and tj+) for all k such
that b′k �∈ �s1� � � � � sl�, j being the unique integer such that sj−1 < bi < sj ,
and i being given by b′k = bi. Let l′ = �s′�. Then s′ and t′ satisfy (L1),



468 gonciulea and lakshmibai

and in addition we have �b′1� � � � � b′h′ � ⊂ �s′1� � � � � s′l′ �. It is easily seen that
Ds� t�L′� = Ds′� t′ �L′�, and hence

Ds� t�L� � Ds′� t′ �L′� × �d�

Therefore it is enough to study Ds� t�L� with s� t ∈ �l
+ such that

�s1� � � � � sl� ⊃ �b1� � � � � bh�� (L2)

Without loss of generality, we can also assume that

tl ≥ 2 and ti−1 > ti if si �∈ �b1� � � � � bh�� 1 < i ≤ l� (L3)

For 1 ≤ i ≤ l, let

L�i� = �xba � si ≤ b ≤ m� 1 ≤ a ≤ ai∗��
Note that the ideal Is� t�L� is generated by the ti-minors of X contained in
L�i�, 1 ≤ i ≤ l.

2. GENERALITIES ON G/Q

Let G be a semisimple and simply connected algebraic group defined
over an algebraically closed field of arbitrary characteristic. Let T ⊂ G be
a maximal torus, and let B ⊃ T be a Borel subgroup. Let R be the root
system of G relative to T . Let R+ (resp. S) be the system of positive (resp.
simple) roots of R with respect to B. Let R− be the corresponding system
of negative roots.

2.1. The Chevalley–Bruhat Order

Let w ∈ W . A minimal expression for w as a product of simple reflections
is called a reduced expression for w. We denote by l�w� the length of a
reduced expression for w (as a product of simple refelections). We have a
partial order on W , the well-known Chevalley–Bruhat order, namely w1 ≥
w2, if a reduced expression for w1 contains a subexpression that is a reduced
expression for w2.

2.2. The Weyl Subgroup WQ

Let Q be a parabolic subgroup of G containing B. Associated to Q, there
is a subset SQ of S such that Q is the subgroup of G generated by B and
�U−α � α ∈ R+

Q�, where R+
Q = �α ∈ R+ � α = ∑

β∈SQ aββ� (here, for β ∈ R,
Uβ denotes the one-dimensional unipotent subgroup of G associated to β).
Let WQ be the Weyl group of Q (note that WQ is simply the subgroup of W
generated by �sα � α ∈ SQ�; here, for α ∈ S, sα denotes the simple reflection
(considered as an element of W ), associated to α).
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2.3. The Set W min
Q of Minimal Representatives of W/WQ

In each coset wWQ, there exists a unique element of minimal length (cf.
[2]). Let W min

Q be this set of representatives of W/WQ. The set W min
Q is called

the set of minimal representatives of W/WQ. We have

W min
Q = �w ∈ W � l�ww′� = l�w� + l�w′�� for all w′ ∈ Q��

The set W min
Q may also be characterized as

W min
Q = �w ∈ W � w�α� > 0� for all α ∈ SQ�

(here by a root being > 0 we mean β ∈ R+).
In the sequel, given w ∈ W , the minimal representative of wWQ in W

will be denoted by wmin
Q .

2.4. The Set W max
Q of Maximal Representatives of W/WQ

In each coset wWQ there exists a unique element of maximal length. Let
W max
Q be the set of these representatives of W/WQ. We have

W max
Q = �w ∈ W � w�α� < 0 for all α ∈ SQ��

Furthermore, if we denote by wQ the element of maximal length in WQ,
then we have

W max
Q = �wwQ � w ∈ W min

Q ��
In the sequel, given w ∈ W , the maximal representative of wWQ in W

will be denoted by wmax
Q .

2.5. Maximal Parabolic Subgroups

The set of maximal parabolic subgroups is in one-to-one correpondence
with S, namely given α ∈ S, the parabolic subgroup Q, where SQ = S \ �α�
is a maximal parabolic subgroup, and conversely. We shall denote Q, where
SQ = S \ �α� by Pα̂, and refer to it as the maximal parabolic subgroup
obtained by omitting α.

2.6. Schubert Varieties in G/Q

For w ∈ W , let us denote the point in G/Q corresponding to the coset
wQ by ew�Q. Then the set of T -fixed points in G/Q for the action given by
left multiplication is presisely �ew�Q � w ∈ W �. Let w ∈ W , and let XQ�w�
be the Zariski closure of Bew�Q in G/Q. Then XQ�w� with the canonical
reduced structure is called the Schubert variety in G/Q associated to wWQ.
In particular, we have bijections between W min

Q and the set of Schubert
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varieties in G/Q, and between W max
Q and the set of Schubert varieties in

G/Q. We have the well-known Bruhat decomposition

G/Q = .⋃
Bew�Q� XQ�θ� =

.⋃
w≤θ

Bew�Q� θ ∈ W�

As above, let wmin
Q (resp. wmax

Q ) denote the minimal (resp. maximal) rep-
resentative of wWQ. Let π� G/B → G/Q be the canonical projection. Then
it can be easily seen that

π
∣∣
XB�wmax�� XB�wmax

Q � → XQ�w�
is a fibration with fiber � Q/B, while

π
∣∣
XB�wmin�� XB�wmin

Q � → XQ�w�

is birational. In particular, we have dimXQ�w� = dimXB�wmin
Q �.

2.7. The Big Cell and the Opposite Big Cell

The B-orbit Bew0
in G/Q (w0 being the unique element of maximal

length in W ) is called the big cell in G/Q. It is a dense open subset of
G/Q, and it is identified with Ru�Q�, the unipotent radical of Q, namely
the subgroup of B generated by �Uα � α ∈ R+ \ R+

Q� (cf. [1]). Let B− be
the Borel subgroup of G opposite B, i.e., the subgroup of G generated by
T and �Uα � α ∈ R−�. The B−-orbit B−eid�Q is called the opposite big cell
in G/Q. This is again a dense open subset of G/Q, and it is identified with
the unipotent subgroup of B− generated by �Uα � α ∈ R− \ R−

Q�. Observe
that both the big cell and the opposite big cell can be identified with �NQ ,
where NQ = #�R+ \ R+

Q�.
For a Schubert variety X�w� ⊂ G/Q, B−eid ∩X�w� is called the opposite

cell in X�w� (by abuse of language). In general, it is not a cell (except for
w = w0). It is a nonempty affine open subvariety of X�w� and a closed
subvariety of the affine space B−eid.

2.8. Equations Defining a Schubert Variety

Let L be an ample line bundle on G/Q. Consider the projective embed-
ding G/Q ↪→ Proj�H0�G/Q�L��. We recall (cf. [20]) that the homogeneous
ideal of G/Q for this embedding is generated in degree 2, and any Schu-
bert variety X in G/Q is scheme theoretically (even at the cone level) the
intersection of G/Q with all the hyperplanes in Proj�H0�G/Q�L�� contain-
ing X.

For a maximal parabolic subgroup Pi, let us denote the ample generator
of Pic �G/Pi� (� �) by Li.
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Given a parabolic subgroup Q, let us denote S \ SQ by �α1� � � � � αt�, for
some t. Let

R = ⊕
a

H0
(
G/Q�

⊗
i

L
ai
i

)

Rw = ⊕
a

H0
(
XQ�w��

⊗
i

L
ai
i

)
�

where a = �a1� � � � � at� ∈ �t
+. We recall (cf. [10]) that the natural map⊕

Sa1�H0�G/Q�L1�� ⊗ · · · ⊗ Sa1�H0�G/Q�Lt�� → R

is surjective, and its kernel is generated as an ideal by elements of total
degree 2. Furthermore, the restriction map R → Rw is surjective, and its
kernel is generated as an ideal by elements of total degree 1.

3. OPPOSITE CELLS IN SCHUBERT VARIETIES IN SL�n�/B

Let G = SL�n�, the special linear group of rank n − 1. Let T be the
maximal torus consisting of all the diagonal matrices in G, and let B be
the Borel subgroup consisting of all the upper triangular matrices in G. It
is well known that W can be identified with �n, the symmetric group on n
letters.

Following [2], we denote the simple roots by εi − εi+1, 1 ≤ i ≤ n − 1
(note that εi − εi+1 is the character sending diag�t1� � � � � tn� to tit

−1
i+1). Then

R = �εi − εj � 1 ≤ i� j ≤ n�, and the reflection sεi−εi+1
may be identified

with the transposition �i� j� in �n.
For α = αi �= εi − εi+1�, we also denote Pα̂ (resp. W min

Pα̂
) by just Pi

(resp. W i).

3.1. The Partially Ordered Set Id� n

Let Q = Pd. Then

Q =
{
A ∈ G

∣∣∣∣A =
( ∗ ∗
0�n−d�×d ∗

)}
�

WQ = �d × �n−d�

Hence

W min
Q = {�a1 � � � an� ∈ W � a1 < · · · < ad� ad+1 < · · · < an

}
�

Thus W min
Q may be identified with

Id� n �=
{
i = �i1� � � � � id� � 1 ≤ i1 < · · · < id ≤ n

}
�
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Given i, j ∈ Id� n, let Xi, Xj be the associated Schubert varieties in G/Pd.
We define i ≥ j ⇔ Xi ⊇ Xj (in other words, the partial order ≥ on Id� n is
induced by the Chevalley–Bruhat order on the set of Schubert varieties, via
the bijection in Section 2.6). In particular, we have

i ≥ j ⇔ it ≥ jt for all 1 ≤ t ≤ d�

3.2. The Chevalley–Bruhat Order on �n

For w1, w2 ∈ W , we have

X�w1� ⊂ X�w2� ⇔ πd�X�w1�� ⊂ πd�X�w2���
for all 1 ≤ d ≤ n− 1�

where πd is the canonical projection G/B → G/Pd. Hence we obtain that
for �a1 � � � an�, �b1 � � � bn� ∈ �n,

�a1 � � � an� ≥ �b1 � � � bn� ⇔ �a1 � � � ad�↑ ≥ �b1 � � � bd�↑�
for all 1 ≤ d ≤ n− 1

(here, for a d-tuple �t1 � � � td� of distinct integers, �t1 � � � td�↑ denotes the
ordered d-tuple obtained from �t1� � � � � td� by arranging its elements in
ascending order).

3.3. The Partially Ordered Set Ia1� ���� ak
Let Q be a parabolic subgroup in SL�n�. Let 1 ≤ a1 < · · · < ak ≤ n, such

that SQ = S \ �αa1� � � � � αak� (we follow [2] for indexing the simple roots).
Then Q = Pa1 ∩ · · · ∩ Pak , and WQ = �a1

× �a2−a1 × · · · × �n−ak . Let

Ia1� ���� ak =
{�i1� � � � � ik� ∈ Ia1� n × · · · × Iak� n �

it ⊂ it+1 for all 1 ≤ t ≤ k− 1
}
�

Then it is easily seen that W min
Q may be identified with Ia1� ���� ak .

The partial order on the set of Schubert varieties in G/Q (given by in-
clusion) induces a partial order ≥ on Ia1� ���� ak , namely, for i = �i1� � � � � ik�,
j = �j

1
� � � � � j

k
� ∈ Ia1� ���� ak , i ≥ j ⇔ it ≥ j

t
for all 1 ≤ t ≤ k.

3.4. The Minimal and Maximal Representatives as Permutations

Let w ∈ WQ, and let i = �i1� � � � � ik� be the element in Ia1� ���� ak that
corresponds to wmin

Q . As a permutation, the element wmin
Q is given by i1,

followed by i2 \ i1 arranged in ascending order, and so on, ending with
�1� � � � � n� \ ik arranged in ascending order. Similarly, as a permutation,
the element wmax

Q is given by i1 arranged in descending order, followed by
i2 \ i1 arranged in descending order, etc.
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3.5. The Opposite Big Cell in G/Q

Let Q = ⋂k
t=1 Pat . Let a = n− ak, and let Q be the parabolic subgroup

consisting of all the elements of G of the form

A1 ∗ ∗ · · · ∗ ∗
0 A2 ∗ · · · ∗ ∗
���

���
���

���
���

0 0 0 · · · Ak ∗
0 0 0 · · · 0 A


 �

where At is a matrix of size ct × ct , ct = at − at−1, 1 ≤ t ≤ k (here a0 = 0),
A is a matrix of size a× a, and xml = 0, m > at , l ≤ at , 1 ≤ t ≤ k. Denote
by O− the subgroup of G generated by �Uα � α ∈ R− \ R−

Q�. Then O−

consists of the elements of G of the form

I1 0 0 · · · 0 0
∗ I2 0 · · · 0 0
���

���
���

���
���

∗ ∗ ∗ · · · Ik 0
∗ ∗ ∗ · · · ∗ Ia


 �

where It is the ct × ct identity matrix, 1 ≤ t ≤ k, Ia is the a × a identity
matrix, and if xml �= 0, withm �= l, thenm > at , l ≤ at for some t, 1 ≤ t ≤ k.
Furthermore, the restriction of the canonical morphism f � G → G/Q to
O− is an open immersion, and f �O−� � B−eid�Q. Thus B−eid�Q is identified
with O−.

3.6. Plücker Coordinates on the Grassmannian

Let Gd�n be the Grassmannian variety, consisting of d-dimensional sub-
spaces of an n-dimensional vector space V . Let us identify V with kn, and
denote the standard basis of kn by �ei � 1 ≤ i ≤ n�. Consider the Plücker
embedding fd� Gd�n ↪→ ��∧dV �, where ∧dV is the dth exterior power of V .
For i = �i1� � � � � id� ∈ Id� n, let ei = ei1 ∧ · · · ∧ eid . Then the set �ei � i ∈ Id� n�
is a basis for ∧dV . Let us denote the basis of �∧dV �∗ (the linear dual of
∧dV ) dual to �ei � i ∈ Id� n� by �pj � j ∈ Id� n�. Then �pj � j ∈ Id� n� gives a
system of coordinates for ��∧dV �. These are the so-called Plücker coordi-
nates.

3.7. Schubert Varieties in the Grassmannian

Let Q = Pd. We have

Gd�n � G/Pd�



474 gonciulea and lakshmibai

Let i = �i1� � � � � id� ∈ Id� n. Then the T -fixed point ei� Pd is simply the d-
dimensional span of �ei1� � � � � eid�. Thus XPd

�i� is simply the Zariski closure
of B
ei1 ∧ · · · ∧ eid � in ��∧dV �.

In view of the Bruhat decomposition for XPd
�i� (cf. Section 2.6), we have

pj
∣∣
XPd

�i� �= 0 ⇔ i ≥ j�

3.8. Evaluation of Plücker Coordinates on the Opposite Big Cell in G/Pd

Consider the morphism φd� G→ ��∧dV �, where φd = fd ◦ θd, θd being
the natural projection G → G/Pd. Then pj�φd�g�� is simply the minor
of g consisting of the first d columns and the rows with indices j1� � � � � jd.
Now, denote by Zd the unipotent subgroup of G generated by �Uα � α ∈
R− \ R−

Pd
�. We have, as in Section 3.5,

Zd =
{(

Id 0d×�n−d�
A�n−d�×d In−d

)
∈ G

}
�

As in Section 3.5, we identify Zd with the opposite big cell in G/Pd.
Then, given z ∈ Zd, the Plücker coordinate pj evaluated at z is simply
a certain minor of A, which may be explicitly described as follows. Let
j = �j1� � � � � jd�, and let jr be the largest entry ≤ d. Let �k1� � � � � kd−r�
be the complement of �j1� � � � � jr� in �1� � � � � d�. Then this minor of A is
given by column indices k1� � � � kd−r and row indices jr+1� � � � � jd (here the
rows of A are indexed as d + 1� � � � � n). Conversely, given a minor of A,
say, with column indices b1� � � � � bs and row indices id−s+1� � � � � id, it is the
evaluation of the Plücker coordinate pi at z, where i = �i1� � � � � id� may be
described as follows: �i1� � � � � id−s� is the complement of �b1� � � � � bs� in
�1� � � � � d�, and id−s+1� � � � � id are simply the row indices (again, the rows
of A are indexed as d + 1� � � � � n).

3.9. Evaluation of the Plücker Coordinates on the Opposite Big Cell in G/Q

Consider

f � G→ G/Q ↪→ G/Pa1 × · · · ×G/Pak ↪→ P1 × · · · × Pk�

where Pt = ��∧at V �. Denoting the restriction of f to O− also by just f , we
obtain an embedding f � O− ↪→ P1 × · · · × Pk, O− having been identified
with the opposite big cell in G/Q. For z ∈ O−, the multi-Plücker coordi-
nates of f �z� are simply all the at × at minors of z with column indices
�1� � � � � at�, 1 ≤ t ≤ k.
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3.10. Equations Defining the Cones over Schubert Varieties in Gd�n

Let Q = Pd. Given a d-tuple i = �i1� � � � � id� ∈ Id� n, let us denote the
associated element of W min

Pd
by θi. For simplicity of notation, let us denote

Pd by just P , and θi by just θ. Then, by Section 3.7, XP�θ� is simply the
Zariski closure of B
ei1 ∧ · · · ∧ eid � in ��∧dV �. Now using Section 2.8, we
obtain that the restriction map R → Rθ is surjective, and the kernel is
generated as an ideal by �pj � i �≥ j�.

3.11. Equations Defining Multicones over Schubert Varieties in G/Q

Let Q be as in Section 3.5. Let XQ�w� ⊂ G/Q. Denoting R, Rw as in
Section 2.8, the kernel of the restriction map R → Rw is generated by the
kernel of R1 → �R�w��1; but now, in view of Section 3.7, this kernel is the
span of

�pi � i ∈ Id� n� d ∈ �a1� � � � � ak�� w�d� �≥ i��

where w�d� is the d-tuple corresponding to the Schubert variety that is the
image of XQ�w� under the projection G/Q → G/Pat , 1 ≤ t ≤ k.

3.12. Ideal of the Opposite Cell in XQ�w�
Let us denote B−eid�Q ∩XQ�w� by just Aw. Then as in Section 2.7, we

identify B−eid�Q with the unipotent subgroup O− generated by �Uα � α ∈
R− \ R−

Q� and consider Aw as a closed subvariety of O−. In view of Sec-
tion 3.11, we obtain that the ideal defining Aw in O− is generated by

�pi � i ∈ Id� n� d ∈ �a1� � � � � ak�� w�d� �≥ i��

4. TWO LEMMAS RELATED TO THE EVALUATION OF
PLÜCKER COORDINATES ON THE OPPOSITE CELL

OF A SCHUBERT VARIETY IN G/Q

Let G = SL�n�, 1 ≤ a1 < · · · < ah ≤ n, Q = Pa1 ∩ · · · ∩ Pah . Let O
− be

the opposite big cell in G/Q. Let X = �xba�, 1 ≤ b, a ≤ n, be a generic
n× n matrix and let H be the one-sided ladder in X defined by the outside
corners �ai + 1� ai�, 1 ≤ i ≤ h. Clearly, ��H� � O−. Let X− = �x−ba�, 1 ≤ b,
a ≤ n, where

x−ba =


xba� if �b� a� ∈ H

1� if b = a

0� otherwise.
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Note that, given τ ∈ W ai , for some i, 1 ≤ i ≤ h, the function pτ�O− repre-
sents the determinant of the ai × ai submatrix T of X− whose row indices
are �τ�1�� � � � � τ�ai�� and column indices are �1� � � � � ai�.

Let Hi = �xba � ai + 1 ≤ b ≤ n� 1 ≤ a ≤ ai�, 1 ≤ i ≤ h.

Lemma 4.1. Let M be a t × t matrix contained in Hi, for some i, 1 ≤
i ≤ h, with row indices r1 < · · · < rt . Then detM belongs to the ideal of
k
H� generated by pφ�O− , with φ ∈ W ai such that �φ�1�� � � � � φ�ai�� ∩ �ai +
1� � � � � n� = �r1� � � � � rt�.

Proof. Denote by c1 < · · · < ct the column indices of M . Let τ =
��1� � � � � ai� \ �c1� � � � � ct�� ∪ �r1� � � � � rt�. Then τ ∈ W ai , and pτ�O− = detT ,
where T is the ai × ai submatrix of X− with row indices �τ�1�� � � � � τ�ai��
and column indices �1� � � � � ai�. Using Laplace expansion with respect to
the last t rows of T , we obtain

detT = ∑± detNc′1� ���� c
′
t
detMc′1� ���� c

′
t
� �∗�

the sum being taken over all subsets with t elements �c′1� � � � � c′t� of
�1� � � � � ai� , where Nc′1�����c

′
t

is the �ai − t� × �ai − t� submatrix of
X− with row indices �1� � � � � ai� \ �c1� � � � � ct� and column indices
�1� � � � � ai� \ �c′1� � � � � c′t�, and Mc′1�����c

′
t

is the t × t submatrix of X−

with row indices �r1� � � � � rt� and column indices �c′1� � � � � c′t�. Note that
Mc1�����ct

=M , and Nc1�����ct
is a lower triangular matrix, with all diagonal en-

tries equal to 1, and hence detM appears in �∗�, and its coefficient is ±1.
Also note that Nc′1�����c

′
t
is obtained from Nc1�����ct

by replacing the columns
with indices c′1� � � � � c

′
t by the columns with indices c1� � � � � ct .

Let ≥ denote the partial order on It� ai as in Section 3.1, namely
�d1� � � � � dt� ≥ �c1� � � � � ct� if dj ≥ cj for all 1 ≤ j ≤ t. We prove the
lemma by decreasing induction with respect to the order ≥ on the t-tuple
�c1� � � � � ct� consisting of the column indices of M .

If cj > ai−1 for all 1 ≤ j ≤ t, then for �c′1� � � � � c′t� �= �c1� � � � � ct� we have
detNc′1�����c

′
t
= 0, since at least one of c1� � � � � ct is an index for a column

in Nc′1�����c
′
t
, and all entries of this column are 0. Thus, in this case �∗� re-

duces to det T = ± detM , i.e., detM = ±pτ�O− , with τ ∈ W ai such that
�τ�1�� � � � � τ�ai�� ∩ �ai + 1� � � � � n� = �r1� � � � � rt�.

Assume now that the assertion is true for all matrices with row indices
r1 < · · · < rt and column indices d1 < · · · < dt such that �d1� � � � � dt� >
�c1� � � � � ct� (i.e., such that dj ≥ cj for all 1 ≤ j ≤ t and �d1� � � � � dt� �=
�c1� � � � � ct�). We shall now prove it for the matrix M with row indices r1 <
· · · < rt and column indices c1 < · · · < ct . Consider a typical Nc′1� ���� c

′
t
in

�∗�. If there exists a j such that c′j < cj , then the column with index cj is
replacing the column with index c′j while obtaining Nc′1�����c

′
t
from Nc1� ���� ct

;
hence Nc′1� ���� c

′
t
is still lower triangular, but the diagonal entry in the column
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with index cj is 0, which implies that detNc′1� ���� c
′
t
= 0. Consequently we

obtain

detT = ± detM +∑± detNc′1� ���� c
′
t
detMc′1� ���� c

′
t
�

and hence

detM = ±pτ�O− +∑± detNc′1� ���� c
′
t
detMc′1� ���� c

′
t
�

the sum being taken over all �c1� � � � c′t� ∈ It� ai such that �c′1� � � � � c′t� >
�c1� � � � � ct�. The required result now follows by induction hypothesis.

Lemma 4.2. Let 1 ≤ t ≤ a ≤ ai, 1 ≤ s ≤ n, and τ ∈ W ai such that
τ�a − t + 1� ≥ s. Then pτ�O− belongs to the ideal of k
H� generated by t-
minors in X− with row indices ≥ s and column indices ≤ a.

Proof. Let T be the ai × ai submatrix of X− with row indices �τ�1��
� � � � τ�ai�� and column indices �1� � � � � ai�. Then pτ�O− = detT . Using
Laplace expansion with respect to the first a columns, we have detT =∑

p detAp detBp, whereAp (resp. Bp) is an a× a (resp. �ai− a�× �ai− a�)
matrix. Clearly, all the column indices of a typical Ap are ≤ a, and since
τ�a − t + 1� ≥ s, at least t of the row indices of Ap are ≥ s. Using
Laplace expansion for Ap with respect to t rows with indices ≥ s, we
obtain detAp = ∑

q detCq detDq, where Cq (resp. Dq) is a t × t (resp.
�a− t� × �a− t�) matrix, the row indices of Cq are ≥ s, and column indices
of Cq are ≤ a. The required result follows from this.

5. LADDER DETERMINANTAL VARIETIES AND
SCHUBERT VARIETIES

Let L ⊂ X be a one-sided ladder in X defined by the outside corners
�bi� ai�, 1 ≤ i ≤ h, 1 ≤ b1 < · · · < bh < n, 1 < a1 < · · · < ah ≤ n, where
X is a generic n × n matrix X = �xba�, with n large enough such that
L is situated below the main diagonal, i.e., bi ≥ ai + 1, 1 ≤ i ≤ h. Let
G = SL�n�, Q = Pa1 ∩ · · · ∩ Pah . Let O

− be the opposite big cell in G/Q.
Let H be the one-sided ladder defined by the outside corners �ai + 1� ai�,
1 ≤ i ≤ h. Let s� t ∈ �l

+, satisfying (L1), (L2), and (L3), as in Section 1, with
m = n. Let notations be as in Section 1. Let Z be the variety in ��H� � O−

defined by the vanishing of the ti-minors in L�i�, 1 ≤ i ≤ l. Note that
Z � Ds� t�L� × ��H \ L� � Ds� t�L� × �r , where r = dim SL�n�/Q− �L�.

We shall now define an element w ∈ W min
Q , such that the variety Z identi-

fies with the opposite cell in the Schubert variety X�w� in G/Q. We define
w ∈ W min

Q by specifying w�ai� ∈ W ai , 1 ≤ i ≤ h, where πi�X�w�� = X�w�ai��
under the projection πi� G/Q → G/Pai .
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Define w�ai�, 1 ≤ i ≤ h, inductively, as the (unique) maximal element in
W ai such that

(1) w�ai��ai − tj + 1� = sj − 1 for all j ∈ �1� � � � � l� such that sj ≥ bi,
and tj �= tj−1 if j > 1.

(2) If i > 1, then w�ai−1� ⊂ w�ai�.

Note that w�ai�, 1 ≤ i ≤ h, is well defined in W i, and w is well defined as
an element in W min

Q .

5.1. Let us denote the distinct elements in �t1� � � � � tl� by t1 = ti1 >
ti2 > · · · > tim = tl, where tik−1 > tik for 2 ≤ k ≤ m. For 2 ≤ k ≤ m,
let Ik = 
eik� sik − 1�, where eik = sik − �tik−1

− tik�. Let I1 = 
b1 − �a1 −
t1 + 1�� b1 − 1�, Im+1 = 
n − tl + 2� n� (here for p� q ∈ �, p < q, 
p� q�
denotes the set �p�p+ 1� � � � � q�).
Remark 5.2. Fix j, 1 ≤ j ≤ h. Let bj = sc , for some c, 1 ≤ c ≤ l. Let

ik be the smallest index such that sik > bj . Then in w�aj�, bj − 1 appears at
the �ai − tc + 1�th place and is followed by the blocks Ik� Ik+1� � � � � Im+1.

Lemma 5.3. We have

(1) w�a1� = I1 ∪ I2 ∪ · · · ∪ Im+1.
(2) Ij ⊂ w�ai�, 1 ≤ j ≤ m+ 1, 1 ≤ i ≤ h.

(3) The entries in w�ai� \w�ai−1� are ≤ bi − 1, 1 ≤ i ≤ h.

All the assertions are clear from the definition of w.

Lemma 5.4. Fix j, 1 ≤ j ≤ l.

(1) We have sj �∈ Ir , 1 ≤ r ≤ m+ 1.
(2) Let tj = tik−1

, for some k, 2 ≤ k ≤ m+ 1. Then eik > sj

(here, eim+1
= n− tl + 2).

Proof. If k = m + 1, then tj = tl, eim+1
= n − tl + 2 > sj (since tj <

n− sj + 1). Furthermore, sj ≥ sim , and hence sj �∈ Ir for any 1 ≤ r ≤ m+ 1.
Let then k ≤ m. We have sik − sj > tj − tik = tik−1

− tik . This implies eik > sj .
Hence sj �∈ Ir , r ≥ k. Also the fact that sj ≥ sik−1

implies that sj �∈ Ir ,
r ≤ k− 1.

Remark 5.5. Consider a block of consecutive integers in w�ai�, 1 ≤ i ≤
h, ending with sj − 1 at the �ak − tj + 1�th place, for some k ≤ i. Then
either k = i or k = j∗; in other words, k is the largest integer in �1� � � � � i�
such that bk ≤ si. In particular, if j∗ ≤ i, then k = j∗.

Theorem 5.6. The variety Z �= Ds� t�L�×�r� identifies with the opposite
cell in X�w�, i.e., Z = X�w� ∩O− (scheme theoretically).
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Proof. Let f = detM , where M is a ti × ti matrix contained in
L�i� for some 1 ≤ i ≤ l, be a generator of I�Z�. Let k = i∗, i.e., k
is the largest integer such that bk ≤ si. Then M is contained in Hk.
By Lemma 4.1, f can be written in the form f = ∑

gφpφ�O− , with
φ ∈ W ak such that �φ�1�� � � � � φ�ak�� ∩ �ak + 1� � � � � n� = �r1� � � � � rti�,
and gφ ∈ k
H� (here r1� � � � � rti are the row indices of M). In particular, we
have φ�ak − ti + 1� = r1. Since M is contained in L�i�, we have r1 ≥ si, and
hence φ�ak − ti + 1� ≥ si. We have w�ak��ak − ti + 1� = si − 1, and hence
φ�ak− ti+ 1� > w�ak��ak− ti+ 1�. This shows that φ �≤ w�ak�, and therefore
pφ ∈ I�X�w� ∩O−�. Thus f ∈ I�X�w� ∩O−�.

Let now g be a generator of the ideal I�X�w� ∩ O−�, i.e., g = pτ�O− ,
with τ ∈ W ai for some i, 1 ≤ i ≤ h, such that τ �≤ w�ai�. Since w�ai� consists
of several blocks of consecutive integers ending with sm − 1 at the �ak −
tm + 1�th place, for some m ∈ �1� � � � � l�, where k ∈ �1� � � � � i� is the largest
index such that bk ≤ sm, and a last index ending with n at the aith place,
it follows that τ�ak − tm + 1� ≥ sm for some m, where k ∈ �1� � � � � i� is the
largest index such that sm ≥ bk. Using Lemma 4.2, we deduce that pτ�O−

belongs to the ideal of k
H� generated by tm-minors in L with row indices
≥ sm and column indices ≤ ak. Thus pτ�O− belongs to the ideal generated
by tm-minors contained in L�m�, which shows that g ∈ I�Z�.

Since the Schubert varieties are irreducible, normal, and Cohen–
Macaulay and have rational singularities (cf. [10, 18–20]), as a consequence
of Theorem 5.6 we obtain

Theorem 5.7. The variety Ds� t�L� is irreducible, normal, and Cohen–
Macaulay and has rational singularities.

6. THE DIMENSION OF Ds� t�L�

Let X = �xba�, 1 ≤ b ≤ m, 1 ≤ a ≤ n be an m× n matrix of indetermi-
nates.

6.1. The Partial Order among Minors

We shall denote the determinant of the r × r submatrix of X whose
row indices are i1 < · · · < ir and column indices are j1 < · · · < jr by

i1� � � � � ir �j1� � � � � jr�. We introduce a partial order on the set of all minors
of X as follows: 
i1� � � � � ir �j1� � � � � jr� ≤ 
i′1� � � � � i′s�j′1� � � � � j′s� if

r ≥ s and ir ≥ i′s� ir−1 ≥ i′s−1� � � � � ir−s+1 ≥ i′1�

j1 ≤ j′1� j2 ≤ j′2� � � � � js ≤ j′s�
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We say that an ideal I of k
X� is cogenerated by a given minor M if I
is generated by the minors in the set �M ′ � M ′ a minor of X such that
M ′ �≥M�.

6.2. The Monomial Order ≺ and Gröbner Bases
We introduce a total order on the variables as follows:

xm1 > xm2 > · · · > xmn > xm−1 1 > xm−1 2 > · · ·
> xm−1n > · · · > x11 > x12 > · · · > x1n�

This induces a total order, namely the lexicographic order, on the set of
monomials in k
X� = k
x11� � � � � xmn�, denoted by ≺. The largest monomial
(with respect to ≺) present in a polynomial f ∈ k
X� is called the initial
term of f and is denoted by in�f �. Note that the initial term (with respect
to ≺) of a minor of X is equal to the product of its elements on the skew
diagonal.

Given an ideal I ⊂ k
X�, a set G ⊂ I is called a Gröbner basis of I (with
respect to the monomial order ≺) if the ideal in�I� generated by the initial
terms of the elements in I is generated by the initial terms of the elements
in G. Note that a Gröbner basis of I generates I as an ideal.

We recall the following (see [9]).

Theorem 6.3. Let M = 
i1� � � � � ir �j1� � � � � jr� be a minor of X, and let I
be the ideal of k
X� cogenerated by M . For 1 ≤ t ≤ r + 1, let Gt be the set of
all t-minors 
i′1� � � � � i′r �j′1� � � � � j′r� satisfying the conditions

i′t ≤ ir� i′t−1 ≤ ir−1� � � � � i′2 ≤ ir−t+2�

j′t−1 ≥ jt−1� � � � � j′2 ≥ j2� j
′
1 ≥ j1

(1)

if t ≤ r� then i′1 > ir−t+1 or j′t < jt � (2)

Then the set G = ⋃r+1
i=1 Gi is a Gröbner basis for the ideal I with respect to

the monomial order ≺.

6.4. The Ideal Is� t�X� and the Set �
The matrix X can be viewed as a one-side ladder with a unique outside

corner, namely �1� n�. Let s� t ∈ �l
+ satisfy (L1), as in Section 1 (where

b1 = 1). Let Is� t�X� be as in Section 1, for L = X. In other words, Is� t�X�
is the ideal of k
X� generated by the ti-minors in Xi = �xba � si ≤ b ≤ m�,
1 ≤ i ≤ l. For 1 ≤ i < l, let �i be the set consisting of the ti minors in
Xi such that the number of rows contained in Xj is less than tj , for all
j, i < j ≤ l, and let �l be the set consisting of the tl minors in Xl. Let
� = ⋃l

i=1 �i. Clearly, Is� t�X� is generated by �.
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Proposition 6.5. Let s� t ∈ �l
+ satisfy (L1), and let � be as above. Then

� is a Gröbner basis of Is� t�X�, with respect to the monomial order ≺.
Proof. LetMs� t be the minor of X of size t1 − 1 given by the last ti − ti+1

rows of Xi \Xi+1, 1 ≤ i < l, and the last tl − 1 rows of Xl, and the first t1 − 1
columns of X. First we show that the ideal Is� t�X� is cogenerated by Ms� t.
Let Ms� t = 
i1� � � � � it1−1�j1� � � � � jt1−1�, and � = �M ′ � M ′ �≥ Ms� t�. Note
thatM ′ ≥Ms� t if and only ifM ′ contains at most ti− 1 rows in Xi, 1 ≤ i ≤ l.
Thus � = ⋃l

i=1 �i, where �i = �M ′ � M ′ contains at least ti rows in Xi�.
Now �i ⊂ Is� t�X�, 1 ≤ i ≤ l, and hence $� % ⊂ Is� t�X�. On the other hand,
�i ⊂ �i, 1 ≤ i ≤ l, and $�% = Is� t�X�. Therefore Is� t�X� = $� %, i.e., Is� t�X�
is cogenerated by Ms� t.

The inequalities regarding j’s in condition �1� of Theorem 6.3 are redun-
dant in our case (since jt = t, 1 ≤ t ≤ t1 − 1); also, condition �2� reduces to
the condition that if t ≤ r, then i′1 > ir−t+1 (since jt = t, and hence j′t ≥ jt
for all t, 1 ≤ t ≤ t1 − 1). Therefore, in our case the conditions �1� and �2�
are equivalent to

i′t ≤ it1−1� i′t−1 ≤ it1−2� � � � � i′2 ≤ it1−t+1�

and if t ≤ t1 − 1� then i′1 > it1−t �

Note that the above inequalities imply it1−t+1 ≥ i′2 > i′1 > it1−t ; now, if
t �∈ �t1� � � � � tl�, then this is not possible, since it1−t+1 = it1−t + 1. Hence
Gt = � for t ∈ �1� � � � � t1� \ �t1� � � � � tl�. It is easily seen that Gti

= �i for
1 ≤ i ≤ l. Therefore Theorem 6.3 implies that � is a Gröbner basis for
Is� t�X� with respect to the monomial order ≺.

We recall the following well known lemma.

Lemma 6.6. Let k
X� be the polynomial ring in the set of indeterminates
X, let I be an ideal of k
X�, and let G be a Gröbner basis of I with respect
to a certain monomial order. Let L ⊂ X such that

if f ∈ G and in�f � ∈ k
L�� then f ∈ k
L��
Then the set G ∩ k
L� is a Gröbner basis of the ideal I ∩ k
L�.

Proof. Let g ∈ I ∩ k
L�. Since G is a Gröbner basis of I, there exists
f ∈ G such that in�g� = $in�f �%. Since g ∈ k
L�, we have in�g� ∈ k
L�,
and hence in�f � ∈ k
L�. By hypothesis, f ∈ k
L�, and hence f ∈ G ∩ k
L�.
Therefore, the initial terms of the elements of G ∩ k
L� generate the ideal
in�I ∩ k
L��.

As a direct consequence, we obtain the following.

Proposition 6.7. Let L ⊂ X be a one-sided ladder and let s� t ∈ �l
+, sat-

isfying (L1). Then Is� t�L� = Is� t�X� ∩ k
L�, and �L = � ∩ k
L� is a Gröbner
basis of Is� t�L� with respect to the monomial order ≺.
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Proof. By Proposition 6.5, � is a Gröbner basis of Is� t�X�. By Lem-
ma 6.6, �L is a Gröbner basis of the ideal Is� t�X� ∩ k
L�. On the other
hand it is easily seen that �L generates Is� t�L�, and the result follows.

6.8. The set �

We construct a set �s� t�X� ⊂ X as follows. Let �l�X� be the submatrix
obtained from Xl by deleting the first tl − 1 columns and the last tl − 1
rows. For i < l, let �i�X� be the matrix obtained from X̃i = Xi \ Xi+1
by deleting the first ti − 1 columns and the last ti − ti+1 rows. Now let
�s� t�X� = ⋃l

i=1 �i�X�.
For a one-sided ladder L ⊂ X, and s� t ∈ �l

+ satisfying (L1), we define
�i�L� = �i�X� ∩ L, �s� t�L� = �s� t�X� ∩ L.

Note that in a solid minor in �L (i.e., a minor with consecutive row in-
dices and consecutive column indices), the smallest (for the order in 6.2)
element belongs to �s� t�L�, and conversely, an element α ∈ �s� t�L� de-
termines uniquely a solid minor in �L having α as the smallest element.
Hence the number of elements in �s�t�L� is equal to the number of solid
minors in the set �L.

The following is a generalization of Proposition 8 in [7].

Proposition 6.9. Let L ⊂ X be a one-sided ladder, and let s� t ∈ �l
+

satisfying (L1). Then

codim ��L�Ds� t�L� = ��s� t�L���

Proof. By Proposition 6.7, the ideal Is� t�L� and the ideal Js� t�L� of
its initial terms determine graded quotient rings of k
L� having the same
Hilbert series, and hence the codimension of the variety Ds� t�L� is equal to
the height of the monomial ideal Js� t�L�. In general, the height of a mono-
mial ideal J in a polynomial ring k
x1� � � � � xN� is equal to the minimal
cardinality of a set � ⊂ �x1� � � � � xN� of variables such that

each monomial in a set of monomial generators for J
contains a variable from ��

�∗�

Let J = Js� t�L� and � = �s� t�L�. Then it is easy to see that � satisfies (*),
the set of monomial generators being the set of the initial terms of all the
ti-minors in Li, 1 ≤ i ≤ l. Let us denote =k = �xba ∈ L � b + a = k + 1�,
k ≥ 1. Then L = .⋃

k≥1=k, and � = .⋃
k≥1�� ∩ =k�.

Now let �′ ⊂ �xba � xba ∈ L� be a set such that ��′� < ���. Then there
exists a k such that ��′ ∩ =k� < �� ∩ =k� (in particular, � ∩ =k �= �). Let
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i ∈ �1� � � � � l� be the largest such that =k ∩ � ⊂ Li. Then

��′ ∩ �=k ∩ Li�� ≤ ��′ ∩ =k� < �� ∩ =k� = �=k ∩ Li� − �ti − 1��
Therefore there exist ti distinct variables in �=k ∩ Li� \ �′. Thus the initial
term of the ti-minor in Li having these elements on the skew diagonal does
not contain any variable in �′, and hence �′ does not satisfy (*).

Therefore � is a set of minimal cardinality among the sets satisfying (*),
and the required result follows.

7. THE SINGULAR LOCUS OF Ds� t�L�

Let X = �xba�, 1 ≤ b < m, 1 < a ≤ n be a m × n matrix of indetermi-
nates. Let L ⊂ X be an one-sided ladder defined by the outside corners
ωi = xbiai , 1 ≤ i ≤ h, 1 ≤ b1 < · · · < bh ≤ m, 1 ≤ a1 < · · · < ah ≤ n.
Let s� t ∈ �l

+ satisfy (L1), (L2), and (L3) of Section 1. We preserve the
notations of Section 1. Let V = Ds� t�L�, � = �s� t�L�.

For 1 ≤ i ≤ l, let Vi ⊂ ��L� be the variety defined by the vanishing of
the tj-minors in L�j�, with j ∈ �1� � � � � l� \ �i�, and the �ti − 1�-minors in
L�i�.
Theorem 7.1. With notations as above, we have

SingV =
l⋃

i=1

Vi�

Proof. For simplicity of notation, we identify the variable xba with the
element �b� a�.

First, we prove that Vi ⊂ SingV , for all 1 ≤ i ≤ l. Let x ∈ Vi for some
1 ≤ i ≤ l. Let � be the jacobian matrix associated to the variety V ⊂ ��L�,
evaluated at x. Then the rows of � are indexed by tj-minors in L�j�, 1 ≤
j ≤ l, and the columns are indexed by the elements α ∈ L. The �M�α�th
entry in � is equal to ±�detM ′��x�, where M ′ is the matrix obtained from
M by deleting the row and the column containing α, if α appears in M ,
and 0 otherwise.

We distinguish two cases.

(I) si ∈ �b1� � � � � bh�. Let si = bj , for some 1 ≤ j ≤ h. It is easily
seen that

ωj ∈ �s� t�L�
(since si+1 − si > ti − ti+1 and aj ≥ ti). Now consider the one-sided ladder
L′ obtained from L by deleting the element ωj , i.e., the one-sided lad-
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der defined by the outside corners

ω1 = �b1� a1�� � � � � ωj−1 = �bj−1� aj−1�� ωj− = �bj� aj − 1��
ωj+ = �bj + 1� aj�� ωj+1 = �bj+1� aj+1�� � � � � ωl = �bl� al��

where ωj− is present only if aj − 1 > aj−1, and ωj+ is present only if bj + 1 <
bj+1.

Since x ∈ Vi, a row of � indexed by a ti-minor involving ωj = xbjaj
is 0. Furthermore, the column of � indexed by ωj is 0. Let � ′ be the matrix
obtained from � by deleting the column indexed by ωj and the rows indexed
by ti-minors containing ωj . Then

rank � = rank � ′�

since � ′ is obtained from � by deleting zero rows and columns. Let x′ =
�xα�α∈L′ . Then x′ ∈ Ds� t�L′�, and � ′ is the jacobian matrix associated to the
variety Ds� t�L′� ⊂ ��L′�, evaluated at x′. Thus

rank � ′ ≤ codim ��L′�Ds� t�L′��
Now, using Proposition 6.9 we obtain

codim ��L′�Ds� t�L′� = ∣∣�s� t�L′�� = ��s� t�L� \ �ωj�� < ��s� t�L�
∣∣

= codim ��L�Ds� t�L��
Hence rank� ′ < codim ��L�V , which implies rank� < codim ��L�V , i.e.,
x ∈ SingV .

(II) si �∈ �b1� � � � � bh�. We have i > 1 and ti−1 > ti. Let k = i∗,
i.e., k is the largest integer such that bk < si. Define s′ = �s1� � � � � si−1�
ŝi� si+1� � � � � sl�, t′ = �t1� � � � � ti−1� t̂i� ti+1� � � � � tl�. Let � = �s� t�L�, �′ =
�s′� t′ �L�, and

� = ⋃
j∈�1� ���� l�

�j� �′ = ⋃
j∈�1� ���� l�\�i�

�′
j�

as defined in Section 6.2. Then �j = �′
j for j �∈ �i− 1� i�, and

��� − ��′� = ��i−1� + ��i� − ��′
i−1�

= [�si − si−1� − �ti−1 − ti�
][
ak − �ti−1 − 1�]

+ [�si+1 − si� − �ti − ti+1�
][
ak − �ti − 1�]

− [�si+1 − si−1� − �ti−1 − ti+1�
][
ak − �ti−1 − 1�]

= [�si+1 − si� − �ti − ti+1�
]�ti−1 − ti� > 0
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(here si+1 = m+ 1, ti+1 = 1, if i = l). Therefore∣∣�s′� t′ �L�
∣∣ < ∣∣�s� t�L�

∣∣�
Since x ∈ Vi, a row indexed by a ti-minor contained in L�i� is 0. Let � ′

be the matrix obtained from � by deleting the rows indexed by ti-minors
contained in L�i�. Then

rank � = rank � ′�

Now, x ∈ Ds′� t′ �L�, and � ′ is the Jacobian matrix associated to the variety
Ds′� t′ �L� ⊂ ��L�, evaluated at x. Thus

rank � ′ ≤ codim ��L�Ds′� t′ �L��

Now, using Proposition 6.9 we obtain

codim ��L�Ds′� t′ �L� = ��s′� t′ �L�� < ��s�t�L�� = codim ��L�Ds� t�L��

Hence rank� ′ < codim ��L�V , which implies rank� < codim ��L�V , i.e.,
x ∈ SingV .

Now we prove that SingV ⊂ ⋃l
i=1 Vi. Let � = �s� t�L�, � = ⋃l

i=1 �i, as
defined in Section 6.8.

We introduce a total order on the set of minors of L of size r, with
r ≥ 1 fixed, as follows: 
i1� � � � � ir �j1� � � � � jr� < 
i′1� � � � � i′r �j′1� � � � � j′r� if there
exists 1 ≤ k ≤ r such that

either i1 = i′1� � � � � ik−1 = i′k−1� ik < i′k�

or i1 = i′1� � � � � ir = i′r� j1 = j′1� � � � � jk−1 = j′k−1� jk < j′k

(this is simply the lexicographic order on �i1� � � � � ir� j1� � � � � jr�). Let x ∈
V \ ⋃l

i=1 Vi. For each 1 ≤ i ≤ l, let Mi be the largest �ti − 1�-minor in
L�i� such that �detMi��x� �= 0. Let 	l be the set of elements in Ll not
in the rows or the columns given by the rows and the columns of Ml.
Clearly, �	l� = ��l�. By (decreasing) induction on i, suppose that, for some
i, 1 < i ≤ l, the sets 	i� � � � �	l have been constructed, such that

�1�i 	j ⊂ L�j�, i ≤ j ≤ l.

�2�i The sets 	i� � � � �	l are pairwise disjoint.

�3�i �	j� = ��j�, i ≤ j ≤ l.

�4�i 	j contains no elements appearing in the rows or in the columns
of L given by the rows and the columns of Mj , i ≤ j ≤ l.
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�5�i There exist ti − 1 rows in L�i� not containing any element from
	i ∪ · · · ∪ 	l.

We define the set 	i−1 as follows. Let r be the number of the rows of
Mi−1 contained in L̃�i− 1� = L�i− 1� \ L�i�. We distinguish two cases.

(I) ti−1 − ti ≥ r. In this case 	i−1 is obtained from L̃�i− 1� by delet-
ing the rows given by the rows ofMi−1, and ti−1 − ti− r other rows, followed
by the deletion of the ti−1 − 1 columns given by the columns of Mi−1. Then
properties �1�i−1 − �4�i−1 are obvious; the ti−1 − ti rows of L̃�i− 1�, which
were deleted while defining 	i−1, and the ti − 1 rows of L�i� in �5�i, in-
tersected with L�i − 1�, give ti−1 − 1 rows of L�i − 1� not containing any
elements in 	i−1 ∪ 	i ∪ · · · ∪ 	l, so that we have �5�i−1.

(II) ti−1 − ti < r. In this case 	i−1 is obtained from L̃�i− 1� by delet-
ing the r rows given by the rows of Mi−1, then adding r − ti−1 + ti rows
from the ti − 1 rows of L�i� in �5�i that are not rows of Mi−1, intersected
with L�i − 1� (this is possible, since there are ti−1 − 1− r rows of Mi−1 in
L�i�, and hence at least �ti − 1� − �ti−1 − 1− r� = r − ti−1 + ti rows from the
ti − 1 rows of L�i� in �5�i are not rows of Mi−1), followed by the deletion
of the ti−1 − 1 columns given by the columns of Mi−1. Again, the prop-
erties �1�i−1 − �4�i−1 are obvoius; the r rows of Mi−1 that were deleted
from L̃�i− 1�, and the �ti − 1� − �r − ti−1 + ti� rows from the ti − 1 rows in
�5�i that were not used while defining 	i−1, intersected with L�i − 1�, give
ti−1 − 1 rows of L�i− 1� not containing any elements in 	i−1 ∪ 	i ∪ · · · ∪ 	l,
so that we have �5�i−1.

Thus, using induction, we obtain the disjoint sets 	j ⊂ L�j�, 1 ≤ j ≤ l,
such that �	j� = ��j�, and 	j contains no elements in the rows or columns
of L given by the rows and columns of Mj .

For τ ∈ 	i ⊂ 	 , 1 ≤ i ≤ l, let Mτ be the ti-minor obtained from Mi by
adding the row and the column containing τ. Obviously, Mτ �= Mτ′ for τ,
τ′ ∈ 	 , with τ �= τ′.

We now take a total order on 	 , namely �b� a� > �b′� a′� if either b > b′,
or b = b′ and a > a′.

Let us fix τ ∈ 	 , say τ ∈ 	i for some i, 1 ≤ i ≤ l. Then the �Mτ� τ�th entry
in � is equal to ±�detMi��x�, so it is nonzero. Now let σ ∈ 	 , σ < τ. If σ is
not an entry ofMτ, then the �Mτ�σ�th entry of � is equal to 0. Assume now
that σ is the �r� s�th entry of Mτ. Then the �Mτ�σ�th entry of � is equal to
±�detM ′��x�, where M ′ is the �ti − 1� × �ti − 1� matrix obtained from Mτ

by deleting the rth row and the sth column. Let τ = �b� a�, σ = �b′� a′�.
If b′ < b, then the indices of the first r − 1 rows of M ′ and Mi are the
same, while the index of the rth row of M ′ is > b′, which is the index of
the rth row of Mi. Thus, M ′ > Mi, and by the maximality of Mi, we obtain
�detM ′��x� = 0. If b′ = b, then a′ < a. The indices of all the rows and
those of the first s− 1 columns in M ′ and Mi are the same, while the index



singular loci of ldvs and schubert varieties 487

of the sth column in M ′ is > a′, which is the index of the sth column of
Mi. Thus M ′ > Mi, and the maximality of Mi implies that �detM ′��x� = 0.
Thus, for σ < τ, the �Mτ�σ�th entry in � is 0.

Let � ′ be the submatrix of � given by the rows indexed by Mτ’s and
the columns indexed by τ’s, with τ ∈ 	 . We suppose that both rows and
columns of � ′ are indexed by the elements in 	 , and we arrange them
increasingly, with respect to the total order on 	 defined above. Then � ′ is
upper triangular, and all the diagonal entries are nonzero. Thus det � ′ �= 0,
and this implies that

rank � ′ = �	 � = ��� = codim ��L�Ds�t�L��
Consequently rank � = codim ��L�V , i.e., x �∈ SingV .

8. THE IRREDUCIBLE COMPONENTS
OF SingV AND SingX�w�

We preserve the notations of Section 5.
Let us fix j ∈ �1� � � � � l�, and let Zj = Vj ×��H \L�. We shall now define

θj ∈ W min
Q such that the variety Zj identifies with the opposite cell in the

Schubert variety X�θj� in G/Q.
Note that w�ar��ar − tj + 1� = sj − 1, and sj − 1 is the end of a block

of consecutive integers in w�ar�, where r = j∗ is the largest integer such
that br ≤ sj . Furthermore, the beginning of this block is ≥ 2 (if the block
started with 1, we would have ar − tj + 1 = sj − 1 ≥ br − 1 ≥ ar , which is
not possible, since tj ≥ 2). Let uj + 1 be the beginning of this block, where
uj ≥ 1. Then it is easily seen that if sj − 1 is the end of a block in w�ai�,
1 ≤ i ≤ h, then the beginning of the block is uj + 1. For each i, 1 ≤ i ≤ h,
such that uj �∈ w�ai�, let vi be the smallest entry in w�ai� that is bigger than
sj − 1. Note that vi = w�ai��ak − tj + 2�, where k ∈ �1� � � � � i� is the largest
index such that bk ≤ sj .

Define θj�ai�, 1 ≤ i ≤ h, as follows.
If sj − 1 �∈ w�ai� (which is equivalent to j > 1, tj−1 = tj , and i < r), let

θ
�ai�
j = w�ai� \ �vi� ∪ �sj − 1�.
If sj − 1 ∈ w�ai� and uj �∈ w�ai�, then θ�ai�j = w�ai� \ �vi� ∪ �uj�.
If sj − 1 and uj ∈ w�ai�, then θ�ai�j = w�ai� (note that in this case i > r).
Note that θj is well defined as an element in W min

Q , and θj ≤ w.

Remark 8.1. An equivalent description of θj is the following. Let tik <
tj ≤ tik−1

.

(I) If j �∈ �i1� � � � � im� (i.e., j > 1 and tj−1 = tj), then
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for i < r, θ�ai�j = w
�ai�
j \ �eik� ∪ �sj − 1�;

for i = r, θ�ar�j = w
�ar�
j \ �eik� ∪ �uj�, where uj is the largest entry

in �1� � � � � sj − 1� \w�ar�;

for i > r and uj ∈ w�ai�, θ�ai�j = w
�ai�
j ;

for i > r and uj �∈ w�ai�, θ�ai�j = w
�ai�
j \ �vi� ∪ �uj�, where vi is the

smallest entry in w�ai� \ θ�ai−1�
j .

(II) If j ∈ �i1� � � � � im� (i.e., tj−1 > tj if j > 1), then

for i ≤ r, θ�ai�j = w
�ai�
j \ �eik� ∪ �uj�, where uj is the largest entry

in �1� � � � � sj − 1� \w�ar�;

for i > r and uj ∈ w�ai�, θ�ai�j = w
�ai�
j ;

for i > r and uj �∈ w�ai�, θ�ai�j = w
�ai�
j \ �vi� ∪ �uj�, where vi is the

smallest entry in w�ai� \ θ�ai−1�
j .

Theorem 8.2. The subvariety Zj ⊂ Z identifies with the opposite cell in
X�θj�, i.e., Zj = X�θj� ∩O− (scheme theoretically).

Proof. Let f = detM , where M is either a ti-minor contained in L�i�,
i ∈ �1� � � � � h� \ �j�, or a �tj − 1�-minor contained in L�j�, be a generator of
I�Zj�. In the former case we have f ∈ I�Z�, and Theorem 5.6 implies that
f ∈ I�X�w� ∩ O−� ⊂ I�X�θj� ∩ O−�. In the latter case, M is contained
in Hk, where k ∈ �1� � � � � h� is the largest entry such that bk ≤ sj . By
Lemma 4.1, f can be written in the form f = ∑

gφpφ�O− , with φ ∈ W ak

such that �φ�1�� � � � � φ�ak�� ∩ �ak + 1� � � � � n� = �r1� � � � � rtj−1�, and gφ ∈
k
H� (here r1� � � � � rtj−1 are the row indices of M). In particular we have
φ�ak − tj + 2� = r1. Since M is contained in L�j�, we deduce that r1 ≥ sj ,
and hence φ�ak − tj + 2� ≥ sj . We have θj

�ak��ak − tj + 2� = sj − 1, and
hence φ�ak − tj + 2� > θj

�ak��ak − tj + 2�. This shows that φ �≤ θj
�ak�, and

therefore pφ ∈ I�X�θ� ∩O−�. Thus f ∈ I�X�θ� ∩O−�.
Now let g = pτ�O− , with τ ∈ W ai for some i, 1 ≤ i ≤ h, such that

τ �≤ θ�ai�, be a generator of the ideal I�X�θj� ∩ O−�. Since θj
�ai� con-

sists of several blocks of consecutive integers ending with sm − 1 at the
�ak − tm + 1�th place, for some m ∈ �1� � � � � l� \ �j�, where k ∈ �1� � � � � i�
is the largest entry such that bk ≤ sm, a possible block ending with sj − 1
at the �ak − tj + 2�th place, where k ∈ �1� � � � � i� is the largest entry such
that bk ≤ sj , and a last block ending with n at the aith place, it follows that
either τ�ak − tm + 1� ≥ sm, for some m �= j, where k ∈ �1� � � � � i� is the
largest entry such that sm ≥ bk, or τ�ak − tj + 2� ≥ sj , where k ∈ �1� � � � � i�
is the largest entry such that sj ≥ bk. In the first case we have τ �≤ w, and
hence pτ�O− ∈ I�X�w� ∩ O−� = I�Z� ⊂ I�Zj�. Suppose now that τ�ak −
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tj + 2� ≥ sj , where k ∈ �1� � � � � i� is the largest entry such that sj ≥ bk.
Using Lemma 4.2, we deduce that pτ�O− belongs to the ideal of k
H� gen-
erated by �tj − 1�-minors with row indices ≥ sj and column indices ≤ ak.
Thus pτ�O− belongs to the ideal generated by �tj − 1�-minors contained in
L�j�, which implies that g ∈ I�Zj�.
Theorem 8.3. The irreducible components of SingDs� t�L� are precisely

the Vj ’s, 1 ≤ j ≤ l.

Proof. In view of Theorem 8.2, we obtain that Vj , 1 ≤ j ≤ l, is irre-
ducible, and the required result follows from Theorem 7.1.

Let X�wmax� (resp. X�θmax
j �, 1 ≤ j ≤ l) be the pull-back in SL�n�/B

of X�w� (resp. X�θj�, 1 ≤ j ≤ l) under the canonical projection π�
SL�n�/B → SL�n�/Q. Then using Theorems 7.1, 5.6, and 8.2, we obtain

Theorem 8.4. The irreducible components of SingX�wmax� are precisely
X�θmax

j �, 1 ≤ j ≤ l.

9. A CONJECTURE ON THE IRREDUCIBLE COMPONENTS
OF A SCHUBERT VARIETY IN SL�n�/B

Let G = SL�n�. In this section we state a conjecture that is a refinement
of the conjecture in [12] on the irreducible components of the singular
locus of a Schubert variety and prove the conjecture for a certain class of
Schubert varieties, namely the pull-backs π−1�XQ�w�� under π� G/B →
G/Q, where w and Q are as in Section 5.

For τ ∈ W , let Pτ (resp. Qτ) be the maximal element of the set of
parabolic subgroups that leave BτB (in G) stable under multiplication on
the left (resp. right).

We recall the following two well-known results (for a proof, see [11], for
example).

Lemma 9.1. Let α be a simple root, and let Pα be the rank 1 parabolic
subgroup with SPα = �α�. Let τ ∈ W . Then BτB is stable under multiplication
on the right (resp. left) by Pα if and only if τ�α� ∈ R− (resp. τ−1�α� ∈ R−).

Corollary 9.2. With notations as in 2.2, we have

SPτ = �α ∈ S � τ−1�α� ∈ R−��
SQτ

= �α ∈ S � τ�α� ∈ R−��

Definition 9.3. Given parabolic subgroups P , Q, we say that BτB is P-Q
stable if P ⊂ Pτ and Q ⊂ Qτ.
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Lemma 9.4. Let G = SL�n�. Let τ ∈ �n, say τ = �a1� � � � � an�. Let α =
εi − εi+1. Then

(1) τ�α� ∈ R− if and only if ai > ai+1.

(2) τ−1�α� ∈ R− if and only if i+ 1 occurs before i in τ.

Proof. We have τ�α� = εai − εai+1
and τ−1�α� = εj − εk, where aj = i

and ak = i+ 1. The results follow from this.

Let η ∈ W . We shall denote XB�η� by just X�η�. We first recall the
criterion given in [12] for X�η� to be singular.

Theorem 9.5. Let η = �a1 � � � an� ∈ �n. Then X�η� is singular if and
only if there exist i� j� k�m, 1 ≤ i < j < k < m ≤ n, such that

either ak < am < ai < aj or am < aj < ak < ai �

9.6. The Set Fη

Let η = �a1 � � � an� ∈ �n. Let Eη be the set of all τ′ ≤ η such that either
(1) or (2) below holds.

(1) There exist i� j� k�m, 1 ≤ i < j < k < m ≤ n, such that

(a) ak < am < ai < aj .

(b) If τ′ = �b1 � � � bn�, then there exist i′� j′� k′�m′, 1 ≤ i′ < j′ <
k′ < m′ ≤ n, such that bi′ = ak, bj′ = ai, bk′ = am, bm′ = aj .

(c) If τ (resp. η′) is the element obtained from η (resp. τ′) by
replacing ai� aj� ak� am respectively by ak� ai� am� aj (resp. bi′� bj′� bk′� bm′

respectively by bj′� bm′� bi′� bk′), then τ′ ≥ τ and η′ ≤ η.

(2) There exist i� j� k�m, 1 ≤ i < j < k < m ≤ n, such that

(a) am < aj < ak < ai.

(b) If τ′ = �b1 � � � bn�, then there exist i′� j′� k′�m′, 1 ≤ i′ < j′ <
k′ < m′ ≤ n, such that bi′ = aj , bj′ = am, bk′ = ai, bm′ = ak.

(c) If τ (resp. η′) is the element obtained from η (resp. τ′) by
replacing ai� aj� ak� am respectively by aj� am� ai� ak (resp. bi′� bj′� bk′� bm′

respectively by bk′� bi′� bm′� bj′), then τ′ ≥ τ and η′ ≤ η.

Let Fη = �τ ∈ Eη � BτB is Pη-Qη stable�.
Conjecture. The singular locus of X�η� is equal to ⋃

λ X�λ�, where λ
runs over the maximal (under the Bruhat order) elements of Fη.
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9.7. Let η = �a1 � � � an� ∈ �n. Let SingX�η� �= �. Let �a� b� c� d� be
four distinct entries in �1� � � � � n� such that a < b < c < d. An occurrence in
η of the form d� b� c� a, where d = ai, b = aj , c = ak, a = am, i < j < k <
m, will be referred to as a Type I bad occurrence in η. An occurrence in η of
the form �c� d� a� b�, where c = ai, d = aj , a = ak, b = am, i < j < k < m,
will be referred to as a Type II bad occurrence in η. Let �d� b� c� a� (resp.
�c′� d′� a′� b′�) be a bad occurrence of Type I (resp. Type II), where a <
b < c < d (resp. a′ < b′ < c′ < d′). Let θ, θ′ be both ≤ w. Furthermore,
let b� a� d� c (resp. a′� c′� b′� d′) appear in that order in θ (resp. θ′). By
abuse of language, we shall refer to �b� a� d� c� (resp. �a′� c′� b′� d′�) as a bad
occurrence in θ (resp. θ′) corresponding to the bad occurrence �d� b� c� a�
(resp. �c′� d′� a′� b′�) in η.

Let τ ∈ W min
Q . We have π−1�XQ�τ�� = XB�τmax�, where τmax, as a permu-

tation, is given by τ�a1� arranged in descending order, followed by τ�a2� \ τ�a1�
arranged in descending order, etc. We shall refer to the set τ�ai� \ τ�ai−1�,
1 ≤ i ≤ l + 1, arranged in descending order, as the ith block in τmax (here,
τ�a0� = �, and τ�al+1� is the set �1� � � � � n� \ τ�al� arranged in descending
order).

For the rest of this section, w and Q will be as in Section 5.

Remark 9.8. Set bh+1 − 1 = n − tl + 1. All of the entries in the ith
block in wmax are ≤ bi − 1, 2 ≤ i ≤ h + 1. In particular, for 1 ≤ j ≤ l, sj
occurs after sj − 1 in wmax (in view of Lemma 5.4).

Lemma 9.9. We have

(1) Qwmax = Q.

(2) Let Iwmax = �εi − εi+1 � i = sj − 1� 1 ≤ j ≤ l�. Then SPwmax =
S \ Iwmax .

The assertions are clear from the description of wmax in view of
Lemma 9.4 and Remark 9.8.

Lemma 9.10. Let P = Pwmax , Q = Qwmax . Then Bθmax
j B is P-Q stable.

Proof. The Q-stability of Bθmax
j B on the right is obvious. Regarding the

P-stability of Bθmax
j B on the left, let x denote either eik or vi, where i > j,

uj �∈ w�ai� (notations are as in Section 8). Then x− 1 occurs after x in wmax.
It is clear from the definition of θmax

j that x− 1 also occurs after x in θmax
j .

For any other entry y �= x, sj − 1, if y − 1 occurs after y in wmax, then it
does so in θmax

j also. The result now follows from this.

Lemma 9.11. Fix j, 1 ≤ j ≤ h. Let C be a block of consecutive integers
in w�aj� ending with sk − 1 at the �aj − tk + 1�th place ( for some k) and
beginning with xk. Let the block preceding C end with si − 1 for some i.
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Suppose k∗ ≤ j. Then for α = εy − εy+1, where y ∈ 
si� xk�, the rank 1
parabolic subgroup Pα is contained in P(= Pwmax ).

Proof. The result follows (in view of Lemma 9.9) from the fact that

si� xk� does not contain st − 1 for any t, 1 ≤ t ≤ l.

We first show the above conjecture to be true for X�wmax� for the case
t1 = · · · = tl, since the exposition in this case is much neater (and simpler)
than in the general case. Let then t1 = · · · = tl = t, say. In this case, we
have bi − 1 ∈ w�ai� \ w�ai−1�, 2 ≤ i ≤ l. Furthermore, h = l, and �sj� 1 ≤
j ≤ l� = �bi� 1 ≤ i ≤ h�.
Lemma 9.12. Any bad occurrence in wmax is of Type I.

Proof. Let wmax = �a1 � � � an�. Assume that �c� d� a� b� is a bad occur-
rence of Type II in wmax, where a < b < c < d. Clearly, c and d (resp. a
and b) cannot both appear in the same block, in view of the description
of wmax. Let then c� d� a� b appear in the rth, ith, jth, kth blocks, respec-
tively, where r < i ≤ j < k. This implies that a < b < c < d ≤ bi − 1 (cf.
Remark 9.8). But now, a and b are both < bi − 1, and they both appear
after bi − 1; furthermore, a appears before b in wmax, which is not possible
by the construction of wmax (note that a < b). The required result follows
from this.

Remark 9.13. Of course, there are several bad occurrences in wmax of
Type I. For example, fix some j, 1 ≤ j ≤ h. Observe that bj appears after
bj − 1 (cf. Remark 9.8), and uj appears after bj in wmax (notations are as
in Section 8). Take d to be any entry in �n − t + 2� � � � � n�, b = bj − 1,
c = bj , a = uj . Then d� b� c� a occur in the 1st, jth, kth, and mth blocks,
respectively, where m ≥ k > j. This provides an example of a Type I bad
occurrence in wmax.

Lemma 9.14. Let d� b� c� a be a Type I bad occurrence in wmax , where
a < b < c < d. Assume that b belongs to the i-th block, for some i (note that
i ≤ h, since b < c). Then

(1) c < n− t + 2.
(2) b ≤ bi − 1.
(3) d ≥ n− t + 2.

Proof. Let d� b� c� a occur in the rth, ith, jth, kth blocks, respectively,
in wmax, where r ≤ i < j ≤ k. The hypothesis that b < c implies that j > 1.
Hence we obtain c ≤ bj − 1 (cf. Remark 9.8), and �1� follows. Now, if
i ≥ 2, then assertion �2� follows from Remark 9.8. If i = 1, then assertion
�2� follows from the fact that b < c < n− t + 2.

Claim. d > bi − 1.
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Proof. Assume that d ≤ bi − 1. Then the assumption implies c < bi − 1
(since c < d). Now both c and b are < bi − 1, and b belongs to the ith block
in wmax. This implies that c should occur before b, which is not possible.
Hence our assumption is wrong, and the claim follows.

Note that the claim and Remark 9.8 imply that d ≥ n − t + 2, and d
appears in the first block.

Lemma 9.15. Fix j, 1 ≤ j ≤ h. Then θmax
j is the unique maximal element

of the set �τ ∈ W � τ ≤ wmax� τ�aj��aj − t + 2� ≤ bj − 1�.
The proof is clear from the definition of θmax

j .

Proposition 9.16. The maximal elements in Fwmax are precisely θmax
j , 1 ≤

i ≤ h (here Fwmax is as in Section 9.6).

Proof. We first observe that θmax
j ∈ Fwmax ; for, corresponding to the bad

occurrence d = n − t + 2, b = bj − 1, c = bj , a = uj (cf. Remark 9.13),
we have the bad occurrence �b� a� d� c� (note that b� a� d� c occur in that
order in θmax

j ). Let us denote θmax
j by τ′. Let w′ (resp. τ) be the element

of �n obtained from τ′ (resp. w) by replacing b� a� d� c (resp. d� b� c� a),
respectively, by d� b� c� a (resp. b� a� d� c). Then clearly τ ≤ τ′ and w′ ≤ w.
Furthermore, Bθmax

j B is P-Q stable (cf. Lemma 9.10). Thus θmax
j ∈ Fwmax

Now let τ′ ∈ Fwmax . In particular, we have τ′ ∈ W max
Q .

We have a bad occurrence in τ′, which has to be of the form �b� a� d� c�,
a < b < c < d, corresponding to the occurrence �d� b� c� a� in wmax (cf.
Lemma 9.12). Let b� a� d� c occur in the pth, qth, rth, and sth blocks, re-
spectively, in τ′, where p ≤ q < r ≤ s (note that τ′ ∈ W max

Q ).
We have

w′�aq��aq − t + 1� ≤ w�aq��aq − t + 1� = bq − 1

(here w′ is as in Section 9). Furthermore, τ′�aq� is obtained from w′�aq� by
replacing d by a, where a�< b� < n− t + 2 ≤ d (cf. Lemma 9.14). Hence
we obtain a ≤ bq − 1 (since τ′�aq� ≤ w�aq�), and

τ′�aq��aq − t + 2� ≤ w′�aq��aq − t + 1� ≤ bq − 1�

This implies τ′ ≤ θmax
q (cf. Lemma 9.15).

Theorem 9.17. The conjecture 9 holds for X�wmax�.
Proof. In view of Theorem 8.4, X�θmax

j �, 1 ≤ j ≤ h, are precisely the
irreducible components of X�wmax�. On the other hand, we have (cf. Propo-
sition 9.16) that the maximal elements in Fwmax are precisely θmax

j , 1 ≤ j ≤ h.
Hence the irreducible components of SingX�wmax� are precisely �X�θ� �
θ a maximal element of Fwmax�. Thus the conjecture holds for X�wmax�.
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Now we prove the conjecture for X�wmax� in the general case.

Lemma 9.18. Fix j, 1 ≤ j ≤ l. Let j∗ = r. Then θmax
j is the unique maxi-

mal element of the set �τ ∈ W � τ ≤ wmax� τ�ar��ar − tj + 2� ≤ sj − 1�.
The proof is clear from the definition of θj .

Lemma 9.19. A bad occurrence in wmax has to be of Type I.

Proof. If possible, let c� d� a� b, where a < b < c < d, occur in the ith,
jth, kth, and pth blocks, respectively, in wmax. Now c < d implies that
i < j. Hence j > 1. Hence d ≤ bj − 1 (cf. Remark 9.8), and this implies
that b < d ≤ bj − 1 ≤ bk − 1. But then a cannot appear before b (by defini-
tion of wmax).

Remark 9.20. Of course, there are several Type I bad occurrences. For
example, take j, 1 ≤ j ≤ l. Let j∗ = r. With notations as in Lemma 5.4, let
d = eik . We have (cf. Lemma 5.4) d > sj . Also, in view of Remark 9.8, sj
is not an entry in w�ai�, i ≤ r, and sj appears after sj − 1 in wmax. From the
definition of wmax, it is clear that uj appears after sj in wmax (notations are
as in Section 8). Take d = eik , b = sj − 1, c = sj , a = uj .

Lemma 9.21. Let d� b� c� a be a Type I bad occurrence in wmax . Then

(1) d ∈ Ir , for some r, 1 ≤ r ≤ m+ 1.
(2) a� c �∈ Ir , for any r, 1 ≤ r ≤ m+ 1.

Proof. Let d� b� c� a belong to the ith, jth, kth, and pth blocks, respec-
tively, in wmax. Assertion (2) is immediate, since p�k > 1. Note that asser-
tion (1) is equivalent to the assertion that i = 1. If j = 1, then i = 1, and
(1) follows (cf. Lemma 5.3). Then let j > 1. This implies b ≤ bj − 1 < c.
Suppose i > 1. Then we would obtain that d ≤ bi − 1 ≤ bj − 1 < c, which
is not possible. Hence i = 1, and �1� follows.

Remark 9.22. With notations as in Lemma 9.21, we have in fact d ∈ Ir
for some r ≥ 2. This is clear if j ≥ 2 (since b ≤ bj − 1 < c < d). If j = 1,
then we have b1 − 1 < c < d. Thus we get that r ≥ 2.

Proposition 9.23. The maximal elements of Fwmax are precisely θmax
j .

Proof. Let us denote j∗ by r. Then with d� b� c� a as in Remark 9.20, we
have that b� a� d� c occur in that order in θmax

j . Let us denote θmax
j by τ′.

Let w′ (resp. τ) be the element of �n obtained from τ′ (resp. w) by re-
placing b� a� d� c (resp. d� b� c� a), respectively, by d� b� c� a (resp. b� a� d� c).
Then clearly τ ≤ τ′, and w′ ≤ w. Furthermore, Bθmax

j B is P-Q stable (cf.
Lemma 9.10). Thus θmax

j ∈ Fwmax . Now let τ′ ∈ Fwmax . Let b� a� d� c be a bad
occurrence in τ′. Furthermore, let b� a� d� c appear in the pth, qth, rth, and
sth blocks, respectively, in τ′ (note that τ′ ∈ W max

Q ). Let bq = sz for some



singular loci of ldvs and schubert varieties 495

z, 1 ≤ z ≤ l. If a ≤ bq − 1, and d > bq − 1, then as in the proof of Propo-
sition 9.16, we obtain τ′�aq��aq − tz + 2� ≤ bq − 1 �= sz − 1�. This implies
τ′ ≤ θmax

z (note that z∗ = q).
We now distinguish the following two cases.

Case 1. d ≤ bq − 1. Let d ∈ Ik(= 
eik� sik − 1�) for some k ≥ 2 (cf.
Remark 9.22). Let j = i∗k. We first observe that j ≤ q. For, if ik = i∗k�= j�,
then j ≤ q (since d ≤ bq − 1 ). If ik > i∗k, then again in view of Lemma 5.4,
we have si∗k < d ≤ bq − 1, and hence bj − 1 < bq − 1 (note that si∗k = bj).
Hence we get j < q. Thus in either case we have j ≤ q.

We further divide this case into the following two subcases.

Subcase 1 (a). j < ik. Now, Ik appears in w�aj� as a block of consecutive
integers (cf. Remark 5.2), and sik − 1 appears at the �aj − tik + 1�th place.
Let the block in w�aj� preceding this block end with si − 1 at the �au −
ti + 1�th place, for some u and i. Then u = j necessarily (since j < ik), and
hence i∗ = u = j. Now, in view of Lemmas 9.9 and 9.11 for α = εy − εy+1,
where y ∈ 
si� d − 1�, the rank 1 parabolic subgroup Pα is contained in
P�= Pwmax�. This, together with the fact that d �∈ τ′�aj�, implies that 
si� d� ∩
τ′�aj� �= � (in view of the P-stability on the left of X�τ′� (cf. Lemma 9.4)).
Hence we obtain that τ′�aj��aj − ti + 2� ≤ si − 1, where i∗ = j. This implies
τ′ ≤ θmax

i (cf. Lemma 9.18).

Subcase 1 (b). j = ik. Note that j > 1. (cf. Remark 9.22). Consider
w�aj−1�. Now Ik appears in w�aj−1� as a block (cf. Remark 5.2, since i∗k >
j − 1), and d belongs to this block. Furthermore, sik − 1 appears at the
�aj−1 − tik + 1�th place. Let the block in w�aj−1� preceding this block end with
si − 1 at the �aj−1 − ti + 1�th place for some i. Then i∗ = j − 1, necessarily
(since j = ik). Furthermore, for α = εy − εy+1, where y ∈ 
si� d − 1�, the
rank 1 parabolic subgroup Pα is contained in P (in view of Lemma 9.9,
since 
si� d − 1� does not contain st − 1 for any t, 1 ≤ t ≤ l). Now, the fact
that d �∈ τ′�aq� implies that τ′�aj−1� ∩ 
si� d� = � (in view of P-stability on
the left of X�τ′�). Hence we obtain τ′�aj−1��aj−1 − ti + 2� ≤ si − 1, where
i∗ = j − 1. This implies τ′ ≤ θmax

i (cf. Lemma 9.18).

Case 2. a > bq − 1. Let d� b� c� a appear in the ith, jth, kth, and xth
blocks, respectively, in wmax, where i ≤ j < k ≤ x. Let u be the smallest
index such that a ≤ su − 1. We have q ≤ u∗ (since q > u∗ would imply
a ≤ su − 1 < bq − 1, which is not true).

Claim. x > u∗. If j ≥ 2, then we have bq − 1 < a < b ≤ bj − 1 (cf.
Remark 9.8). Hence we obtain u∗ ≤ j, from which the claim follows (since
x > j).

If j = 1, let b ∈ Iv for some v ≥ 2 (cf. Lemma 5.3; note that bq − 1 < a <
b implies b > b1 − 1). We have bq − 1 < a < b ≤ siv − 1. Hence we obtain
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su − 1 ≤ siv − 1, and u∗ ≤ i∗v . Now, we have bk − 1 ≥ c > siv − 1 ≥ si∗v − 1
(by the definition of wmax). This implies c �∈ w�ai∗v �, and hence k > i∗v ≥ u∗.
The claim now follows from this (since x ≥ k). Thus we obtain q ≤ u∗ < x.
Now the fact that a ∈ τ′�aq� implies a ∈ τ′�au∗ �. This, together with the P-
stability on the left of X�τ′�, implies that 
a� su − 1� ⊂ τ′�au∗ � (note that
sj − 1 �∈ 
a� su − 1�, for any j �= u, and hence for α = εy − εy+1, where y ∈

a� su − 2�, the rank 1 parabolic subgroup Pα is contained in P). From this,
we obtain τ′�au∗ ��au∗ − tu + 2� ≤ su − 1 (since τ′�au∗ � ≤ w�au∗ �, and a �∈ w�au∗ �

(note that x > u∗)). This implies τ′ ≤ θmax
u (cf. Lemma 9.18).

Theorem 9.24. Conjecture 9 holds for X�wmax�.
Proof. As in the proof of Theorem 9.17, the result follows from Theo-

rem 8.4 and Proposition 9.23.
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