doi:10.1006/jabr.2000.8558, available online at http://www.idealibrary.com on IIE L"

ERRATUM

Volume 229, Number 2 (2000), in the article "Singular Loci of Ladder Determinantal Varieties and Schubert Varieties," by N. Gonciulea and V. Lakshmibai, pages 463-497 (doi:10.1006/jabr.1999.8087). Through an error in typesetting, the reference numbers and internal cross-references were omitted. The full corrected text of the article appears on the following pages.

Singular Loci of Ladder Determinantal Varieties and Schubert Varieties

N. Gonciulea ${ }^{1}$ and V. Lakshmibai ${ }^{2}$
Department of Mathematics, Northeastern University, Boston, Massachusetts 02115

Communicated by David Buchsbaum
Received February 11, 1997

We relate certain ladder determinantal varieties (associated to one-sided ladders) to certain Schubert varieties in $S L(n) / Q$, for a suitable n and a suitable parabolic subgroup Q, and we determine the singular loci of these varieties. We state a conjecture on the irreducible components of the singular locus of a Schubert variety in the flag variety, which is a refinement of the conjecture of Lakshmibai and Sandhya (Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 45-52). We prove the conjecture for a certain class of Schubert varieties. © 2000 Academic Press

INTRODUCTION

Let k be the base field, which we assume to be algebraically closed of arbitrary characteristic. Let $X=\left(x_{b a}\right), 1 \leq b, a \leq n$ be a matrix of variables, and let $L \subset X$ be an one-sided ladder with outside corners $\left(b_{1}, a_{1}\right), \ldots,\left(b_{h}, a_{h}\right)$, i.e.,
$L=\left\{x_{b a} \mid\right.$ there exists $1 \leq i \leq h$ such that $\left.b_{i} \leq b \leq m, 1 \leq a \leq a_{i}\right\}$,
where $1 \leq b_{1}<\cdots<b_{h}<n, 1<a_{1}<\cdots<a_{h} \leq n$. We suppose that n is large enough so that $b_{i}>a_{i}$, for all $i, 1 \leq i \leq h$. Let $k[L]$ denote the polynomial ring $k\left[x_{b a}, x_{b a} \in L\right]$, and let $\mathbb{A}(L)=\mathbb{A}^{|L|}$ be the associated affine space. For $1 \leq i \leq l$, let i^{*} denote the largest integer in $\{1, \ldots, h\}$ such that $b_{i^{*}} \leq s_{i}$. Let $\mathbf{s}=\left(s_{1}, \ldots, s_{l}\right) \in \mathbb{Z}_{+}^{l}, \mathbf{t}=\left(t_{1}, \ldots, t_{l}\right) \in \mathbb{Z}_{+}^{l}$ be such that $b_{1}=s_{1}<\cdots<s_{l} \leq n, t_{1} \geq \cdots \geq t_{l}, 1 \leq t_{i} \leq \min \left\{n-s_{i}+1, a_{i^{*}}\right\}$ for

[^0]

FIG. 1. The one-sided ladder L.
$1 \leq i \leq l$, and $s_{i}-s_{i-1}>t_{i-1}-t_{i}$ for $1<i \leq l$. For each $1 \leq i \leq l$, let $L_{i}=\left\{x_{b a} \mid s_{i} \leq b \leq n\right\}$. Let $I_{\mathrm{s}, \mathrm{t}}(L)$ be the ideal of $k[L]$ generated by all the t_{i}-minors in $L_{i}, 1 \leq i \leq l$. Let $D_{\mathrm{s}, \mathrm{t}}(L) \subset \mathbb{A}(L)$ be the variety defined by $I_{\mathrm{s}, \mathrm{t}}(L)$, and we call it a ladder determinantal variety (the ladder being onesided). The variety $D_{\mathrm{s}, \mathbf{t}}(L)$ is isomorphic to $D_{\mathbf{s}^{\prime}, \mathbf{t}^{\prime}}\left(L^{\prime}\right) \times \mathbb{A}^{d}$, for suitable l^{\prime}-tuples $\mathbf{s}^{\prime}, \mathbf{t}^{\prime}$, a suitable one-sided ladder $L^{\prime} \subset L$ in X defined by the outside corners $\left(b_{1}^{\prime}, a_{1}^{\prime}\right), \ldots,\left(b_{h^{\prime}}^{\prime}, a_{h^{\prime}}^{\prime}\right)$ such that $\left\{b_{1}^{\prime}, \ldots, b_{h^{\prime}}^{\prime}\right\} \subset\left\{s_{1}^{\prime}, \ldots, s_{l}^{\prime}\right\}$ and $d=|L|-\left|L^{\prime}\right|$ (see Section 1 for details). Thus it is enough to study the variety $D_{\mathrm{s}, \mathbf{t}}(L)$ under the assumption $\left\{b_{1}, \ldots, b_{h}\right\} \subset\left\{s_{1}, \ldots, s_{l}\right\}$. Without loss of generality, we can also assume that $t_{l} \geq 2$, and $t_{i-1}>t_{i}$ if $s_{i} \notin\left\{b_{1}, \ldots, b_{h}\right\}$ for $1<i \leq l$.
For each $1 \leq i \leq l$, let $L(i)=\left\{x_{b a} \mid s_{i} \leq b \leq n, 1 \leq a \leq a_{i^{*}}\right\}$. It is easy to see that the ideal $I_{\mathrm{s}, \mathrm{t}}(L)$ is generated by the t_{i}-minors of X contained in $L(i), 1 \leq i \leq l$. First we relate the ladder determinantal varieties (associated to one-sided ladders) to Schubert varieties as given by the following (cf. Theorem 5.6).

Theorem 1. The variety $D_{\mathrm{s}, \mathrm{t}}(L) \times \mathbb{A}^{r}$ is identified with the "opposite cell" in a certain Schubert variety $X(w)$ in $S L(n) / Q$, for a suitable parabolic subgroup Q of $S L(n)$, where $r=\operatorname{dim} S L(n) / Q-|L|$.

As a consequence, we obtain (cf. Theorem 5.7)
Theorem 2. The variety $D_{\mathrm{s}, \mathrm{t}}(L)$ is irreducible, normal, and CohenMacaulay and has rational singularities.

We also determine the singular locus of $D_{\mathrm{s}, \mathrm{t}}(L)$, as described below. Let $V_{j}, 1 \leq j \leq l$, be the subvariety of $D_{\mathrm{s}, \mathrm{t}}(L)$ defined by the vanishing of all ($t_{j}-1$)-minors in $L(j)$. We prove (cf. Theorem 7.1)

Theorem 3. We have $\operatorname{Sing} D_{\mathrm{s}, \mathrm{t}}(L)=\bigcup_{j=1}^{l} V_{j}$.
We further prove the following (cf. Theorem 8.2).
Theorem 4. For $1 \leq j \leq l$, the subvariety $V_{j} \times \mathbb{A}^{r}$ of $D_{\mathbf{s}, \mathbf{t}}(L) \times \mathbb{A}^{r}$ (r being as above) is identified with the "opposite cell" in a certain Schubert subvariety $X\left(\theta_{j}\right)$ of $X(w)$.

As a consequence, we obtain (cf. Theorem 8.3)
Theorem 5. The irreducible components of $\operatorname{Sing} D_{\mathrm{s}, \mathbf{t}}(L)$ are precisely the $V_{j}^{\prime} s, 1 \leq j \leq l$.

Let $X\left(w^{\max }\right)\left(\right.$ resp. $\left.X\left(\theta_{j}^{\max }\right), 1 \leq j \leq l\right)$ be the pull-back in $\operatorname{SL}(n) / B$ of $X(w)$ (resp. $X\left(\theta_{j}\right), 1 \leq j \leq l$) under the canonical projection π : $S L(n) / B \rightarrow S L(n) / Q$ (here B is a Borel subgroup of $S L(n)$ such that $B \subset Q$). Then using Theorems 1,3 , and 4 , we obtain (cf. Theorem 8.4)

Theorem 6. The irreducible components of $\operatorname{Sing} X\left(w^{\max }\right)$ are precisely $X\left(\theta_{j}^{\max }\right), 1 \leq j \leq l$.

We state a conjecture on the irreducible components of the singular locus of a Schubert variety in $S L(n) / B$, which is a refinement of the conjecture in [12] (see Section 9 for the statement of the conjecture). Using Theorem 6, we prove (cf. Theorem 9.24)

Theorem 7. The conjecture holds for $X\left(w^{\max }\right)$.
We now briefly describe how the above theorems are proved. Let $Q=$ $\bigcap_{i=1}^{h} P_{a_{i}}$, where $P_{a_{i}}$ is the maximal parabolic subgroup of $\operatorname{SL}(n)$ obtained by "omitting" the simple root $\alpha_{a_{i}}$, the simple roots being indexed as in [2] (see Section 2 for details). Let O^{-}be the "opposite big cell" in G / Q (see Section 2 for details). We identify $O^{-}\left(\simeq \mathbb{A}^{N}, N=\operatorname{dim} G / Q\right)$ as a subvariety of the variety of lower triangular matrices in $\operatorname{SL}(n)$. This in turn gives rise to an embedding $\mathbb{A}(L) \subset O^{-}$. Let $Z_{w}=X(w) \cap O^{-}$be the "opposite cell" in $X(w)$, and let I_{w} be the ideal defining Z_{w} in O^{-}. Then one knows that the Plücker coordinates vanishing on Z_{w} generate I_{w}. Let $I_{\mathrm{s}, \mathrm{t}}^{*}(L)$ be the ideal generated by $I_{\mathrm{s}, \mathrm{t}}(L)$ in $k\left[\mathbb{A}^{N}\right]$. We prove Theorem 1 by showing that the Plücker coordinates vanishing on Z_{w} belong to $I_{\mathrm{s}, \mathrm{t}}^{*}(L)$ and, conversely, a typical t_{i}-minor in $L(i), 1 \leq i \leq l$, belongs to I_{w}. Theorem 2 is a consequence of Theorem 1 and the fact that Schubert varieties are irreducible, normal, and Cohen-Macaulay and have rational singularities (cf.
[10, 18-20]). Theorem 3 is proved using the Jacobian criterion for smoothness. Toward this end, we first construct a Gröbner basis for $I_{\mathbf{s}, \mathbf{t}}(L)$, which then enables us to compute the codimension of $D_{\mathbf{s}, \mathbf{t}}(L)$ in $\mathbb{A}(L)$. Theorem 4 is proved in the same spirit as Theorem 1. As one sees, Theorem 5 is an immediate consequence of Theorems 3 and 4, and Theorem 6 is an immediate consequence of Theorems 1,3 , and 4 . Theorem 7 is proved through a relative study of $X\left(w^{\max }\right)$ and $X\left(\theta_{j}^{\max }\right)$. Thus we have used the theory of Schubert varieties to prove results on ladder determinantal varities, and vice versa. To be more precise, geometric properties such as normality, Cohen-Macaulayness, etc., for ladder determinantal varities are concluded by relating these varieties to Schubert varieties. The components of singular loci of Schubert varieties are determined by first determining them for ladder determinantal varieties and then using the above-mentioned relationship between ladder determinantal varieties and Schubert varieties.

An identification similar to that in Theorem 1 for the case $t_{1}=\cdots=t_{l}$ has also been obtained by Mulay (see [16]). Results similar to those of Theorem 2 for certain other ladder determinantal varieties have been obtained by several authors (see [4, 5, 7, 15, 17]). To the best of our knowledge, Theorem 5 is the only result in the literature on the determination of the singular locus of a ladder determinantal variety, except for the case of the classical determinantal variety, i.e., $h=1$ and $l=1$ (see [13, 14, 21]).

The sections are organized as follows. In Section 1 we define ladder determinantal varieties and set up a few notations. In Section 2, we recall some generalities on G / Q. In Section 3, we recall some generalities on Schubert varieties in the flag variety. In Section 4, we prove two lemmas related to the evaluation of Plücker coordinates on the "opposite big cell." In Section 5, we bring out the relationship between ladder determinantal varieties and Schubert varieties. In Section 6, we compute the dimension of ladder determinantal varities by constructing Gröbner bases for their defining ideals. In Section 7, we determine the singular loci of ladder detrminantal varieties. In Section 8, we determine the irreducible components of the singular loci of ladder determinantal varieties. In Section 9, we state a conjecture on the irreducible components of the singular locus of a Schubert variety in $S L(n) / B$ and prove it for a certain class of Schubert varieties, namely those Schubert varieties that are related to ladder determinantal varieties as in Section 5. This conjecture is a refinement of the conjecture in [12].

1. LADDER DETERMINANTAL VARIETIES

Let $X=\left(x_{b a}\right), 1 \leq b \leq m, 1 \leq a \leq n$ be a $m \times n$ matrix of indeterminates.

Given $1 \leq b_{1}<\cdots<b_{h}<m, 1<a_{1}<\cdots<a_{h} \leq n$, we consider the subset of X, defined by

$$
L=\left\{x_{b a} \mid \text { there exists } 1 \leq i \leq h \text { such that } b_{i} \leq b \leq m, 1 \leq a \leq a_{i}\right\} .
$$

We call L a one-sided ladder in X, defined by the outside corners $\omega_{i}=x_{b_{i} a_{i}}$, $1 \leq i \leq h$. For simplicity of notation, we identify the variable $x_{b a}$ with just (b, a).

For $1 \leq i \leq l$, let i^{*} be the largest integer such that $b_{i^{*}} \leq s_{i}$.
Let $\mathbf{s}=\left(s_{1}, s_{2} \ldots, s_{l}\right) \in \mathbb{Z}_{+}^{l}, \mathbf{t}=\left(t_{1}, t_{2} \ldots, t_{l}\right) \in \mathbb{Z}_{+}^{l}$ such that

$$
\begin{gathered}
b_{1}=s_{1}<s_{2}<\cdots<s_{l} \leq m \\
t_{1} \geq t_{2} \geq \cdots \geq t_{l} \\
1 \leq t_{i} \leq \min \left\{m-s_{i}+1, a_{i^{*}}\right\} \quad \text { for } 1 \leq i \leq l, \quad \text { and } \\
s_{i}-s_{i-1}>t_{i-1}-t_{i} \quad \text { for } 1<i \leq l
\end{gathered}
$$

For $1 \leq i \leq l$, let

$$
L_{i}=\left\{x_{b a} \in L \mid s_{i} \leq b \leq m\right\} .
$$

Let $k[L]$ denote the polynomial ring $k\left[x_{b a} \mid x_{b a} \in L\right]$, and let $\mathbb{A}(L)=\mathbb{A}^{|L|}$ be the associated affine space. Let $I_{\mathrm{s}, \mathrm{t}}(L)$ be the ideal in $k[L]$ generated by all the t_{i}-minors contained in $L_{i}, 1 \leq i \leq l$, and let $D_{\mathrm{s}, \mathrm{t}}(L) \subset \mathbb{A}(L)$ be the variety defined by the ideal $I_{\mathbf{s}, \mathbf{t}}(L)$. We call $D_{\mathrm{s}, \mathbf{t}}(L)$ a ladder determinantal variety (associated to an one-sided ladder).

Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{h}\right\}$. For each $1<j \leq l$, let

$$
\Omega_{j}=\left\{\omega_{i} \mid 1 \leq i \leq h \text { such that } s_{j-1}<b_{i}<s_{j} \text { and } s_{j}-b_{i} \leq t_{j-1}-t_{j}\right\} .
$$

Let

$$
\Omega^{\prime}=\left(\Omega \backslash \bigcup_{j=2}^{l} \Omega_{j}\right) \bigcup_{\Omega_{j} \neq \varnothing}\left\{\left(s_{j}, a_{j^{*}}\right)\right\} .
$$

Let L^{\prime} be the one-sided ladder in X defined by the set of outside corners Ω^{\prime}. Then it is easily seen that $D_{\mathbf{s}, \mathbf{t}}(L) \simeq D_{\mathbf{s}, \mathbf{t}}\left(L^{\prime}\right) \times \mathbb{A}^{d}$, where $d=|L|-\left|L^{\prime}\right|$.

Let $\omega_{k}^{\prime}=\left(b_{k}^{\prime}, a_{k}^{\prime}\right) \in \Omega^{\prime}$, for some $k, 1 \leq k \leq h^{\prime}$, where $h^{\prime}=\left|\Omega^{\prime}\right|$. If $b_{k}^{\prime} \notin\left\{s_{1}, \ldots, s_{l}\right\}$, then $b_{k}^{\prime}=b_{i}$ for some $i, 1 \leq i \leq h$, and we define $s_{j^{-}}=$ $b_{i}, t_{j^{-}}=t_{j-1}, s_{j^{+}}=s_{j}, t_{j^{+}}=t_{j}$, where j is the unique integer such that $s_{j}<b_{i}<s_{j+1}$. Let \mathbf{s}^{\prime} (resp. \mathbf{t}^{\prime}) be the sequence obtained from \mathbf{s} (resp. \mathbf{t}) by replacing s_{j} (resp. t_{j}) with $s_{j^{-}}$and $s_{j^{+}}$(resp. $t_{j^{-}}$and $t_{j^{+}}$) for all k such that $b_{k}^{\prime} \notin\left\{s_{1}, \ldots, s_{l}\right\}, j$ being the unique integer such that $s_{j-1}<b_{i}<s_{j}$, and i being given by $b_{k}^{\prime}=b_{i}$. Let $l^{\prime}=\left|\mathbf{s}^{\prime}\right|$. Then \mathbf{s}^{\prime} and \mathbf{t}^{\prime} satisfy (L1),
and in addition we have $\left\{b_{1}^{\prime}, \ldots, b_{h^{\prime}}^{\prime}\right\} \subset\left\{s_{1}^{\prime}, \ldots, s_{l}^{\prime}\right\}$. It is easily seen that $D_{\mathbf{s}, \mathbf{t}}\left(L^{\prime}\right)=D_{\mathbf{s}^{\prime}, \mathbf{t}^{\prime}}\left(L^{\prime}\right)$, and hence

$$
D_{\mathbf{s}, \mathbf{t}}(L) \simeq D_{\mathbf{s}^{\prime}, \mathbf{t}^{\prime}}\left(L^{\prime}\right) \times \mathbb{A}^{d} .
$$

Therefore it is enough to study $D_{\mathbf{s}, \mathbf{t}}(L)$ with $\mathbf{s}, \mathbf{t} \in \mathbb{Z}_{+}^{l}$ such that

$$
\begin{equation*}
\left\{s_{1}, \ldots, s_{l}\right\} \supset\left\{b_{1}, \ldots, b_{h}\right\} . \tag{L2}
\end{equation*}
$$

Without loss of generality, we can also assume that

$$
\begin{equation*}
t_{l} \geq 2 \quad \text { and } \quad t_{i-1}>t_{i} \quad \text { if } s_{i} \notin\left\{b_{1}, \ldots, b_{h}\right\}, \quad 1<i \leq l . \tag{L3}
\end{equation*}
$$

For $1 \leq i \leq l$, let

$$
L(i)=\left\{x_{b a} \mid s_{i} \leq b \leq m, 1 \leq a \leq a_{i^{*}}\right\} .
$$

Note that the ideal $I_{\mathrm{s}, \mathrm{t}}(L)$ is generated by the t_{i}-minors of X contained in $L(i), 1 \leq i \leq l$.

2. GENERALITIES ON G / Q

Let G be a semisimple and simply connected algebraic group defined over an algebraically closed field of arbitrary characteristic. Let $T \subset G$ be a maximal torus, and let $B \supset T$ be a Borel subgroup. Let R be the root system of G relative to T. Let R^{+}(resp. S) be the system of positive (resp. simple) roots of R with respect to B. Let R^{-}be the corresponding system of negative roots.

2.1. The Chevalley-Bruhat Order

Let $w \in W$. A minimal expression for w as a product of simple reflections is called a reduced expression for w. We denote by $l(w)$ the length of a reduced expression for w (as a product of simple refelections). We have a partial order on W, the well-known Chevalley-Bruhat order, namely $w_{1} \geq$ w_{2}, if a reduced expression for w_{1} contains a subexpression that is a reduced expression for w_{2}.

2.2. The Weyl Subgroup W_{Q}

Let Q be a parabolic subgroup of G containing B. Associated to Q, there is a subset S_{Q} of S such that Q is the subgroup of G generated by B and $\left\{U_{-\alpha} \mid \alpha \in R_{Q}^{+}\right\}$, where $R_{Q}^{+}=\left\{\alpha \in R^{+} \mid \alpha=\sum_{\beta \in S_{Q}} a_{\beta} \beta\right\}$ (here, for $\beta \in R$, U_{β} denotes the one-dimensional unipotent subgroup of G associated to β). Let W_{Q} be the Weyl group of Q (note that W_{Q} is simply the subgroup of W generated by $\left\{s_{\alpha} \mid \alpha \in S_{Q}\right\}$; here, for $\alpha \in S$, s_{α} denotes the simple reflection (considered as an element of W), associated to α).

2.3. The Set $W_{Q}^{\min }$ of Minimal Representatives of W / W_{Q}

In each coset $w W_{Q}$, there exists a unique element of minimal length (cf. [2]). Let $W_{Q}^{\min }$ be this set of representatives of W / W_{Q}. The set $W_{Q}^{\min }$ is called the set of minimal representatives of W / W_{Q}. We have

$$
W_{Q}^{\min }=\left\{w \in W \mid l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right), \text { for all } w^{\prime} \in Q\right\} .
$$

The set $W_{Q}^{\text {min }}$ may also be characterized as

$$
W_{Q}^{\min }=\left\{w \in W \mid w(\alpha)>0, \text { for all } \alpha \in S_{Q}\right\}
$$

(here by a root being >0 we mean $\beta \in R^{+}$).
In the sequel, given $w \in W$, the minimal representative of $w W_{Q}$ in W will be denoted by $w_{Q}^{\min }$.

2.4. The Set $W_{Q}^{\max }$ of Maximal Representatives of W / W_{Q}

In each coset $w W_{Q}$ there exists a unique element of maximal length. Let $W_{Q}^{\max }$ be the set of these representatives of W / W_{Q}. We have

$$
W_{Q}^{\max }=\left\{w \in W \mid w(\alpha)<0 \text { for all } \alpha \in S_{Q}\right\} .
$$

Furthermore, if we denote by w_{Q} the element of maximal length in W_{Q}, then we have

$$
W_{Q}^{\max }=\left\{w w_{Q} \mid w \in W_{Q}^{\min }\right\} .
$$

In the sequel, given $w \in W$, the maximal representative of $w W_{Q}$ in W will be denoted by $w_{Q}^{\max }$.

2.5. Maximal Parabolic Subgroups

The set of maximal parabolic subgroups is in one-to-one correpondence with S, namely given $\alpha \in S$, the parabolic subgroup Q, where $S_{Q}=S \backslash\{\alpha\}$ is a maximal parabolic subgroup, and conversely. We shall denote Q, where $S_{Q}=S \backslash\{\alpha\}$ by $P_{\widehat{\alpha}}$, and refer to it as the maximal parabolic subgroup obtained by omitting α.

2.6. Schubert Varieties in G / Q

For $w \in W$, let us denote the point in G / Q corresponding to the coset $w Q$ by $e_{w, Q}$. Then the set of T-fixed points in G / Q for the action given by left multiplication is presisely $\left\{e_{w, Q} \mid w \in W\right\}$. Let $w \in W$, and let $X_{Q}(w)$ be the Zariski closure of $B e_{w, Q}$ in G / Q. Then $X_{Q}(w)$ with the canonical reduced structure is called the Schubert variety in G / Q associated to $w W_{Q}$. In particular, we have bijections between $W_{Q}^{\min }$ and the set of Schubert
varieties in G / Q, and between $W_{Q}^{\max }$ and the set of Schubert varieties in G / Q. We have the well-known Bruhat decomposition

$$
G / Q=\dot{\cup} B e_{w, Q}, \quad X_{Q}(\theta)=\bigcup_{w \leq \theta}^{\cdot} B e_{w, Q}, \quad \theta \in W
$$

As above, let $w_{Q}^{\min }$ (resp. $w_{Q}^{\max }$) denote the minimal (resp. maximal) representative of $w W_{Q}$. Let $\pi: G / B \rightarrow G / Q$ be the canonical projection. Then it can be easily seen that

$$
\left.\pi\right|_{X_{B}\left(w^{\max x}\right)}: X_{B}\left(w_{Q}^{\max }\right) \rightarrow X_{Q}(w)
$$

is a fibration with fiber $\simeq Q / B$, while

$$
\left.\pi\right|_{X_{B}\left(w^{\min n}\right)}: X_{B}\left(w_{Q}^{\min }\right) \rightarrow X_{Q}(w)
$$

is birational. In particular, we have $\operatorname{dim} X_{Q}(w)=\operatorname{dim} X_{B}\left(w_{Q}^{\min }\right)$.

2.7. The Big Cell and the Opposite Big Cell

The B-orbit $B e_{w_{0}}$ in G / Q (w_{0} being the unique element of maximal length in W) is called the big cell in G / Q. It is a dense open subset of G / Q, and it is identified with $R_{u}(Q)$, the unipotent radical of Q, namely the subgroup of B generated by $\left\{U_{\alpha} \mid \alpha \in R^{+} \backslash R_{Q}^{+}\right\}$(cf. [1]). Let B^{-}be the Borel subgroup of G opposite B, i.e., the subgroup of G generated by T and $\left\{U_{\alpha} \mid \alpha \in R^{-}\right\}$. The B^{-}-orbit $B^{-} e_{\mathrm{id}, Q}$ is called the opposite big cell in G / Q. This is again a dense open subset of G / Q, and it is identified with the unipotent subgroup of B^{-}generated by $\left\{U_{\alpha} \mid \alpha \in R^{-} \backslash R_{Q}^{-}\right\}$. Observe that both the big cell and the opposite big cell can be identified with $\mathbb{A}^{N_{Q}}$, where $N_{Q}=\#\left\{R^{+} \backslash R_{Q}^{+}\right\}$.

For a Schubert variety $X(w) \subset G / Q, B^{-} e_{\text {id }} \cap X(w)$ is called the opposite cell in $X(w)$ (by abuse of language). In general, it is not a cell (except for $w=w_{0}$). It is a nonempty affine open subvariety of $X(w)$ and a closed subvariety of the affine space $B^{-} e_{\text {id }}$.

2.8. Equations Defining a Schubert Variety

Let L be an ample line bundle on G / Q. Consider the projective embedding $G / Q \hookrightarrow \operatorname{Proj}\left(H^{0}(G / Q, L)\right)$. We recall (cf. [20]) that the homogeneous ideal of G / Q for this embedding is generated in degree 2 , and any Schubert variety X in G / Q is scheme theoretically (even at the cone level) the intersection of G / Q with all the hyperplanes in $\operatorname{Proj}\left(H^{0}(G / Q, L)\right)$ containing X.
For a maximal parabolic subgroup P_{i}, let us denote the ample generator of $\operatorname{Pic}\left(G / P_{i}\right)(\simeq \mathbb{Z})$ by L_{i}.

Given a parabolic subgroup Q, let us denote $S \backslash S_{Q}$ by $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$, for some t. Let

$$
\begin{aligned}
R & =\underset{\underline{a}}{\bigoplus_{a}} H^{0}\left(G / Q, \underset{i}{\otimes} L_{i}^{a_{i}}\right) \\
R_{w} & =\underset{\underline{a}}{\bigoplus_{a}} H^{0}\left(X_{Q}(w), \underset{i}{\otimes} L_{i}^{a_{i}}\right),
\end{aligned}
$$

where $\underline{a}=\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}_{+}^{t}$. We recall (cf. [10]) that the natural map

$$
\bigoplus S^{a_{1}}\left(H^{0}\left(G / Q, L_{1}\right)\right) \otimes \cdots \otimes S^{a_{1}}\left(H^{0}\left(G / Q, L_{t}\right)\right) \rightarrow R
$$

is surjective, and its kernel is generated as an ideal by elements of total degree 2 . Furthermore, the restriction map $R \rightarrow R_{w}$ is surjective, and its kernel is generated as an ideal by elements of total degree 1 .

3. OPPOSITE CELLS IN SCHUBERT VARIETIES IN $S L(n) / B$

Let $G=S L(n)$, the special linear group of rank $n-1$. Let T be the maximal torus consisting of all the diagonal matrices in G, and let B be the Borel subgroup consisting of all the upper triangular matrices in G. It is well known that W can be identified with \mathscr{S}_{n}, the symmetric group on n letters.

Following [2], we denote the simple roots by $\epsilon_{i}-\epsilon_{i+1}, 1 \leq i \leq n-1$ (note that $\epsilon_{i}-\epsilon_{i+1}$ is the character sending $\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)$ to $t_{i} t_{i+1}^{-1}$). Then $R=\left\{\epsilon_{i}-\epsilon_{j} \mid 1 \leq i, j \leq n\right\}$, and the reflection $s_{\epsilon_{i}-\epsilon_{i+1}}$ may be identified with the transposition (i, j) in \mathscr{S}_{n}.

For $\alpha=\alpha_{i}\left(=\epsilon_{i}-\epsilon_{i+1}\right)$, we also denote $P_{\widehat{\alpha}}$ (resp. $W_{P_{\widehat{\alpha}}}^{\text {min }}$) by just P_{i} (resp. W^{i}).

3.1. The Partially Ordered Set $I_{d, n}$

Let $Q=P_{d}$. Then

$$
\begin{aligned}
Q & =\left\{A \in G \left\lvert\, A=\left(\begin{array}{cc}
* & * \\
0_{(n-d) \times d} & *
\end{array}\right)\right.\right\}, \\
W_{Q} & =\mathscr{S}_{d} \times \mathscr{S}_{n-d} .
\end{aligned}
$$

Hence

$$
W_{Q}^{\min }=\left\{\left(a_{1} \ldots a_{n}\right) \in W \mid a_{1}<\cdots<a_{d}, \quad a_{d+1}<\cdots<a_{n}\right\} .
$$

Thus $W_{Q}^{\text {min }}$ may be identified with

$$
I_{d, n}:=\left\{\underline{i}=\left(i_{1}, \ldots, i_{d}\right) \mid 1 \leq i_{1}<\cdots<i_{d} \leq n\right\} .
$$

Given $\underline{i}, \underline{j} \in I_{d, n}$, let $X_{\underline{i}}, X_{j}$ be the associated Schubert varieties in G / P_{d}. We define $\underline{i} \geq \underline{j} \Leftrightarrow X_{\underline{i}} \supseteq X_{j}$ (in other words, the partial order \geq on $I_{d, n}$ is induced by the Chevalley-Bruhat order on the set of Schubert varieties, via the bijection in Section 2.6). In particular, we have

$$
\underline{i} \geq \underline{j} \Leftrightarrow i_{t} \geq j_{t} \quad \text { for all } 1 \leq t \leq d
$$

3.2. The Chevalley-Bruhat Order on \mathscr{S}_{n}

For $w_{1}, w_{2} \in W$, we have

$$
\begin{aligned}
& X\left(w_{1}\right) \subset X\left(w_{2}\right) \Leftrightarrow \pi_{d}\left(X\left(w_{1}\right)\right) \subset \pi_{d}\left(X\left(w_{2}\right)\right), \\
& \text { for all } 1 \leq d \leq n-1,
\end{aligned}
$$

where π_{d} is the canonical projection $G / B \rightarrow G / P_{d}$. Hence we obtain that for $\left(a_{1} \ldots a_{n}\right),\left(b_{1} \ldots b_{n}\right) \in \mathscr{S}_{n}$,

$$
\left(a_{1} \ldots a_{n}\right) \geq\left(b_{1} \ldots b_{n}\right) \Leftrightarrow\left(a_{1} \ldots a_{d}\right) \uparrow \geq\left(b_{1} \ldots b_{d}\right) \uparrow
$$

for all $1 \leq d \leq n-1$
(here, for a d-tuple $\left(t_{1} \ldots t_{d}\right)$ of distinct integers, $\left(t_{1} \ldots t_{d}\right) \uparrow$ denotes the ordered d-tuple obtained from $\left\{t_{1}, \ldots, t_{d}\right\}$ by arranging its elements in ascending order).

3.3. The Partially Ordered Set $I_{a_{1}, \ldots, a_{k}}$

Let Q be a parabolic subgroup in $\operatorname{SL}(n)$. Let $1 \leq a_{1}<\cdots<a_{k} \leq n$, such that $S_{Q}=S \backslash\left\{\alpha_{a_{1}}, \ldots, \alpha_{a_{k}}\right\}$ (we follow [2] for indexing the simple roots). Then $Q=P_{a_{1}} \cap \cdots \cap P_{a_{k}}$, and $W_{Q}=\mathscr{S}_{a_{1}} \times \mathscr{S}_{a_{2}-a_{1}} \times \cdots \times \mathscr{S}_{n-a_{k}}$. Let

$$
\begin{aligned}
& I_{a_{1}, \ldots, a_{k}}=\left\{\left(\underline{i}_{1}, \ldots, \underline{i}_{k}\right) \in I_{a_{1}, n} \times \cdots \times I_{a_{k}, n}\right. \\
&\left.\underline{i}_{t} \subset \underline{i}_{t+1} \text { for all } 1 \leq t \leq k-1\right\} .
\end{aligned}
$$

Then it is easily seen that $W_{Q}^{\min }$ may be identified with $I_{a_{1}, \ldots, a_{k}}$.
The partial order on the set of Schubert varieties in G / Q (given by inclusion) induces a partial order \geq on $I_{a_{1}, \ldots, a_{k}}$, namely, for $\mathbf{i}=\left(\underline{i}_{1}, \ldots, \underline{i}_{k}\right)$, $\mathbf{j}=\left(\underline{j}_{1}, \ldots, \underline{j}_{k}\right) \in I_{a_{1}}, \ldots, a_{k}, \mathbf{i} \geq \mathbf{j} \Leftrightarrow \underline{i}_{t} \geq \underline{j}_{t}$ for all $1 \leq t \leq k$.

3.4. The Minimal and Maximal Representatives as Permutations

Let $w \in W_{Q}$, and let $\mathbf{i}=\left(\underline{i}_{1}, \ldots, \underline{i}_{k}\right)$ be the element in $I_{a_{1}, \ldots, a_{k}}$ that corresponds to $w_{Q}^{\min }$. As a permutation, the element $w_{Q}^{\min }$ is given by \underline{i}_{1}, followed by $\underline{i}_{2} \backslash \underline{i}_{1}$ arranged in ascending order, and so on, ending with $\{1, \ldots, n\} \backslash \underline{i}_{k}$ arranged in ascending order. Similarly, as a permutation, the element $w_{Q}^{\max }$ is given by \underline{i}_{1} arranged in descending order, followed by $\underline{\underline{i}}_{2} \backslash \underline{i}_{1}$ arranged in descending order, etc.

3.5. The Opposite Big Cell in G / Q

Let $Q=\bigcap_{t=1}^{k} P_{a_{t}}$. Let $a=n-a_{k}$, and let Q be the parabolic subgroup consisting of all the elements of G of the form

$$
\left(\begin{array}{cccccc}
A_{1} & * & * & \cdots & * & * \\
0 & A_{2} & * & \cdots & * & * \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & A_{k} & * \\
0 & 0 & 0 & \cdots & 0 & A
\end{array}\right),
$$

where A_{t} is a matrix of size $c_{t} \times c_{t}, c_{t}=a_{t}-a_{t-1}, 1 \leq t \leq k$ (here $a_{0}=0$), A is a matrix of size $a \times a$, and $x_{m l}=0, m>a_{t}, l \leq a_{t}, 1 \leq t \leq k$. Denote by O^{-}the subgroup of G generated by $\left\{U_{\alpha} \mid \alpha \in R^{-} \backslash R_{Q}^{-}\right\}$. Then O^{-} consists of the elements of G of the form

$$
\left(\begin{array}{cccccc}
I_{1} & 0 & 0 & \cdots & 0 & 0 \\
* & I_{2} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
* & * & * & \cdots & I_{k} & 0 \\
* & * & * & \cdots & * & I_{a}
\end{array}\right),
$$

where I_{t} is the $c_{t} \times c_{t}$ identity matrix, $1 \leq t \leq k, I_{a}$ is the $a \times a$ identity matrix, and if $x_{m l} \neq 0$, with $m \neq l$, then $m>a_{t}, l \leq a_{t}$ for some $t, 1 \leq t \leq k$. Furthermore, the restriction of the canonical morphism $f: G \rightarrow G / Q$ to O^{-}is an open immersion, and $f\left(O^{-}\right) \simeq B^{-} e_{\mathrm{id}, Q}$. Thus $B^{-} e_{\mathrm{id}, Q}$ is identified with O^{-}.

3.6. Plücker Coordinates on the Grassmannian

Let $G_{d, n}$ be the Grassmannian variety, consisting of d-dimensional subspaces of an n-dimensional vector space V. Let us identify V with k^{n}, and denote the standard basis of k^{n} by $\left\{e_{i} \mid 1 \leq i \leq n\right\}$. Consider the Plücker embedding $f_{d}: G_{d, n} \hookrightarrow \mathbb{P}\left(\wedge^{d} V\right)$, where $\wedge^{d} V$ is the d th exterior power of V. For $\underline{i}=\left(i_{1}, \ldots, i_{d}\right) \in I_{d, n}$, let $e_{\underline{i}}=e_{i_{1}} \wedge \cdots \wedge e_{i_{d}}$. Then the set $\left\{e_{\underline{i}} \mid \underline{i} \in I_{d, n}\right\}$ is a basis for $\wedge^{d} V$. Let us denote the basis of $\left(\wedge^{d} V\right)^{*}$ (the linear dual of $\wedge^{d} V$) dual to $\left\{e_{\underline{i}} \mid \underline{i} \in I_{d, n}\right\}$ by $\left\{p_{\underline{j}} \mid \underline{j} \in I_{d, n}\right\}$. Then $\left\{p_{\underline{j}} \mid \underline{j} \in I_{d, n}\right\}$ gives a system of coordinates for $\mathbb{P}\left(\wedge^{d} V\right)$. These are the so-called Plücker coordinates.

3.7. Schubert Varieties in the Grassmannian

Let $Q=P_{d}$. We have

$$
G_{d, n} \simeq G / P_{d} .
$$

Let $\underline{i}=\left(i_{1}, \ldots, i_{d}\right) \in I_{d, n}$. Then the T-fixed point $e_{i, P_{d}}$ is simply the d dimensional span of $\left\{e_{i_{1}}, \ldots, e_{i_{d}}\right\}$. Thus $X_{P_{d}}(\underline{i})$ is simply the Zariski closure of $B\left[e_{i_{1}} \wedge \cdots \wedge e_{i_{d}}\right]$ in $\mathbb{P}\left(\wedge^{d} V\right)$.

In view of the Bruhat decomposition for $X_{P_{d}}(\underline{i})$ (cf. Section 2.6), we have

$$
\left.p_{\underline{j}}\right|_{X_{P_{d}}(i)} \neq 0 \Leftrightarrow \underline{i} \geq \underline{j} .
$$

3.8. Evaluation of Plücker Coordinates on the Opposite Big Cell in G / P_{d}

Consider the morphism $\phi_{d}: G \rightarrow \mathbb{P}\left(\wedge^{d} V\right)$, where $\phi_{d}=f_{d} \circ \theta_{d}, \theta_{d}$ being the natural projection $G \rightarrow G / P_{d}$. Then $p_{j}\left(\phi_{d}(g)\right)$ is simply the minor of g consisting of the first d columns and the rows with indices j_{1}, \ldots, j_{d}. Now, denote by Z_{d} the unipotent subgroup of G generated by $\left\{U_{\alpha} \mid \alpha \in\right.$ $\left.R^{-} \backslash R_{P_{d}}^{-}\right\}$. We have, as in Section 3.5,

$$
Z_{d}=\left\{\left(\begin{array}{cc}
I_{d} & 0_{d \times(n-d)} \\
A_{(n-d) \times d} & I_{n-d}
\end{array}\right) \in G\right\} .
$$

As in Section 3.5, we identify Z_{d} with the opposite big cell in G / P_{d}. Then, given $z \in Z_{d}$, the Plücker coordinate p_{j} evaluated at z is simply a certain minor of A, which may be explicitly described as follows. Let $j=\left(j_{1}, \ldots, j_{d}\right)$, and let j_{r} be the largest entry $\leq d$. Let $\left\{k_{1}, \ldots, k_{d-r}\right\}$ \bar{b} the complement of $\left\{j_{1}, \ldots, j_{r}\right\}$ in $\{1, \ldots, d\}$. Then this minor of A is given by column indices $k_{1}, \ldots k_{d-r}$ and row indices j_{r+1}, \ldots, j_{d} (here the rows of A are indexed as $d+1, \ldots, n$). Conversely, given a minor of A, say, with column indices b_{1}, \ldots, b_{s} and row indices i_{d-s+1}, \ldots, i_{d}, it is the evaluation of the Plücker coordinate $p_{\underline{i}}$ at z, where $\underline{i}=\left(i_{1}, \ldots, i_{d}\right)$ may be described as follows: $\left\{i_{1}, \ldots, i_{d-s}\right\}$ is the complement of $\left\{b_{1}, \ldots, b_{s}\right\}$ in $\{1, \ldots, d\}$, and i_{d-s+1}, \ldots, i_{d} are simply the row indices (again, the rows of A are indexed as $d+1, \ldots, n)$.
3.9. Evaluation of the Plücker Coordinates on the Opposite Big Cell in G / Q

Consider

$$
f: G \rightarrow G / Q \hookrightarrow G / P_{a_{1}} \times \cdots \times G / P_{a_{k}} \hookrightarrow \mathbf{P}_{1} \times \cdots \times \mathbf{P}_{k},
$$

where $\mathbf{P}_{t}=\mathbb{P}\left(\wedge^{a_{t}} V\right)$. Denoting the restriction of f to O^{-}also by just f, we obtain an embedding $f: O^{-} \hookrightarrow \mathbf{P}_{1} \times \cdots \times \mathbf{P}_{k}, O^{-}$having been identified with the opposite big cell in G / Q. For $z \in O^{-}$, the multi-Plücker coordinates of $f(z)$ are simply all the $a_{t} \times a_{t}$ minors of z with column indices $\left\{1, \ldots, a_{t}\right\}, 1 \leq t \leq k$.

3.10. Equations Defining the Cones over Schubert Varieties in $G_{d, n}$

Let $Q=P_{d}$. Given a d-tuple $\underline{i}=\left(i_{1}, \ldots, i_{d}\right) \in I_{d, n}$, let us denote the associated element of $W_{P_{d}}^{\min }$ by θ_{i}. For simplicity of notation, let us denote P_{d} by just P, and θ_{i} by just θ. Then, by Section 3.7, $X_{P}(\theta)$ is simply the Zariski closure of $B\left[e_{i_{1}} \wedge \cdots \wedge e_{i_{d}}\right]$ in $\mathbb{P}\left(\wedge^{d} V\right)$. Now using Section 2.8, we obtain that the restriction map $R \rightarrow R_{\theta}$ is surjective, and the kernel is generated as an ideal by $\left\{p_{\underline{j}} \mid \underline{i} \nsucceq \underline{j}\right\}$.

3.11. Equations Defining Multicones over Schubert Varieties in G / Q

Let Q be as in Section 3.5. Let $X_{Q}(w) \subset G / Q$. Denoting R, R_{w} as in Section 2.8, the kernel of the restriction map $R \rightarrow R_{w}$ is generated by the kernel of $R_{1} \rightarrow(R(w))_{1}$; but now, in view of Section 3.7, this kernel is the span of

$$
\left\{p_{\underline{i}} \mid \underline{i} \in I_{d, n}, d \in\left\{a_{1}, \ldots, a_{k}\right\}, w^{(d)} \nsucceq \underline{i}\right\},
$$

where $w^{(d)}$ is the d-tuple corresponding to the Schubert variety that is the image of $X_{Q}(w)$ under the projection $G / Q \rightarrow G / P_{a_{t}}, 1 \leq t \leq k$.

3.12. Ideal of the Opposite Cell in $X_{Q}(w)$

Let us denote $B^{-} e_{\mathrm{id}, Q} \cap X_{Q}(w)$ by just A_{w}. Then as in Section 2.7, we identify $B^{-} e_{\mathrm{id}, Q}$ with the unipotent subgroup O^{-}generated by $\left\{U_{\alpha} \mid \alpha \in\right.$ $\left.R^{-} \backslash R_{Q}^{-}\right\}$and consider A_{w} as a closed subvariety of O^{-}. In view of Section 3.11, we obtain that the ideal defining A_{w} in O^{-}is generated by

$$
\left\{p_{\underline{i}} \mid \underline{i} \in I_{d, n}, d \in\left\{a_{1}, \ldots, a_{k}\right\}, w^{(d)} \nsucceq \underline{i}\right\} .
$$

4. TWO LEMMAS RELATED TO THE EVALUATION OF PLÜCKER COORDINATES ON THE OPPOSITE CELL OF A SCHUBERT VARIETY IN G / Q

Let $G=S L(n), 1 \leq a_{1}<\cdots<a_{h} \leq n, Q=P_{a_{1}} \cap \cdots \cap P_{a_{h}}$. Let O^{-}be the opposite big cell in G / Q. Let $X=\left(x_{b a}\right), 1 \leq b, a \leq n$, be a generic $n \times n$ matrix and let H be the one-sided ladder in X defined by the outside corners $\left(a_{i}+1, a_{i}\right), 1 \leq i \leq h$. Clearly, $\mathbb{A}(H) \simeq O^{-}$. Let $X^{-}=\left(x_{b a}^{-}\right), 1 \leq b$, $a \leq n$, where

$$
x_{b a}^{-}= \begin{cases}x_{b a}, & \text { if }(b, a) \in H \\ 1, & \text { if } b=a \\ 0, & \text { otherwise }\end{cases}
$$

Note that, given $\tau \in W^{a_{i}}$, for some $i, 1 \leq i \leq h$, the function $\left.p_{\tau}\right|_{O^{-}}$represents the determinant of the $a_{i} \times a_{i}$ submatrix T of X^{-}whose row indices are $\left\{\tau(1), \ldots, \tau\left(a_{i}\right)\right\}$ and column indices are $\left\{1, \ldots, a_{i}\right\}$.
Let $H_{i}=\left\{x_{b a} \mid a_{i}+1 \leq b \leq n, 1 \leq a \leq a_{i}\right\}, 1 \leq i \leq h$.
Lemma 4.1. Let M be a $t \times t$ matrix contained in H_{i}, for some $i, 1 \leq$ $i \leq h$, with row indices $r_{1}<\cdots<r_{t}$. Then $\operatorname{det} M$ belongs to the ideal of $k[H]$ generated by $\left.p_{\phi}\right|_{O^{-}}$, with $\phi \in W^{a_{i}}$ such that $\left\{\phi(1), \ldots, \phi\left(a_{i}\right)\right\} \cap\left\{a_{i}+\right.$ $1, \ldots, n\}=\left\{r_{1}, \ldots, r_{t}\right\}$.

Proof. Denote by $c_{1}<\cdots<c_{t}$ the column indices of M. Let $\tau=$ $\left(\left\{1, \ldots, a_{i}\right\} \backslash\left\{c_{1}, \ldots, c_{t}\right\}\right) \cup\left\{r_{1}, \ldots, r_{t}\right\}$. Then $\tau \in W^{a_{i}}$, and $\left.p_{\tau}\right|_{O^{-}}=\operatorname{det} T$, where T is the $a_{i} \times a_{i}$ submatrix of X^{-}with row indices $\left\{\tau(1), \ldots, \tau\left(a_{i}\right)\right\}$ and column indices $\left\{1, \ldots, a_{i}\right\}$. Using Laplace expansion with respect to the last t rows of T, we obtain

$$
\begin{equation*}
\operatorname{det} T=\sum \pm \operatorname{det} N_{c_{1}^{\prime}, \ldots, c_{t}^{\prime}} \operatorname{det} M_{c_{1}^{\prime}, \ldots, c_{t}^{\prime}}, \tag{*}
\end{equation*}
$$

the sum being taken over all subsets with t elements $\left\{c_{1}^{\prime}, \ldots, c_{t}^{\prime}\right\}$ of $\left\{1, \ldots, a_{i}\right\}$, where $N_{c_{1}^{\prime}, \ldots, c_{t}^{\prime}}$ is the $\left(a_{i}-t\right) \times\left(a_{i}-t\right)$ submatrix of X^{-}with row indices $\left\{1, \ldots, a_{i}\right\} \backslash\left\{c_{1}, \ldots, c_{t}\right\}$ and column indices $\left\{1, \ldots, a_{i}\right\} \backslash\left\{c_{1}^{\prime}, \ldots, c_{t}^{\prime}\right\}$, and $M_{c_{1}^{\prime}, \ldots, c_{t}^{\prime}}$ is the $t \times t$ submatrix of X^{-} with row indices $\left\{r_{1}, \ldots, r_{t}\right\}$ and column indices $\left\{c_{1}^{\prime}, \ldots, c_{t}^{\prime}\right\}$. Note that $M_{c_{1}, \ldots, c_{t}}=M$, and $N_{c_{1}, \ldots, c_{t}}$ is a lower triangular matrix, with all diagonal entries equal to 1 , and hence $\operatorname{det} M$ appears in ($*$), and its coefficient is ± 1. Also note that $N_{c_{1}^{\prime}, \ldots, c_{t}^{\prime}}$ is obtained from $N_{c_{1}, \ldots, c_{t}}$ by replacing the columns with indices $c_{1}^{\prime}, \ldots, c_{t}^{\prime}$ by the columns with indices c_{1}, \ldots, c_{t}.

Let \geq denote the partial order on $I_{t, a_{i}}$ as in Section 3.1, namely $\left(d_{1}, \ldots, d_{t}\right) \geq\left(c_{1}, \ldots, c_{t}\right)$ if $d_{j} \geq c_{j}$ for all $1 \leq j \leq t$. We prove the lemma by decreasing induction with respect to the order \geq on the t-tuple $\left(c_{1}, \ldots, c_{t}\right)$ consisting of the column indices of M.

If $c_{j}>a_{i-1}$ for all $1 \leq j \leq t$, then for $\left\{c_{1}^{\prime}, \ldots, c_{t}^{\prime}\right\} \neq\left\{c_{1}, \ldots, c_{t}\right\}$ we have $\operatorname{det} N_{c_{1}^{\prime}, \ldots, c_{t}^{\prime}}=0$, since at least one of c_{1}, \ldots, c_{t} is an index for a column in $N_{c_{1}^{\prime}, \ldots, c_{i}^{\prime}}$, and all entries of this column are 0 . Thus, in this case $(*)$ reduces to $\operatorname{det} T= \pm \operatorname{det} M$, i.e., $\operatorname{det} M= \pm\left. p_{\tau}\right|_{o^{-}}$, with $\tau \in W^{a_{i}}$ such that $\left\{\tau(1), \ldots, \tau\left(a_{i}\right)\right\} \cap\left\{a_{i}+1, \ldots, n\right\}=\left\{r_{1}, \ldots, r_{t}\right\}$.
Assume now that the assertion is true for all matrices with row indices $r_{1}<\cdots<r_{t}$ and column indices $d_{1}<\cdots<d_{t}$ such that $\left(d_{1}, \ldots, d_{t}\right)>$ $\left(c_{1}, \ldots, c_{t}\right)$ (i.e., such that $d_{j} \geq c_{j}$ for all $1 \leq j \leq t$ and $\left(d_{1}, \ldots, d_{t}\right) \neq$ $\left(c_{1}, \ldots, c_{t}\right)$). We shall now prove it for the matrix M with row indices $r_{1}<$ $\cdots<r_{t}$ and column indices $c_{1}<\cdots<c_{t}$. Consider a typical $N_{c_{1}^{\prime}, \ldots, c_{t}^{\prime}}$ in $(*)$. If there exists a j such that $c_{j}^{\prime}<c_{j}$, then the column with index c_{j} is replacing the column with index c_{j}^{\prime} while obtaining $N_{c_{1}^{\prime}, \ldots, c_{t}^{\prime}}$ from $N_{c_{1}, \ldots, c_{t}}$; hence $N_{c_{1}^{\prime}}, \ldots, c_{t}^{\prime}$ is still lower triangular, but the diagonal entry in the column
with index c_{j} is 0 , which implies that $\operatorname{det} N_{c_{1}^{\prime}, \ldots, c_{t}^{c_{t}}}=0$. Consequently we obtain

$$
\operatorname{det} T= \pm \operatorname{det} M+\sum \pm \operatorname{det} N_{c_{1}^{\prime}}, \ldots, c_{t}^{\prime} \operatorname{det} M_{c_{1}^{\prime}}, \ldots, c_{t}^{c_{t}},
$$

and hence

$$
\operatorname{det} M= \pm\left. p_{\tau}\right|_{o^{-}}+\sum \pm \operatorname{det} N_{c_{1}^{\prime}, \ldots, c_{t}^{\prime}} \operatorname{det} M_{c_{1}^{\prime}, \ldots, c_{t}^{\prime}},
$$

the sum being taken over all $\left(c_{1}, \ldots c_{t}^{\prime}\right) \in I_{t, a_{i}}$ such that $\left(c_{1}^{\prime}, \ldots, c_{t}^{\prime}\right)>$ $\left(c_{1}, \ldots, c_{t}\right)$. The required result now follows by induction hypothesis.

Lemma 4.2. Let $1 \leq t \leq a \leq a_{i}, 1 \leq s \leq n$, and $\tau \in W^{a_{i}}$ such that $\tau(a-t+1) \geq s$. Then $\left.p_{\tau}\right|_{O^{-}}$belongs to the ideal of $k[H]$ generated by t minors in X^{-}with row indices $\geq s$ and column indices $\leq a$.

Proof. Let T be the $a_{i} \times a_{i}$ submatrix of X^{-}with row indices $\{\tau(1)$, $\left.\ldots, \tau\left(a_{i}\right)\right\}$ and column indices $\left\{1, \ldots, a_{i}\right\}$. Then $\left.p_{\tau}\right|_{0^{-}}=\operatorname{det} T$. Using Laplace expansion with respect to the first a columns, we have $\operatorname{det} T=$ $\sum_{p} \operatorname{det} A_{p} \operatorname{det} B_{p}$, where A_{p} (resp. $\left.B_{p}\right)$ is an $a \times a\left(\right.$ resp. $\left.\left(a_{i}-a\right) \times\left(a_{i}-a\right)\right)$ matrix. Clearly, all the column indices of a typical A_{p} are $\leq a$, and since $\tau(a-t+1) \geq s$, at least t of the row indices of A_{p} are $\geq s$. Using Laplace expansion for A_{p} with respect to t rows with indices $\geq s$, we obtain $\operatorname{det} A_{p}=\sum_{q} \operatorname{det} C_{q} \operatorname{det} D_{q}$, where $C_{q}\left(\right.$ resp. $\left.D_{q}\right)$ is a $t \times t$ (resp. $(a-t) \times(a-t))$ matrix, the row indices of C_{q} are $\geq s$, and column indices of C_{q} are $\leq a$. The required result follows from this.

5. LADDER DETERMINANTAL VARIETIES AND SCHUBERT VARIETIES

Let $L \subset X$ be a one-sided ladder in X defined by the outside corners $\left(b_{i}, a_{i}\right), 1 \leq i \leq h, 1 \leq b_{1}<\cdots<b_{h}<n, 1<a_{1}<\cdots<a_{h} \leq n$, where X is a generic $n \times n$ matrix $X=\left(x_{b a}\right)$, with n large enough such that L is situated below the main diagonal, i.e., $b_{i} \geq a_{i}+1,1 \leq i \leq h$. Let $G=S L(n), Q=P_{a_{1}} \cap \cdots \cap P_{a_{h}}$. Let O^{-}be the opposite big cell in G / Q. Let H be the one-sided ladder defined by the outside corners $\left(a_{i}+1, a_{i}\right)$, $1 \leq i \leq h$. Let $\mathbf{s}, \mathbf{t} \in \mathbb{Z}_{+}^{l}$, satisfying (L1), (L2), and (L3), as in Section 1, with $m=n$. Let notations be as in Section 1. Let Z be the variety in $\mathbb{A}(H) \simeq O^{-}$ defined by the vanishing of the t_{i}-minors in $L(i), 1 \leq i \leq l$. Note that $Z \simeq D_{\mathrm{s}, \mathrm{t}}(L) \times \mathbb{A}(H \backslash L) \simeq D_{\mathrm{s}, \mathrm{t}}(L) \times \mathbb{A}^{r}$, where $r=\operatorname{dim} S L(n) / Q-|L|$.

We shall now define an element $w \in W_{Q}^{\min }$, such that the variety Z identifies with the opposite cell in the Schubert variety $X(w)$ in G / Q. We define $w \in W_{Q}^{\min }$ by specifying $w^{\left(a_{i}\right)} \in W^{a_{i}}, 1 \leq i \leq h$, where $\pi_{i}(X(w))=X\left(w^{\left(a_{i}\right)}\right)$ under the projection $\pi_{i}: G / Q \rightarrow G / P_{a_{i}}$.

Define $w^{\left(a_{i}\right)}, 1 \leq i \leq h$, inductively, as the (unique) maximal element in $W^{a_{i}}$ such that
(1) $w^{\left(a_{i}\right)}\left(a_{i}-t_{j}+1\right)=s_{j}-1$ for all $j \in\{1, \ldots, l\}$ such that $s_{j} \geq b_{i}$, and $t_{j} \neq t_{j-1}$ if $j>1$.
(2) If $i>1$, then $w^{\left(a_{i-1}\right)} \subset w^{\left(a_{i}\right)}$.

Note that $w^{\left(a_{i}\right)}, 1 \leq i \leq h$, is well defined in W^{i}, and w is well defined as an element in $W_{Q}^{\min }$.
5.1. Let us denote the distinct elements in $\left\{t_{1}, \ldots, t_{l}\right\}$ by $t_{1}=t_{i_{1}}>$ $t_{i_{2}}>\cdots>t_{i_{m}}=t_{l}$, where $t_{i_{k}-1}>t_{i_{k}}$ for $2 \leq k \leq m$. For $2 \leq k \leq m$, let $I_{k}=\left[e_{i_{k}}, s_{i_{k}}-1\right]$, where $e_{i_{k}}=s_{i_{k}}-\left(t_{i_{k-1}}-t_{i_{k}}\right)$. Let $I_{1}=\left[b_{1}-\left(a_{1}-\right.\right.$ $t_{1}+1$), $\left.b_{1}-1\right], I_{m+1}=\left[n-t_{l}+2, n\right]$ (here for $p, q \in \mathbb{Z}, p<q,[p, q]$ denotes the set $\{p, p+1, \ldots, q\}$).

Remark 5.2. Fix $j, 1 \leq j \leq h$. Let $b_{j}=s_{c}$, for some $c, 1 \leq c \leq l$. Let i_{k} be the smallest index such that $s_{i_{k}}>b_{j}$. Then in $w^{\left(a_{j}\right)}, b_{j}-1$ appears at the ($a_{i}-t_{c}+1$)th place and is followed by the blocks $I_{k}, I_{k+1}, \ldots, I_{m+1}$.

Lemma 5.3. We have

(1) $w^{\left(a_{1}\right)}=I_{1} \cup I_{2} \cup \cdots \cup I_{m+1}$.
(2) $I_{j} \subset w^{\left(a_{i}\right)}, 1 \leq j \leq m+1,1 \leq i \leq h$.
(3) The entries in $w^{\left(a_{i}\right)} \backslash w^{\left(a_{i-1}\right)}$ are $\leq b_{i}-1,1 \leq i \leq h$.

All the assertions are clear from the definition of w.
Lemma 5.4. Fix $j, 1 \leq j \leq l$.
(1) We have $s_{j} \notin I_{r}, 1 \leq r \leq m+1$.
(2) Let $t_{j}=t_{i_{k-1}}$, for some $k, 2 \leq k \leq m+1$. Then $e_{i_{k}}>s_{j}$
(here, $e_{i_{m+1}}=n-t_{l}+2$).
Proof. If $k=m+1$, then $t_{j}=t_{l}, e_{i_{m+1}}=n-t_{l}+2>s_{j}$ (since $t_{j}<$ $n-s_{j}+1$). Furthermore, $s_{j} \geq s_{i_{m}}$, and hence $s_{j} \notin I_{r}$ for any $1 \leq r \leq m+1$. Let then $k \leq m$. We have $s_{i_{k}}-s_{j}>t_{j}-t_{i_{k}}=t_{i_{k-1}}-t_{i_{k}}$. This implies $e_{i_{k}}>s_{j}$. Hence $s_{j} \notin I_{r}, r \geq k$. Also the fact that $s_{j} \geq s_{i_{k-1}}$ implies that $s_{j} \notin I_{r}$, $r \leq k-1$.
Remark 5.5. Consider a block of consecutive integers in $w^{\left(a_{i}\right)}, 1 \leq i \leq$ h, ending with $s_{j}-1$ at the $\left(a_{k}-t_{j}+1\right)$ th place, for some $k \leq i$. Then either $k=i$ or $k=j^{*}$; in other words, k is the largest integer in $\{1, \ldots, i\}$ such that $b_{k} \leq s_{i}$. In particular, if $j^{*} \leq i$, then $k=j^{*}$.

Theorem 5.6. The variety $Z\left(=D_{\mathrm{s}, \mathrm{t}}(L) \times \mathbb{A}^{r}\right)$ identifies with the opposite cell in $X(w)$, i.e., $Z=X(w) \cap O^{-}$(scheme theoretically).

Proof. Let $f=\operatorname{det} M$, where M is a $t_{i} \times t_{i}$ matrix contained in $L(i)$ for some $1 \leq i \leq l$, be a generator of $I(Z)$. Let $k=i^{*}$, i.e., k is the largest integer such that $b_{k} \leq s_{i}$. Then M is contained in H_{k}. By Lemma 4.1, f can be written in the form $f=\left.\sum g_{\phi} p_{\phi}\right|_{O^{-}}$, with $\phi \in W^{a_{k}}$ such that $\left\{\phi(1), \ldots, \phi\left(a_{k}\right)\right\} \cap\left\{a_{k}+1, \ldots, n\right\}=\left\{r_{1}, \ldots, r_{t}\right\}$, and $g_{\phi} \in k[H]$ (here $r_{1}, \ldots, r_{t_{i}}$ are the row indices of M). In particular, we have $\phi\left(a_{k}-t_{i}+1\right)=r_{1}$. Since M is contained in $L(i)$, we have $r_{1} \geq s_{i}$, and hence $\phi\left(a_{k}-t_{i}+1\right) \geq s_{i}$. We have $w^{\left(a_{k}\right)}\left(a_{k}-t_{i}+1\right)=s_{i}-1$, and hence $\phi\left(a_{k}-t_{i}+1\right)>w^{\left(a_{k}\right)}\left(a_{k}-t_{i}+1\right)$. This shows that $\phi \not \approx w^{\left(a_{k}\right)}$, and therefore $p_{\phi} \in I\left(X(w) \cap O^{-}\right)$. Thus $f \in I\left(X(w) \cap O^{-}\right)$.

Let now g be a generator of the ideal $I\left(X(w) \cap O^{-}\right)$, i.e., $g=\left.p_{\tau}\right|_{O^{-}}$, with $\tau \in W^{a_{i}}$ for some $i, 1 \leq i \leq h$, such that $\tau \not \pm w^{\left(a_{i}\right)}$. Since $w^{\left(a_{i}\right)}$ consists of several blocks of consecutive integers ending with $s_{m}-1$ at the ($a_{k}-$ $t_{m}+1$)th place, for some $m \in\{1, \ldots, l\}$, where $k \in\{1, \ldots, i\}$ is the largest index such that $b_{k} \leq s_{m}$, and a last index ending with n at the a_{i} th place, it follows that $\tau\left(a_{k}-t_{m}+1\right) \geq s_{m}$ for some m, where $k \in\{1, \ldots, i\}$ is the largest index such that $s_{m} \geq b_{k}$. Using Lemma 4.2, we deduce that $\left.p_{\tau}\right|_{O^{-}}$ belongs to the ideal of $k[H]$ generated by t_{m}-minors in L with row indices $\geq s_{m}$ and column indices $\leq a_{k}$. Thus $\left.p_{\tau}\right|_{O^{-}}$belongs to the ideal generated by t_{m}-minors contained in $L(m)$, which shows that $g \in I(Z)$.

Since the Schubert varieties are irreducible, normal, and CohenMacaulay and have rational singularities (cf. [10, 18-20]), as a consequence of Theorem 5.6 we obtain

Theorem 5.7. The variety $D_{\mathrm{s}, \mathrm{t}}(L)$ is irreducible, normal, and CohenMacaulay and has rational singularities.

6. THE DIMENSION OF $D_{\mathrm{s}, \mathbf{t}}(L)$

Let $X=\left(x_{b a}\right), 1 \leq b \leq m, 1 \leq a \leq n$ be an $m \times n$ matrix of indeterminates.

6.1. The Partial Order among Minors

We shall denote the determinant of the $r \times r$ submatrix of X whose row indices are $i_{1}<\cdots<i_{r}$ and column indices are $j_{1}<\cdots<j_{r}$ by $\left[i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right]$. We introduce a partial order on the set of all minors of X as follows: $\left[i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right] \leq\left[i_{1}^{\prime}, \ldots, i_{s}^{\prime} \mid j_{1}^{\prime}, \ldots, j_{s}^{\prime}\right]$ if

$$
\begin{aligned}
r \geq s \quad \text { and } \quad & i_{r} \geq i_{s}^{\prime}, i_{r-1} \geq i_{s-1}^{\prime}, \ldots, i_{r-s+1} \geq i_{1}^{\prime}, \\
& j_{1} \leq j_{1}^{\prime}, j_{2} \leq j_{2}^{\prime}, \ldots, j_{s} \leq j_{s}^{\prime} .
\end{aligned}
$$

We say that an ideal I of $k[X]$ is cogenerated by a given minor M if I is generated by the minors in the set $\left\{M^{\prime} \mid M^{\prime}\right.$ a minor of X such that $\left.M^{\prime} \nsucceq M\right\}$.

6.2. The Monomial Order \prec and Gröbner Bases

We introduce a total order on the variables as follows:

$$
\begin{aligned}
x_{m 1} & >x_{m 2}>\cdots>x_{m n}>x_{m-11}>x_{m-12}>\cdots \\
& >x_{m-1 n}>\cdots>x_{11}>x_{12}>\cdots>x_{1 n} .
\end{aligned}
$$

This induces a total order, namely the lexicographic order, on the set of monomials in $k[X]=k\left[x_{11}, \ldots, x_{m n}\right]$, denoted by \prec. The largest monomial (with respect to \prec) present in a polynomial $f \in k[X]$ is called the initial term of f and is denoted by in (f). Note that the initial term (with respect to \prec) of a minor of X is equal to the product of its elements on the skew diagonal.

Given an ideal $I \subset k[X]$, a set $G \subset I$ is called a Gröbner basis of I (with respect to the monomial order $\prec)$ if the ideal $\operatorname{in}(I)$ generated by the initial terms of the elements in I is generated by the initial terms of the elements in G. Note that a Gröbner basis of I generates I as an ideal.

We recall the following (see [9]).
Theorem 6.3. Let $M=\left[i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right]$ be a minor of X, and let I be the ideal of $k[X]$ cogenerated by M. For $1 \leq t \leq r+1$, let G_{t} be the set of all t-minors $\left[i_{1}^{\prime}, \ldots, i_{r}^{\prime} \mid j_{1}^{\prime}, \ldots, j_{r}^{\prime}\right]$ satisfying the conditions

$$
\begin{gather*}
i_{t}^{\prime} \leq i_{r}, \quad i_{t-1}^{\prime} \leq i_{r-1}, \quad \ldots, \quad i_{2}^{\prime} \leq i_{r-t+2} \\
j_{t-1}^{\prime} \geq j_{t-1}, \quad \ldots, \quad j_{2}^{\prime} \geq j_{2}, j_{1}^{\prime} \geq j_{1} \tag{1}\\
\text { if } t \leq r, \quad \text { then } i_{1}^{\prime}>i_{r-t+1} \quad \text { or } \quad j_{t}^{\prime}<j_{t} . \tag{2}
\end{gather*}
$$

Then the set $G=\bigcup_{i=1}^{r+1} G_{i}$ is a Gröbner basis for the ideal I with respect to the monomial order \prec.

6.4. The Ideal $I_{\mathrm{s}, \mathrm{t}}(X)$ and the Set \mathscr{G}

The matrix X can be viewed as a one-side ladder with a unique outside corner, namely $(1, n)$. Let $\mathbf{s}, \mathbf{t} \in \mathbb{Z}_{+}^{l}$ satisfy (L1), as in Section 1 (where $b_{1}=1$). Let $I_{\mathrm{s}, \mathrm{t}}(X)$ be as in Section 1, for $L=X$. In other words, $I_{\mathrm{s}, \mathrm{t}}(X)$ is the ideal of $k[X]$ generated by the t_{i}-minors in $X_{i}=\left\{x_{b a} \mid s_{i} \leq b \leq m\right\}$, $1 \leq i \leq l$. For $1 \leq i<l$, let \mathscr{G}_{i} be the set consisting of the t_{i} minors in X_{i} such that the number of rows contained in X_{j} is less than t_{j}, for all $j, i<j \leq l$, and let \mathscr{G}_{l} be the set consisting of the t_{l} minors in X_{l}. Let $\mathscr{G}=\bigcup_{i=1}^{l} \mathscr{G}_{i}$. Clearly, $I_{\mathrm{s}, \mathrm{t}}(X)$ is generated by \mathscr{G}.

Proposition 6.5. Let $\mathbf{s}, \mathbf{t} \in \mathbb{Z}_{+}^{l}$ satisfy (L1), and let \mathscr{G} be as above. Then G is a Gröbner basis of $I_{\mathrm{s}, \mathrm{t}}(X)$, with respect to the monomial order \prec.
Proof. Let $M_{\mathrm{s}, \mathrm{t}}$ be the minor of X of size $t_{1}-1$ given by the last $t_{i}-t_{i+1}$ rows of $X_{i} \backslash X_{i+1}, 1 \leq i<l$, and the last $t_{l}-1$ rows of X_{l}, and the first $t_{1}-1$ columns of X. First we show that the ideal $I_{\mathrm{s}, \mathrm{t}}(X)$ is cogenerated by $M_{\mathrm{s}, \mathbf{t}}$. Let $M_{\mathrm{s}, \mathrm{t}}=\left[i_{1}, \ldots, i_{t_{1}-1} \mid j_{1}, \ldots, j_{t_{1}-1}\right]$, and $\mathscr{F}=\left\{M^{\prime} \mid M^{\prime} \nexists M_{\mathrm{s}, \mathrm{t}}\right\}$. Note that $M^{\prime} \geq M_{\mathrm{s}, \mathrm{t}}$ if and only if M^{\prime} contains at most $t_{i}-1$ rows in $X_{i}, 1 \leq i \leq l$. Thus $\mathscr{F}=\bigcup_{i=1}^{l} \mathscr{F}_{i}$, where $\mathscr{F}_{i}=\left\{M^{\prime} \mid M^{\prime}\right.$ contains at least t_{i} rows in $\left.X_{i}\right\}$. Now $\mathscr{F}_{i} \subset I_{\mathrm{s}, \mathbf{t}}(X), 1 \leq i \leq l$, and hence $\langle\mathscr{F}\rangle \subset I_{\mathrm{s}, \mathbf{t}}(X)$. On the other hand, $\mathscr{G}_{i} \subset \mathscr{F}_{i}, 1 \leq i \leq l$, and $\langle\mathscr{G}\rangle=I_{\mathrm{s}, \mathbf{t}}(X)$. Therefore $I_{\mathrm{s}, \mathbf{t}}(X)=\langle\mathscr{F}\rangle$, i.e., $I_{\mathrm{s}, \mathbf{t}}(X)$ is cogenerated by $M_{\mathrm{s}, \mathrm{t}}$.

The inequalities regarding j 's in condition (1) of Theorem 6.3 are redundant in our case (since $j_{t}=t, 1 \leq t \leq t_{1}-1$); also, condition (2) reduces to the condition that if $t \leq r$, then $i_{1}^{\prime}>i_{r-t+1}$ (since $j_{t}=t$, and hence $j_{t}^{\prime} \geq j_{t}$ for all $t, 1 \leq t \leq t_{1}-1$). Therefore, in our case the conditions (1) and (2) are equivalent to

$$
\begin{gathered}
i_{t}^{\prime} \leq i_{t_{1}-1}, \quad i_{t-1}^{\prime} \leq i_{t_{1}-2}, \quad \ldots, \quad i_{2}^{\prime} \leq i_{t_{1}-t+1}, \\
\text { and } \quad \text { if } t \leq t_{1}-1, \quad \text { then } i_{1}^{\prime}>i_{t_{1}-t} .
\end{gathered}
$$

Note that the above inequalities imply $i_{t_{1}-t+1} \geq i_{2}^{\prime}>i_{1}^{\prime}>i_{t_{1}-t}$; now, if $t \notin\left\{t_{1}, \ldots, t_{l}\right\}$, then this is not possible, since $i_{t_{1}-t+1}=i_{t_{1}-t}+1$. Hence $G_{t}=\varnothing$ for $t \in\left\{1, \ldots, t_{1}\right\} \backslash\left\{t_{1}, \ldots, t_{l}\right\}$. It is easily seen that $G_{t_{i}}=\mathscr{G}_{i}$ for $1 \leq i \leq l$. Therefore Theorem 6.3 implies that \mathscr{G} is a Gröbner basis for $I_{\mathrm{s}, \mathfrak{t}}(X)$ with respect to the monomial order \prec.

We recall the following well known lemma.
Lemma 6.6. Let $k[X]$ be the polynomial ring in the set of indeterminates X, let I be an ideal of $k[X]$, and let G be a Gröbner basis of I with respect to a certain monomial order. Let $L \subset X$ such that

$$
\text { if } f \in G \text { and } \operatorname{in}(f) \in k[L], \quad \text { then } f \in k[L] \text {. }
$$

Then the set $G \cap k[L]$ is a Gröbner basis of the ideal $I \cap k[L]$.
Proof. Let $g \in I \cap k[L]$. Since G is a Gröbner basis of I, there exists $f \in G$ such that $\operatorname{in}(g)=\langle\operatorname{in}(f)\rangle$. Since $g \in k[L]$, we have $\operatorname{in}(g) \in k[L]$, and hence $\operatorname{in}(f) \in k[L]$. By hypothesis, $f \in k[L]$, and hence $f \in G \cap k[L]$. Therefore, the initial terms of the elements of $G \cap k[L]$ generate the ideal $\operatorname{in}(I \cap k[L])$.

As a direct consequence, we obtain the following.
Proposition 6.7. Let $L \subset X$ be a one-sided ladder and let $\mathbf{s}, \mathbf{t} \in \mathbb{Z}_{+}^{l}$, satisfying (L1). Then $I_{\mathrm{s}, \mathrm{t}}(L)=I_{\mathrm{s}, \mathrm{t}}(X) \cap k[L]$, and $\mathscr{G}_{L}=\mathscr{G} \cap k[L]$ is a Gröbner basis of $I_{\mathrm{s}, \mathrm{t}}(L)$ with respect to the monomial order \prec.

Proof. By Proposition 6.5, \mathscr{G} is a Gröbner basis of $I_{\mathbf{s}, \mathfrak{t}}(X)$. By Lemma 6.6, \mathscr{G}_{L} is a Gröbner basis of the ideal $I_{\mathrm{s}, \mathrm{t}}(X) \cap k[L]$. On the other hand it is easily seen that \mathscr{G}_{L} generates $I_{\mathrm{s}, \mathrm{t}}(L)$, and the result follows.

6.8. The set \mathscr{C}

We construct a set $\mathscr{C}_{\mathbf{s}, \mathbf{t}}(X) \subset X$ as follows. Let $\mathscr{C}_{l}(X)$ be the submatrix obtained from X_{l} by deleting the first $t_{l}-1$ columns and the last $t_{l}-1$ rows. For $i<l$, let $\mathscr{C}_{i}(X)$ be the matrix obtained from $\tilde{X}_{i}=X_{i} \backslash X_{i+1}$ by deleting the first $t_{i}-1$ columns and the last $t_{i}-t_{i+1}$ rows. Now let $\mathscr{C}_{\mathbf{s}, \mathbf{t}}(X)=\bigcup_{i=1}^{l} \mathscr{C}_{i}(X)$.

For a one-sided ladder $L \subset X$, and $\mathbf{s}, \mathbf{t} \in \mathbb{Z}_{+}^{l}$ satisfying (L1), we define $\mathscr{C}_{i}(L)=\mathscr{C}_{i}(X) \cap L, \mathscr{C}_{\mathbf{s}, \mathbf{t}}(L)=\mathscr{C}_{\mathbf{s}, \mathbf{t}}(X) \cap L$.
Note that in a solid minor in \mathscr{G}_{L} (i.e., a minor with consecutive row indices and consecutive column indices), the smallest (for the order in 6.2) element belongs to $\mathscr{C}_{\mathbf{s}, \mathbf{t}}(L)$, and conversely, an element $\alpha \in \mathscr{C}_{\mathbf{s}, \mathbf{t}}(L)$ determines uniquely a solid minor in \mathscr{G}_{L} having α as the smallest element. Hence the number of elements in $\mathscr{G}_{\mathbf{s}, \mathrm{t}}(L)$ is equal to the number of solid minors in the set \mathscr{G}_{L}.

The following is a generalization of Proposition 8 in [7].
Proposition 6.9. Let $L \subset X$ be a one-sided ladder, and let $\mathbf{s}, \mathbf{t} \in \mathbb{Z}_{+}^{l}$ satisfying (L1). Then

$$
\operatorname{codim}_{\mathbb{A}(L)} D_{\mathbf{s}, \mathbf{t}}(L)=\left|\mathscr{C}_{\mathbf{s}, \mathbf{t}}(L)\right| .
$$

Proof. By Proposition 6.7, the ideal $I_{\mathbf{s}, \mathbf{t}}(L)$ and the ideal $J_{\mathbf{s}, \mathbf{t}}(L)$ of its initial terms determine graded quotient rings of $k[L]$ having the same Hilbert series, and hence the codimension of the variety $D_{\mathrm{s}, \mathrm{t}}(L)$ is equal to the height of the monomial ideal $J_{\mathbf{s}, \mathbf{t}}(L)$. In general, the height of a monomial ideal J in a polynomial ring $k\left[x_{1}, \ldots, x_{N}\right]$ is equal to the minimal cardinality of a set $\mathscr{C} \subset\left\{x_{1}, \ldots, x_{N}\right\}$ of variables such that
each monomial in a set of monomial generators for J contains a variable from \mathscr{C}.

Let $J=J_{\mathbf{s}, \mathbf{t}}(L)$ and $\mathscr{C}=\mathscr{C}_{\mathbf{s}, \mathbf{t}}(L)$. Then it is easy to see that \mathscr{C} satisfies ($\left.{ }^{*}\right)$, the set of monomial generators being the set of the initial terms of all the t_{i}-minors in $L_{i}, 1 \leq i \leq l$. Let us denote $\Delta_{k}=\left\{x_{b a} \in L \mid b+a=k+1\right\}$, $k \geq 1$. Then $L=\cup_{k \geq 1} \Delta_{k}$, and $\mathscr{C}=\cup_{k \geq 1}\left(\mathscr{C} \cap \Delta_{k}\right)$.

Now let $\mathscr{C}^{\prime} \subset\left\{x_{b a} \mid x_{b a} \in L\right\}$ be a set such that $\left|\mathscr{C}^{\prime}\right|<|\mathscr{C}|$. Then there exists a k such that $\left|\mathscr{C}^{\prime} \cap \Delta_{k}\right|<\left|\mathscr{C} \cap \Delta_{k}\right|$ (in particular, $\mathscr{C} \cap \Delta_{k} \neq \varnothing$). Let
$i \in\{1, \ldots, l\}$ be the largest such that $\Delta_{k} \cap \mathscr{C} \subset L_{i}$. Then

$$
\left|\mathscr{C}^{\prime} \cap\left(\Delta_{k} \cap L_{i}\right)\right| \leq\left|\mathscr{C}^{\prime} \cap \Delta_{k}\right|<\left|\mathscr{C} \cap \Delta_{k}\right|=\left|\Delta_{k} \cap L_{i}\right|-\left(t_{i}-1\right) .
$$

Therefore there exist t_{i} distinct variables in $\left(\Delta_{k} \cap L_{i}\right) \backslash \mathscr{C}^{\prime}$. Thus the initial term of the t_{i}-minor in L_{i} having these elements on the skew diagonal does not contain any variable in \mathscr{C}^{\prime}, and hence \mathscr{C}^{\prime} does not satisfy (*).

Therefore \mathscr{C} is a set of minimal cardinality among the sets satisfying (*), and the required result follows.

7. THE SINGULAR LOCUS OF $D_{\mathrm{s}, \mathrm{t}}(L)$

Let $X=\left(x_{b a}\right), 1 \leq b<m, 1<a \leq n$ be a $m \times n$ matrix of indeterminates. Let $L \subset X$ be an one-sided ladder defined by the outside corners $\omega_{i}=x_{b_{i} a_{i}}, 1 \leq i \leq h, 1 \leq b_{1}<\cdots<b_{h} \leq m, 1 \leq a_{1}<\cdots<a_{h} \leq n$. Let $\mathbf{s}, \mathbf{t} \in \mathbb{Z}_{+}^{l}$ satisfy (L1), (L2), and (L3) of Section 1. We preserve the notations of Section 1. Let $V=D_{\mathbf{s}, \mathfrak{t}}(L), \mathscr{C}=\mathscr{C}_{\mathbf{s}, \mathbf{t}}(L)$.

For $1 \leq i \leq l$, let $V_{i} \subset \mathbb{A}(L)$ be the variety defined by the vanishing of the t_{j}-minors in $L(j)$, with $j \in\{1, \ldots, l\} \backslash\{i\}$, and the $\left(t_{i}-1\right)$-minors in $L(i)$.

Theorem 7.1. With notations as above, we have

$$
\text { Sing } V=\bigcup_{i=1}^{l} V_{i} \text {. }
$$

Proof. For simplicity of notation, we identify the variable $x_{b a}$ with the element (b, a).

First, we prove that $V_{i} \subset \operatorname{Sing} V$, for all $1 \leq i \leq l$. Let $x \in V_{i}$ for some $1 \leq i \leq l$. Let \mathcal{F} be the jacobian matrix associated to the variety $V \subset \mathbb{A}(L)$, evaluated at x. Then the rows of f are indexed by t_{j}-minors in $L(j), 1 \leq$ $j \leq l$, and the columns are indexed by the elements $\alpha \in L$. The (M, α) th entry in \mathcal{F} is equal to $\pm\left(\operatorname{det} M^{\prime}\right)(x)$, where M^{\prime} is the matrix obtained from M by deleting the row and the column containing α, if α appears in M, and 0 otherwise.

We distinguish two cases.
(I) $s_{i} \in\left\{b_{1}, \ldots, b_{h}\right\}$. Let $s_{i}=b_{j}$, for some $1 \leq j \leq h$. It is easily seen that

$$
\omega_{j} \in \mathscr{C}_{\mathbf{s}, \mathbf{t}}(L)
$$

(since $s_{i+1}-s_{i}>t_{i}-t_{i+1}$ and $a_{j} \geq t_{i}$). Now consider the one-sided ladder L^{\prime} obtained from L by deleting the element ω_{j}, i.e., the one-sided lad-
der defined by the outside corners

$$
\begin{aligned}
\omega_{1} & =\left(b_{1}, a_{1}\right), \quad \ldots, \quad \omega_{j-1}=\left(b_{j-1}, a_{j-1}\right), \quad \omega_{j^{-}}=\left(b_{j}, a_{j}-1\right), \\
\omega_{j^{+}} & =\left(b_{j}+1, a_{j}\right), \quad \omega_{j+1}=\left(b_{j+1}, a_{j+1}\right), \quad \ldots, \quad \omega_{l}=\left(b_{l}, a_{l}\right),
\end{aligned}
$$

where $\omega_{j^{-}}$is present only if $a_{j}-1>a_{j-1}$, and $\omega_{j^{+}}$is present only if $b_{j}+1<$ b_{j+1}.

Since $x \in V_{i}$, a row of \mathcal{f} indexed by a t_{i}-minor involving $\omega_{j}=x_{b_{j} a_{j}}$ is 0 . Furthermore, the column of \mathscr{F} indexed by ω_{j} is 0 . Let \mathscr{I}^{\prime} be the matrix obtained from \mathscr{f} by deleting the column indexed by ω_{j} and the rows indexed by t_{i}-minors containing ω_{j}. Then

$$
\operatorname{rank} \mathscr{F}=\operatorname{rank} \mathscr{g}^{\prime},
$$

since \mathscr{F}^{\prime} is obtained from \mathscr{F} by deleting zero rows and columns. Let $x^{\prime}=$ $\left(x_{\alpha}\right)_{\alpha \in L^{\prime}}$. Then $x^{\prime} \in D_{\mathrm{s}, \mathrm{t}}\left(L^{\prime}\right)$, and \mathscr{F}^{\prime} is the jacobian matrix associated to the variety $D_{\mathrm{s}, \mathrm{t}}\left(L^{\prime}\right) \subset \mathbb{A}\left(L^{\prime}\right)$, evaluated at x^{\prime}. Thus

$$
\operatorname{rank} \mathscr{g}^{\prime} \leq \operatorname{codim}_{\mathbb{A}\left(L^{\prime}\right)} D_{\mathrm{s}, \mathbf{t}}\left(L^{\prime}\right) .
$$

Now, using Proposition 6.9 we obtain

$$
\begin{aligned}
\operatorname{codim}_{\mathbb{A}\left(L^{\prime}\right)} D_{\mathbf{s}, \mathbf{t}}\left(L^{\prime}\right) & =\left|\mathscr{C}_{\mathbf{s}, \mathbf{t}}\left(L^{\prime}\right)\right|=\left|\mathscr{C}_{\mathbf{s}, \mathbf{t}}(L) \backslash\left\{\omega_{j}\right\}\right|<\left|\mathscr{C}_{\mathbf{s}, \mathbf{t}}(L)\right| \\
& =\operatorname{codim}_{\mathbb{A}(L)} D_{\mathbf{s}, \mathbf{t}}(L) .
\end{aligned}
$$

Hence $\operatorname{rank} \mathscr{f}^{\prime}<\operatorname{codim}_{\mathbb{A}(L)} V$, which implies rank $\mathscr{f}<\operatorname{codim}_{\mathbb{A}(L)} V$, i.e., $x \in \operatorname{Sing} V$.
(II) $s_{i} \notin\left\{b_{1}, \ldots, b_{h}\right\}$. We have $i>1$ and $t_{i-1}>t_{i}$. Let $k=i^{*}$, i.e., k is the largest integer such that $b_{k}<s_{i}$. Define $\mathbf{s}^{\prime}=\left(s_{1}, \ldots, s_{i-1}\right.$, $\left.\widehat{s_{i}}, s_{i+1}, \ldots, s_{l}\right), \mathbf{t}^{\prime}=\left(t_{1}, \ldots, t_{i-1}, \widehat{t}_{i}, t_{i+1}, \ldots, t_{l}\right)$. Let $\mathscr{C}=\mathscr{C}_{\mathbf{s}, \mathbf{t}}(L), \mathscr{C}^{\prime}=$ $\mathscr{C}_{\mathbf{s}^{\prime}, \mathbf{t}^{\prime}}(L)$, and

$$
\mathscr{C}=\bigcup_{j \in\{1, \ldots, l\}} \mathscr{C}_{j}, \quad \mathscr{C}^{\prime}=\bigcup_{j \in\{1, \ldots, l\} \backslash\{i\}} \mathscr{C}_{j}^{\prime},
$$

as defined in Section 6.2. Then $\mathscr{C}_{j}=\mathscr{C}_{j}^{\prime}$ for $j \notin\{i-1, i\}$, and

$$
\begin{aligned}
|\mathscr{C}|-\left|\mathscr{C}^{\prime}\right|= & \left|\mathscr{C}_{i-1}\right|+\left|\mathscr{C}_{i}\right|-\left|\mathscr{C}_{i-1}^{\prime}\right| \\
= & {\left[\left(s_{i}-s_{i-1}\right)-\left(t_{i-1}-t_{i}\right)\right]\left[a_{k}-\left(t_{i-1}-1\right)\right] } \\
& +\left[\left(s_{i+1}-s_{i}\right)-\left(t_{i}-t_{i+1}\right)\right]\left[a_{k}-\left(t_{i}-1\right)\right] \\
& -\left[\left(s_{i+1}-s_{i-1}\right)-\left(t_{i-1}-t_{i+1}\right)\right]\left[a_{k}-\left(t_{i-1}-1\right)\right] \\
= & {\left[\left(s_{i+1}-s_{i}\right)-\left(t_{i}-t_{i+1}\right)\right]\left(t_{i-1}-t_{i}\right)>0 }
\end{aligned}
$$

(here $s_{i+1}=m+1, t_{i+1}=1$, if $i=l$). Therefore

$$
\left|\mathscr{C}_{\mathbf{s}^{\prime}, \mathbf{t}^{\prime}}(L)\right|<\left|\mathscr{C}_{\mathbf{s}, \mathbf{t}}(L)\right| .
$$

Since $x \in V_{i}$, a row indexed by a t_{i}-minor contained in $L(i)$ is 0 . Let \mathcal{g}^{\prime} be the matrix obtained from \mathcal{F} by deleting the rows indexed by t_{i}-minors contained in $L(i)$. Then

$$
\operatorname{rank} \mathscr{F}=\operatorname{rank} \mathscr{F}^{\prime} .
$$

Now, $x \in D_{\mathbf{s}^{\prime}, t^{\prime}}(L)$, and \mathscr{g}^{\prime} is the Jacobian matrix associated to the variety $D_{\mathbf{s}^{\prime}, t^{\prime}}(L) \subset \mathbb{A}(L)$, evaluated at x. Thus

$$
\operatorname{rank} \mathscr{g}^{\prime} \leq \operatorname{codim}_{\mathbb{A}(L)} D_{\mathbf{s}^{\prime}, t^{\prime}}(L) .
$$

Now, using Proposition 6.9 we obtain

$$
\operatorname{codim}_{\mathbb{A}(L)} D_{\mathbf{s}^{\prime}, \mathbf{t}^{\prime}}(L)=\left|\mathscr{C}_{\mathbf{s}^{\prime}, \mathbf{t}^{\prime}}(L)\right|<\left|\mathscr{C}_{\mathbf{s}, \mathbf{t}}(L)\right|=\operatorname{codim}_{\mathbb{A}(L)} D_{\mathbf{s}, \mathbf{t}}(L) .
$$

Hence $\operatorname{rank} \mathscr{f}^{\prime}<\operatorname{codim}_{\mathbb{A}(L)} V$, which implies rank $\mathscr{f}<\operatorname{codim}_{\mathbb{A}(L)} V$, i.e., $x \in \operatorname{Sing} V$.

Now we prove that $\operatorname{Sing} V \subset \bigcup_{i=1}^{l} V_{i}$. Let $\mathscr{C}=\mathscr{C}_{\mathbf{s}, \mathbf{t}}(L), \mathscr{C}=\bigcup_{i=1}^{l} \mathscr{C}_{i}$, as defined in Section 6.8.

We introduce a total order on the set of minors of L of size r, with $r \geq 1$ fixed, as follows: $\left[i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right]<\left[i_{1}^{\prime}, \ldots, i_{r}^{\prime} \mid j_{1}^{\prime}, \ldots, j_{r}^{\prime}\right]$ if there exists $1 \leq k \leq r$ such that
either $\quad i_{1}=i_{1}^{\prime}, \quad \ldots, \quad i_{k-1}=i_{k-1}^{\prime}, \quad i_{k}<i_{k}^{\prime}$,
or

$$
i_{1}=i_{1}^{\prime}, \quad \ldots, \quad i_{r}=i_{r}^{\prime}, \quad j_{1}=j_{1}^{\prime}, \quad \ldots, \quad j_{k-1}=j_{k-1}^{\prime}, \quad j_{k}<j_{k}^{\prime}
$$

(this is simply the lexicographic order on $\left\{i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r}\right\}$). Let $x \in$ $V \backslash \cup_{i=1}^{l} V_{i}$. For each $1 \leq i \leq l$, let M_{i} be the largest $\left(t_{i}-1\right)$-minor in $L(i)$ such that $\left(\operatorname{det} M_{i}\right)(x) \neq 0$. Let \mathscr{T}_{l} be the set of elements in L_{l} not in the rows or the columns given by the rows and the columns of M_{l}. Clearly, $\left|\mathscr{I}_{l}\right|=\left|\mathscr{C}_{l}\right|$. By (decreasing) induction on i, suppose that, for some $i, 1<i \leq l$, the sets $\mathscr{T}_{i}, \ldots, \mathscr{T}_{l}$ have been constructed, such that
$(1)_{i} \quad \mathscr{T}_{j} \subset L(j), i \leq j \leq l$.
(2) ${ }_{i}$ The sets $\mathscr{T}_{i}, \ldots, \mathscr{T}_{l}$ are pairwise disjoint.
(3) ${ }_{i} \quad\left|\mathscr{T}_{j}\right|=\left|\mathscr{C}_{j}\right|, i \leq j \leq l$.
(4) \mathscr{T}_{i} contains no elements appearing in the rows or in the columns of L given by the rows and the columns of $M_{j}, i \leq j \leq l$.
(5) $)_{i}$ There exist $t_{i}-1$ rows in $L(i)$ not containing any element from $\mathscr{T}_{i} \cup \cdots \cup \mathscr{T}_{l}$.

We define the set \mathscr{I}_{i-1} as follows. Let r be the number of the rows of M_{i-1} contained in $\tilde{L}(i-1)=L(i-1) \backslash L(i)$. We distinguish two cases.
(I) $t_{i-1}-t_{i} \geq r$. In this case \mathscr{T}_{i-1} is obtained from $\tilde{L}(i-1)$ by deleting the rows given by the rows of M_{i-1}, and $t_{i-1}-t_{i}-r$ other rows, followed by the deletion of the $t_{i-1}-1$ columns given by the columns of M_{i-1}. Then properties $(1)_{i-1}-(4)_{i-1}$ are obvious; the $t_{i-1}-t_{i}$ rows of $\tilde{L}(i-1)$, which were deleted while defining \mathscr{T}_{i-1}, and the $t_{i}-1$ rows of $L(i)$ in $(5)_{i}$, intersected with $L(i-1)$, give $t_{i-1}-1$ rows of $L(i-1)$ not containing any elements in $\mathscr{T}_{i-1} \cup \mathscr{T}_{i} \cup \cdots \cup \mathscr{T}_{l}$, so that we have (5) $)_{i-1}$.
(II) $t_{i-1}-t_{i}<r$. In this case \mathscr{T}_{i-1} is obtained from $\tilde{L}(i-1)$ by deleting the r rows given by the rows of M_{i-1}, then adding $r-t_{i-1}+t_{i}$ rows from the $t_{i}-1$ rows of $L(i)$ in $(5)_{i}$ that are not rows of M_{i-1}, intersected with $L(i-1)$ (this is possible, since there are $t_{i-1}-1-r$ rows of M_{i-1} in $L(i)$, and hence at least $\left(t_{i}-1\right)-\left(t_{i-1}-1-r\right)=r-t_{i-1}+t_{i}$ rows from the $t_{i}-1$ rows of $L(i)$ in $(5)_{i}$ are not rows of M_{i-1}), followed by the deletion of the $t_{i-1}-1$ columns given by the columns of M_{i-1}. Again, the properties (1) $)_{i-1}-(4)_{i-1}$ are obvoius; the r rows of M_{i-1} that were deleted from $\tilde{L}(i-1)$, and the $\left(t_{i}-1\right)-\left(r-t_{i-1}+t_{i}\right)$ rows from the $t_{i}-1$ rows in (5) ${ }_{i}$ that were not used while defining \mathscr{T}_{i-1}, intersected with $L(i-1)$, give $t_{i-1}-1$ rows of $L(i-1)$ not containing any elements in $\mathscr{T}_{i-1} \cup \mathscr{T}_{i} \cup \cdots \cup \mathscr{I}_{l}$, so that we have (5) i_{i-1}.

Thus, using induction, we obtain the disjoint sets $\mathscr{T}_{j} \subset L(j), 1 \leq j \leq l$, such that $\left|\mathscr{G}_{j}\right|=\left|\mathscr{C}_{j}\right|$, and \mathscr{T}_{j} contains no elements in the rows or columns of L given by the rows and columns of M_{j}.
For $\tau \in \mathscr{T}_{i} \subset \mathscr{T}, 1 \leq i \leq l$, let M^{τ} be the t_{i}-minor obtained from M_{i} by adding the row and the column containing τ. Obviously, $M^{\tau} \neq M^{\tau^{\prime}}$ for τ, $\tau^{\prime} \in \mathscr{T}$, with $\tau \neq \tau^{\prime}$.

We now take a total order on \mathscr{T}, namely $(b, a)>\left(b^{\prime}, a^{\prime}\right)$ if either $b>b^{\prime}$, or $b=b^{\prime}$ and $a>a^{\prime}$.
Let us fix $\tau \in \mathscr{T}$, say $\tau \in \mathscr{T}_{i}$ for some $i, 1 \leq i \leq l$. Then the ($\left.M^{\tau}, \tau\right)$ th entry in \mathcal{F} is equal to $\pm\left(\operatorname{det} M_{i}\right)(x)$, so it is nonzero. Now let $\sigma \in \mathscr{T}, \sigma<\tau$. If σ is not an entry of M^{τ}, then the ($\left.M^{\tau}, \sigma\right)$ th entry of \mathscr{F} is equal to 0 . Assume now that σ is the (r, s) th entry of M^{τ}. Then the $\left(M^{\tau}, \sigma\right)$ th entry of \mathcal{F} is equal to $\pm\left(\operatorname{det} M^{\prime}\right)(x)$, where M^{\prime} is the $\left(t_{i}-1\right) \times\left(t_{i}-1\right)$ matrix obtained from M^{τ} by deleting the r th row and the s th column. Let $\tau=(b, a), \sigma=\left(b^{\prime}, a^{\prime}\right)$. If $b^{\prime}<b$, then the indices of the first $r-1$ rows of M^{\prime} and M_{i} are the same, while the index of the r th row of M^{\prime} is $>b^{\prime}$, which is the index of the r th row of M_{i}. Thus, $M^{\prime}>M_{i}$, and by the maximality of M_{i}, we obtain $\left(\operatorname{det} M^{\prime}\right)(x)=0$. If $b^{\prime}=b$, then $a^{\prime}<a$. The indices of all the rows and those of the first $s-1$ columns in M^{\prime} and M_{i} are the same, while the index
of the s th column in M^{\prime} is $>a^{\prime}$, which is the index of the s th column of M_{i}. Thus $M^{\prime}>M_{i}$, and the maximality of M_{i} implies that $\left(\operatorname{det} M^{\prime}\right)(x)=0$. Thus, for $\sigma<\tau$, the $\left(M^{\tau}, \sigma\right)$ th entry in \mathcal{g} is 0 .

Let g^{\prime} be the submatrix of \mathcal{f} given by the rows indexed by M^{τ}, s and the columns indexed by τ 's, with $\tau \in \mathscr{T}$. We suppose that both rows and columns of \mathscr{g}^{\prime} are indexed by the elements in \mathscr{T}, and we arrange them increasingly, with respect to the total order on \mathscr{T} defined above. Then \mathscr{F}^{\prime} is upper triangular, and all the diagonal entries are nonzero. Thus $\operatorname{det} \mathscr{F}^{\prime} \neq 0$, and this implies that

$$
\operatorname{rank} \mathscr{J}^{\prime}=|\mathscr{T}|=|\mathscr{C}|=\operatorname{codim}_{\mathbb{A}(L)} D_{\mathrm{s}, \mathrm{t}}(L)
$$

Consequently $\operatorname{rank} \mathscr{F}=\operatorname{codim}_{\mathbb{A}(L)} V$, i.e., $x \notin \operatorname{Sing} V$.

8. THE IRREDUCIBLE COMPONENTS OF Sing V AND $\operatorname{Sing} X(w)$

We preserve the notations of Section 5 .
Let us fix $j \in\{1, \ldots, l\}$, and let $Z_{j}=V_{j} \times \mathbb{A}(H \backslash L)$. We shall now define $\theta_{j} \in W_{Q}^{\min }$ such that the variety Z_{j} identifies with the opposite cell in the Schubert variety $X\left(\theta_{j}\right)$ in G / Q.
Note that $w^{\left(a_{r}\right)}\left(a_{r}-t_{j}+1\right)=s_{j}-1$, and $s_{j}-1$ is the end of a block of consecutive integers in $w^{\left(a_{r}\right)}$, where $r=j^{*}$ is the largest integer such that $b_{r} \leq s_{j}$. Furthermore, the beginning of this block is ≥ 2 (if the block started with 1 , we would have $a_{r}-t_{j}+1=s_{j}-1 \geq b_{r}-1 \geq a_{r}$, which is not possible, since $t_{j} \geq 2$). Let $u_{j}+1$ be the beginning of this block, where $u_{j} \geq 1$. Then it is easily seen that if $s_{j}-1$ is the end of a block in $w^{\left(a_{i}\right)}$, $1 \leq i \leq h$, then the beginning of the block is $u_{j}+1$. For each $i, 1 \leq i \leq h$, such that $u_{j} \notin w^{\left(a_{i}\right)}$, let v_{i} be the smallest entry in $w^{\left(a_{i}\right)}$ that is bigger than $s_{j}-1$. Note that $v_{i}=w^{\left(a_{i}\right)}\left(a_{k}-t_{j}+2\right)$, where $k \in\{1, \ldots, i\}$ is the largest index such that $b_{k} \leq s_{j}$.

Define $\theta_{j}{ }^{\left(a_{i}\right)}, 1 \leq i \leq h$, as follows.
If $s_{j}-1 \notin w^{\left(a_{i}\right)}$ (which is equivalent to $j>1, t_{j-1}=t_{j}$, and $i<r$), let $\theta_{j}^{\left(a_{i}\right)}=w^{\left(a_{i}\right)} \backslash\left\{v_{i}\right\} \cup\left\{s_{j}-1\right\}$.
If $s_{j}-1 \in w^{\left(a_{i}\right)}$ and $u_{j} \notin w^{\left(a_{i}\right)}$, then $\theta_{j}^{\left(a_{i}\right)}=w^{\left(a_{i}\right)} \backslash\left\{v_{i}\right\} \cup\left\{u_{j}\right\}$.
If $s_{j}-1$ and $u_{j} \in w^{\left(a_{i}\right)}$, then $\theta_{j}^{\left(a_{i}\right)}=w^{\left(a_{i}\right)}$ (note that in this case $i>r$).
Note that θ_{j} is well defined as an element in $W_{Q}^{\min }$, and $\theta_{j} \leq w$.
Remark 8.1. An equivalent description of θ_{j} is the following. Let $t_{i_{k}}<$ $t_{j} \leq t_{i_{k-1}}$.
(I) If $j \notin\left\{i_{1}, \ldots, i_{m}\right\}$ (i.e., $j>1$ and $t_{j-1}=t_{j}$), then
for $i<r, \theta_{j}^{\left(a_{i}\right)}=w_{j}^{\left(a_{i}\right)} \backslash\left\{e_{i_{k}}\right\} \cup\left\{s_{j}-1\right\}$;
for $i=r, \theta_{j}^{\left(a_{r}\right)}=w_{j}^{\left(a_{r}\right)} \backslash\left\{e_{i_{k}}\right\} \cup\left\{u_{j}\right\}$, where u_{j} is the largest entry in $\left\{1, \ldots, s_{j}-1\right\} \backslash w^{\left(a_{r}\right)}$;
for $i>r$ and $u_{j} \in w^{\left(a_{i}\right)}, \theta_{j}^{\left(a_{i}\right)}=w_{j}^{\left(a_{i}\right)}$;
for $i>r$ and $u_{j} \notin w^{\left(a_{i}\right)}, \theta_{j}^{\left(a_{i}\right)}=w_{j}^{\left(a_{i}\right)} \backslash\left\{v_{i}\right\} \cup\left\{u_{j}\right\}$, where v_{i} is the smallest entry in $w^{\left(a_{i}\right)} \backslash \theta_{j}^{\left(a_{i-1}\right)}$.
(II) If $j \in\left\{i_{1}, \ldots, i_{m}\right\}$ (i.e., $t_{j-1}>t_{j}$ if $j>1$), then
for $i \leq r, \theta_{j}^{\left(a_{i}\right)}=w_{j}^{\left(a_{i}\right)} \backslash\left\{e_{i_{k}}\right\} \cup\left\{u_{j}\right\}$, where u_{j} is the largest entry in $\left\{1, \ldots, s_{j}-1\right\} \backslash w^{\left(a_{r}\right)}$;
for $i>r$ and $u_{j} \in w^{\left(a_{i}\right)}, \theta_{j}^{\left(a_{i}\right)}=w_{j}^{\left(a_{i}\right)}$;
for $i>r$ and $u_{j} \notin w^{\left(a_{i}\right)}, \theta_{j}^{\left(a_{i}\right)}=w_{j}^{\left(a_{i}\right)} \backslash\left\{v_{i}\right\} \cup\left\{u_{j}\right\}$, where v_{i} is the smallest entry in $w^{\left(a_{i}\right)} \backslash \theta_{j}^{\left(a_{i-1}\right)}$.

Theorem 8.2. The subvariety $Z_{j} \subset Z$ identifies with the opposite cell in $X\left(\theta_{j}\right)$, i.e., $Z_{j}=X\left(\theta_{j}\right) \cap O^{-}$(scheme theoretically).

Proof. Let $f=\operatorname{det} M$, where M is either a t_{i}-minor contained in $L(i)$, $i \in\{1, \ldots, h\} \backslash\{j\}$, or a ($t_{j}-1$)-minor contained in $L(j)$, be a generator of $I\left(Z_{j}\right)$. In the former case we have $f \in I(Z)$, and Theorem 5.6 implies that $f \in I\left(X(w) \cap O^{-}\right) \subset I\left(X\left(\theta_{j}\right) \cap O^{-}\right)$. In the latter case, M is contained in H_{k}, where $k \in\{1, \ldots, h\}$ is the largest entry such that $b_{k} \leq s_{j}$. By Lemma 4.1, f can be written in the form $f=\left.\sum g_{\phi} p_{\phi}\right|_{O^{-}}$, with $\phi \in W^{a_{k}}$ such that $\left\{\phi(1), \ldots, \phi\left(a_{k}\right)\right\} \cap\left\{a_{k}+1, \ldots, n\right\}=\left\{r_{1}, \ldots, r_{t_{j}-1}\right\}$, and $g_{\phi} \in$ $k[H]$ (here $r_{1}, \ldots, r_{t_{i}-1}$ are the row indices of M). In particular we have $\phi\left(a_{k}-t_{j}+2\right)=r_{1}$. Since M is contained in $L(j)$, we deduce that $r_{1} \geq s_{j}$, and hence $\phi\left(a_{k}-t_{j}+2\right) \geq s_{j}$. We have $\theta_{j}{ }^{\left(a_{k}\right)}\left(a_{k}-t_{j}+2\right)=s_{j}-1$, and hence $\phi\left(a_{k}-t_{j}+2\right)>\theta_{j}^{\left(a_{k}\right)}\left(a_{k}-t_{j}+2\right)$. This shows that $\phi \notin \theta_{j}^{\left(a_{k}\right)}$, and therefore $p_{\phi} \in I\left(X(\theta) \cap O^{-}\right)$. Thus $f \in I\left(X(\theta) \cap O^{-}\right)$.

Now let $g=\left.p_{\tau}\right|_{O^{-}}$, with $\tau \in W^{a_{i}}$ for some $i, 1 \leq i \leq h$, such that $\tau \notin \theta^{\left(a_{i}\right)}$, be a generator of the ideal $I\left(X\left(\theta_{j}\right) \cap O^{-}\right)$. Since $\theta_{j}^{\left(a_{i}\right)}$ consists of several blocks of consecutive integers ending with $s_{m}-1$ at the $\left(a_{k}-t_{m}+1\right)$ th place, for some $m \in\{1, \ldots, l\} \backslash\{j\}$, where $k \in\{1, \ldots, i\}$ is the largest entry such that $b_{k} \leq s_{m}$, a possible block ending with $s_{j}-1$ at the $\left(a_{k}-t_{j}+2\right)$ th place, where $k \in\{1, \ldots, i\}$ is the largest entry such that $b_{k} \leq s_{j}$, and a last block ending with n at the a_{i} th place, it follows that either $\tau\left(a_{k}-t_{m}+1\right) \geq s_{m}$, for some $m \neq j$, where $k \in\{1, \ldots, i\}$ is the largest entry such that $s_{m} \geq b_{k}$, or $\tau\left(a_{k}-t_{j}+2\right) \geq s_{j}$, where $k \in\{1, \ldots, i\}$ is the largest entry such that $s_{j} \geq b_{k}$. In the first case we have $\tau \not \equiv w$, and hence $p_{\tau} \mid O^{-} \in I\left(X(w) \cap O^{-}\right)=I(Z) \subset I\left(Z_{j}\right)$. Suppose now that $\tau\left(a_{k}-\right.$
$\left.t_{j}+2\right) \geq s_{j}$, where $k \in\{1, \ldots, i\}$ is the largest entry such that $s_{j} \geq b_{k}$. Using Lemma 4.2, we deduce that $\left.p_{\tau}\right|_{O^{-}}$belongs to the ideal of $k[H]$ generated by $\left(t_{j}-1\right)$-minors with row indices $\geq s_{j}$ and column indices $\leq a_{k}$. Thus $\left.p_{\tau}\right|_{O^{-}}$belongs to the ideal generated by $\left(t_{j}-1\right)$-minors contained in $L(j)$, which implies that $g \in I\left(Z_{j}\right)$.

Theorem 8.3. The irreducible components of $\operatorname{Sing} D_{\mathrm{s}, \mathrm{t}}(L)$ are precisely the $V_{j}^{\prime} s, 1 \leq j \leq l$.

Proof. In view of Theorem 8.2, we obtain that $V_{j}, 1 \leq j \leq l$, is irreducible, and the required result follows from Theorem 7.1.

Let $X\left(w^{\max }\right)\left(\right.$ resp. $\left.X\left(\theta_{j}^{\max }\right), 1 \leq j \leq l\right)$ be the pull-back in $\operatorname{SL}(n) / B$ of $X(w)$ (resp. $X\left(\theta_{j}\right), 1 \leq j \leq l$) under the canonical projection π : $S L(n) / B \rightarrow S L(n) / Q$. Then using Theorems 7.1, 5.6, and 8.2, we obtain

Theorem 8.4. The irreducible components of $\operatorname{Sing} X\left(w^{\max }\right)$ are precisely $X\left(\theta_{j}^{\max }\right), 1 \leq j \leq l$.

9. A CONJECTURE ON THE IRREDUCIBLE COMPONENTS OF A SCHUBERT VARIETY IN $S L(n) / B$

Let $G=S L(n)$. In this section we state a conjecture that is a refinement of the conjecture in [12] on the irreducible components of the singular locus of a Schubert variety and prove the conjecture for a certain class of Schubert varieties, namely the pull-backs $\pi^{-1}\left(X_{Q}(w)\right)$ under $\pi: G / B \rightarrow$ G / Q, where w and Q are as in Section 5.
For $\tau \in W$, let P_{τ} (resp. Q_{τ}) be the maximal element of the set of parabolic subgroups that leave $\overline{B \tau B}$ (in G) stable under multiplication on the left (resp. right).
We recall the following two well-known results (for a proof, see [11], for example).

Lemma 9.1. Let α be a simple root, and let P_{α} be the rank 1 parabolic subgroup with $S_{P_{\alpha}}=\{\alpha\}$. Let $\tau \in W$. Then $\overline{B \tau B}$ is stable under multiplication on the right (resp. left) by P_{α} if and only if $\tau(\alpha) \in R^{-}\left(\right.$resp. $\left.\tau^{-1}(\alpha) \in R^{-}\right)$.

Corollary 9.2. With notations as in 2.2 , we have

$$
\begin{aligned}
& S_{P_{\tau}}=\left\{\alpha \in S \mid \tau^{-1}(\alpha) \in R^{-}\right\}, \\
& S_{Q_{\tau}}=\left\{\alpha \in S \mid \tau(\alpha) \in R^{-}\right\} .
\end{aligned}
$$

Definition 9.3. Given parabolic subgroups P, Q, we say that $\overline{B \tau B}$ is $P-Q$ stable if $P \subset P_{\tau}$ and $Q \subset Q_{\tau}$.

Lemma 9.4. Let $G=S L(n)$. Let $\tau \in \mathscr{S}_{n}$, say $\tau=\left(a_{1}, \ldots, a_{n}\right)$. Let $\alpha=$ $\epsilon_{i}-\epsilon_{i+1}$. Then
(1) $\tau(\alpha) \in R^{-}$if and only if $a_{i}>a_{i+1}$.
(2) $\tau^{-1}(\alpha) \in R^{-}$if and only if $i+1$ occurs before i in τ.

Proof. We have $\tau(\alpha)=\epsilon_{a_{i}}-\epsilon_{a_{i+1}}$ and $\tau^{-1}(\alpha)=\epsilon_{j}-\epsilon_{k}$, where $a_{j}=i$ and $a_{k}=i+1$. The results follow from this.

Let $\eta \in W$. We shall denote $X_{B}(\eta)$ by just $X(\eta)$. We first recall the criterion given in [12] for $X(\eta)$ to be singular.

THEOREM 9.5. Let $\eta=\left(a_{1} \ldots a_{n}\right) \in \mathscr{S}_{n}$. Then $X(\eta)$ is singular if and only if there exist $i, j, k, m, 1 \leq i<j<k<m \leq n$, such that

$$
\text { either } a_{k}<a_{m}<a_{i}<a_{j} \quad \text { or } \quad a_{m}<a_{j}<a_{k}<a_{i}
$$

9.6. The Set F_{η}

Let $\eta=\left(a_{1} \ldots a_{n}\right) \in \mathscr{S}_{n}$. Let E_{η} be the set of all $\tau^{\prime} \leq \eta$ such that either (1) or (2) below holds.
(1) There exist $i, j, k, m, 1 \leq i<j<k<m \leq n$, such that
(a) $a_{k}<a_{m}<a_{i}<a_{j}$.
(b) If $\tau^{\prime}=\left(b_{1} \ldots b_{n}\right)$, then there exist $i^{\prime}, j^{\prime}, k^{\prime}, m^{\prime}, 1 \leq i^{\prime}<j^{\prime}<$ $k^{\prime}<m^{\prime} \leq n$, such that $b_{i^{\prime}}=a_{k}, b_{j^{\prime}}=a_{i}, b_{k^{\prime}}=a_{m}, b_{m^{\prime}}=a_{j}$.
(c) If τ (resp. η^{\prime}) is the element obtained from η (resp. τ^{\prime}) by replacing $a_{i}, a_{j}, a_{k}, a_{m}$ respectively by $a_{k}, a_{i}, a_{m}, a_{j}$ (resp. $b_{i^{\prime}}, b_{j^{\prime}}, b_{k^{\prime}}, b_{m^{\prime}}$ respectively by $b_{j^{\prime}}, b_{m^{\prime}}, b_{i^{\prime}}, b_{k^{\prime}}$), then $\tau^{\prime} \geq \tau$ and $\eta^{\prime} \leq \eta$.
(2) There exist $i, j, k, m, 1 \leq i<j<k<m \leq n$, such that
(a) $a_{m}<a_{j}<a_{k}<a_{i}$.
(b) If $\tau^{\prime}=\left(b_{1} \ldots b_{n}\right)$, then there exist $i^{\prime}, j^{\prime}, k^{\prime}, m^{\prime}, 1 \leq i^{\prime}<j^{\prime}<$ $k^{\prime}<m^{\prime} \leq n$, such that $b_{i^{\prime}}=a_{j}, b_{j^{\prime}}=a_{m}, b_{k^{\prime}}=a_{i}, b_{m^{\prime}}=a_{k}$.
(c) If τ (resp. η^{\prime}) is the element obtained from η (resp. τ^{\prime}) by replacing $a_{i}, a_{j}, a_{k}, a_{m}$ respectively by $a_{j}, a_{m}, a_{i}, a_{k}$ (resp. $b_{i^{\prime}}, b_{j^{\prime}}, b_{k^{\prime}}, b_{m^{\prime}}$ respectively by $b_{k^{\prime}}, b_{i^{\prime}}, b_{m^{\prime}}, b_{j^{\prime}}$, then $\tau^{\prime} \geq \tau$ and $\eta^{\prime} \leq \eta$.
Let $F_{\eta}=\left\{\tau \in E_{\eta} \mid \overline{B \tau B}\right.$ is $P_{\eta}-Q_{\eta}$ stable $\}$.
CONJECTURE. The singular locus of $X(\eta)$ is equal to $\bigcup_{\lambda} X(\lambda)$, where λ runs over the maximal (under the Bruhat order) elements of F_{η}.
9.7. Let $\eta=\left(a_{1} \ldots a_{n}\right) \in \mathscr{S}_{n}$. Let $\operatorname{Sing} X(\eta) \neq \varnothing$. Let (a, b, c, d) be four distinct entries in $\{1, \ldots, n\}$ such that $a<b<c<d$. An occurrence in η of the form d, b, c, a, where $d=a_{i}, b=a_{j}, c=a_{k}, a=a_{m}, i<j<k<$ m, will be referred to as a Type I bad occurrence in η. An occurrence in η of the form (c, d, a, b), where $c=a_{i}, d=a_{j}, a=a_{k}, b=a_{m}, i<j<k<m$, will be referred to as a Type II bad occurrence in η. Let (d, b, c, a) (resp. $\left(c^{\prime}, d^{\prime}, a^{\prime}, b^{\prime}\right)$) be a bad occurrence of Type I (resp. Type II), where $a<$ $b<c<d$ (resp. $a^{\prime}<b^{\prime}<c^{\prime}<d^{\prime}$). Let θ, θ^{\prime} be both $\leq w$. Furthermore, let b, a, d, c (resp. $a^{\prime}, c^{\prime}, b^{\prime}, d^{\prime}$) appear in that order in θ (resp. θ^{\prime}). By abuse of language, we shall refer to (b, a, d, c) (resp. $\left(a^{\prime}, c^{\prime}, b^{\prime}, d^{\prime}\right)$) as a bad occurrence in θ (resp. θ^{\prime}) corresponding to the bad occurrence (d, b, c, a) (resp. ($\left.c^{\prime}, d^{\prime}, a^{\prime}, b^{\prime}\right)$) in η.
Let $\tau \in W_{Q}^{\min }$. We have $\pi^{-1}\left(X_{Q}(\tau)\right)=X_{B}\left(\tau^{\max }\right)$, where $\tau^{\text {max }}$, as a permutation, is given by $\tau^{\left(a_{1}\right)}$ arranged in descending order, followed by $\tau^{\left(a_{2}\right)} \backslash \tau^{\left(a_{1}\right)}$ arranged in descending order, etc. We shall refer to the set $\tau^{\left(a_{i}\right)} \backslash \tau^{\left(a_{i-1}\right)}$, $1 \leq i \leq l+1$, arranged in descending order, as the i th block in $\tau^{\max }$ (here, $\tau^{\left(a_{0}\right)}=\varnothing$, and $\tau^{\left(a_{l+1}\right)}$ is the set $\{1, \ldots, n\} \backslash \tau^{\left(a_{l}\right)}$ arranged in descending order).

For the rest of this section, w and Q will be as in Section 5.
Remark 9.8. Set $b_{h+1}-1=n-t_{l}+1$. All of the entries in the i th block in $w^{\max }$ are $\leq b_{i}-1,2 \leq i \leq h+1$. In particular, for $1 \leq j \leq l$, s_{j} occurs after $s_{j}-1$ in $w^{\text {max }}$ (in view of Lemma 5.4).

Lemma 9.9. We have
(1) $Q_{w^{\max }}=Q$.
(2) Let $I_{w^{\max }}=\left\{\epsilon_{i}-\epsilon_{i+1} \mid i=s_{j}-1,1 \leq j \leq l\right\}$. Then $S_{P_{P^{\max }}}=$ $S \backslash I_{w^{\max }}$.

The assertions are clear from the description of $w^{\max }$ in view of Lemma 9.4 and Remark 9.8.

Lemma 9.10. Let $P=P_{w^{\max }}, Q=Q_{w^{\max }}$. Then $\overline{B \theta_{j}^{\max } B}$ is $P-Q$ stable.
Proof. The Q-stability of $\overline{B \theta_{j}^{\max } B}$ on the right is obvious. Regarding the P-stability of $\overline{B \theta_{j}^{\max } B}$ on the left, let x denote either $e_{i_{k}}$ or v_{i}, where $i>j$, $u_{j} \notin w^{\left(a_{i}\right)}$ (notations are as in Section 8). Then $x-1$ occurs after x in $w^{\text {max }}$. It is clear from the definition of $\theta_{j}^{\max }$ that $x-1$ also occurs after x in $\theta_{j}^{\max }$. For any other entry $y \neq x, s_{j}-1$, if $y-1$ occurs after y in $w^{\max }$, then it does so in $\theta_{j}^{\text {max }}$ also. The result now follows from this.

Lemma 9.11. Fix $j, 1 \leq j \leq h$. Let C be a block of consecutive integers in $w^{\left(a_{j}\right)}$ ending with $s_{k}-1$ at the $\left(a_{j}-t_{k}+1\right)$ th place (for some k) and beginning with x_{k}. Let the block preceding C end with $s_{i}-1$ for some i.

Suppose $k^{*} \leq j$. Then for $\alpha=\epsilon_{y}-\epsilon_{y+1}$, where $y \in\left[s_{i}, x_{k}\right]$, the rank 1 parabolic subgroup P_{α} is contained in $P\left(=P_{w^{\max }}\right)$.

Proof. The result follows (in view of Lemma 9.9) from the fact that [s_{i}, x_{k}] does not contain $s_{t}-1$ for any $t, 1 \leq t \leq l$.

We first show the above conjecture to be true for $X\left(w^{\max }\right)$ for the case $t_{1}=\cdots=t_{l}$, since the exposition in this case is much neater (and simpler) than in the general case. Let then $t_{1}=\cdots=t_{l}=t$, say. In this case, we have $b_{i}-1 \in w^{\left(a_{i}\right)} \backslash w^{\left(a_{i-1}\right)}, 2 \leq i \leq l$. Furthermore, $h=l$, and $\left\{s_{j}, 1 \leq\right.$ $j \leq l\}=\left\{b_{i}, 1 \leq i \leq h\right\}$.

Lemma 9.12. Any bad occurrence in $w^{\max }$ is of Type I.
Proof. Let $w^{\max }=\left(a_{1} \ldots a_{n}\right)$. Assume that (c, d, a, b) is a bad occurrence of Type II in $w^{\text {max }}$, where $a<b<c<d$. Clearly, c and d (resp. a and b) cannot both appear in the same block, in view of the description of $w^{\text {max }}$. Let then c, d, a, b appear in the r th, i th, j th, k th blocks, respectively, where $r<i \leq j<k$. This implies that $a<b<c<d \leq b_{i}-1$ (cf. Remark 9.8). But now, a and b are both $<b_{i}-1$, and they both appear after $b_{i}-1$; furthermore, a appears before b in $w^{\text {max }}$, which is not possible by the construction of $w^{\max }$ (note that $a<b$). The required result follows from this.

Remark 9.13. Of course, there are several bad occurrences in $w^{\text {max }}$ of Type I. For example, fix some $j, 1 \leq j \leq h$. Observe that b_{j} appears after $b_{j}-1$ (cf. Remark 9.8), and u_{j} appears after b_{j} in $w^{\max }$ (notations are as in Section 8). Take d to be any entry in $\{n-t+2, \ldots, n\}, b=b_{j}-1$, $c=b_{j}, a=u_{j}$. Then d, b, c, a occur in the $1 \mathrm{st}, j$ th, k th, and m th blocks, respectively, where $m \geq k>j$. This provides an example of a Type I bad occurrence in $w^{\max }$.

Lemma 9.14. Let d, b, c, a be a Type I bad occurrence in $w^{\max }$, where $a<b<c<d$. Assume that b belongs to the i-th block, for some i (note that $i \leq h$, since $b<c$). Then
(1) $c<n-t+2$.
(2) $b \leq b_{i}-1$.
(3) $d \geq n-t+2$.

Proof. Let d, b, c, a occur in the r th, i th, j th, k th blocks, respectively, in $w^{\max }$, where $r \leq i<j \leq k$. The hypothesis that $b<c$ implies that $j>1$. Hence we obtain $c \leq b_{j}-1$ (cf. Remark 9.8), and (1) follows. Now, if $i \geq 2$, then assertion (2) follows from Remark 9.8. If $i=1$, then assertion (2) follows from the fact that $b<c<n-t+2$.

Claim. $d>b_{i}-1$.

Proof. Assume that $d \leq b_{i}-1$. Then the assumption implies $c<b_{i}-1$ (since $c<d$). Now both c and b are $<b_{i}-1$, and b belongs to the i th block in $w^{\text {max }}$. This implies that c should occur before b, which is not possible. Hence our assumption is wrong, and the claim follows.

Note that the claim and Remark 9.8 imply that $d \geq n-t+2$, and d appears in the first block.

Lemma 9.15. Fix $j, 1 \leq j \leq h$. Then $\theta_{j}^{\max }$ is the unique maximal element of the set $\left\{\tau \in W \mid \tau \leq w^{\max }, \tau^{\left(a_{j}\right)}\left(a_{j}-t+2\right) \leq b_{j}-1\right\}$.
The proof is clear from the definition of $\theta_{j}^{\max }$.
Proposition 9.16. The maximal elements in $F_{w^{\max }}$ are precisely $\theta_{j}^{\max }, 1 \leq$ $i \leq h$ (here $F_{w^{\max }}$ is as in Section 9.6).
Proof. We first observe that $\theta_{j}^{\max } \in F_{w^{\max }}$; for, corresponding to the bad occurrence $d=n-t+2, b=b_{j}-1, c=b_{j}, a=u_{j}$ (cf. Remark 9.13), we have the bad occurrence (b, a, d, c) (note that b, a, d, c occur in that order in $\theta_{j}^{\text {max }}$). Let us denote $\theta_{j}^{\max }$ by τ^{\prime}. Let w^{\prime} (resp. τ) be the element of \mathscr{S}_{n} obtained from τ^{\prime} (resp. w) by replacing b, a, d, c (resp. d, b, c, a), respectively, by d, b, c, a (resp. b, a, d, c). Then clearly $\tau \leq \tau^{\prime}$ and $w^{\prime} \leq w$. Furthermore, $\overline{B \theta_{j}^{\max } B}$ is $P-Q$ stable (cf. Lemma 9.10). Thus $\theta_{j}^{\max } \in F_{w^{\max }}$

Now let $\tau^{\prime} \in F_{w^{\max }}$. In particular, we have $\tau^{\prime} \in W_{Q}^{\max }$.
We have a bad occurrence in τ^{\prime}, which has to be of the form (b, a, d, c), $a<b<c<d$, corresponding to the occurrence (d, b, c, a) in $w^{\max }$ (cf. Lemma 9.12). Let b, a, d, c occur in the p th, q th, r th, and s th blocks, respectively, in τ^{\prime}, where $p \leq q<r \leq s$ (note that $\tau^{\prime} \in W_{Q}^{\max }$).

We have

$$
w^{\prime\left(a_{q}\right)}\left(a_{q}-t+1\right) \leq w^{\left(a_{q}\right)}\left(a_{q}-t+1\right)=b_{q}-1
$$

(here w^{\prime} is as in Section 9). Furthermore, $\tau^{\prime\left(a_{q}\right)}$ is obtained from $w^{\prime\left(a_{q}\right)}$ by replacing d by a, where $a(<b)<n-t+2 \leq d$ (cf. Lemma 9.14). Hence we obtain $a \leq b_{q}-1\left(\right.$ since $\left.\tau^{\prime\left(a_{q}\right)} \leq w^{\left(a_{q}\right)}\right)$, and

$$
\tau^{\prime\left(a_{q}\right)}\left(a_{q}-t+2\right) \leq w^{\prime\left(a_{q}\right)}\left(a_{q}-t+1\right) \leq b_{q}-1 .
$$

This implies $\tau^{\prime} \leq \theta_{q}^{\max }$ (cf. Lemma 9.15).
Theorem 9.17. The conjecture 9 holds for $X\left(w^{\max }\right)$.
Proof. In view of Theorem 8.4, $X\left(\theta_{j}^{\max }\right), 1 \leq j \leq h$, are precisely the irreducible components of $X\left(w^{\text {max }}\right)$. On the other hand, we have (cf. Proposition 9.16) that the maximal elements in $F_{w^{\text {max }}}$ are precisely $\theta_{j}^{\max }, 1 \leq j \leq h$. Hence the irreducible components of $\operatorname{Sing} X\left(w^{\text {max }}\right)$ are precisely $\{X(\theta) \mid$ θ a maximal element of $\left.F_{w^{\max }}\right\}$. Thus the conjecture holds for $X\left(w^{\max }\right)$.

Now we prove the conjecture for $X\left(w^{\max }\right)$ in the general case.
Lemma 9.18. Fix $j, 1 \leq j \leq l$. Let $j^{*}=r$. Then $\theta_{j}^{\max }$ is the unique maximal element of the set $\left\{\tau \in W \mid \tau \leq w^{\max }, \tau^{\left(a_{r}\right)}\left(a_{r}-t_{j}+2\right) \leq s_{j}-1\right\}$.

The proof is clear from the definition of θ_{j}.
Lemma 9.19. A bad occurrence in $w^{\max }$ has to be of Type I.
Proof. If possible, let c, d, a, b, where $a<b<c<d$, occur in the i th, j th, k th, and p th blocks, respectively, in $w^{\max }$. Now $c<d$ implies that $i<j$. Hence $j>1$. Hence $d \leq b_{j}-1$ (cf. Remark 9.8), and this implies that $b<d \leq b_{j}-1 \leq b_{k}-1$. But then a cannot appear before b (by definition of $w^{\text {max }}$).

REMARK 9.20. Of course, there are several Type I bad occurrences. For example, take $j, 1 \leq j \leq l$. Let $j^{*}=r$. With notations as in Lemma 5.4, let $d=e_{i_{k}}$. We have (cf. Lemma 5.4) $d>s_{j}$. Also, in view of Remark 9.8, s_{j} is not an entry in $w^{\left(a_{i}\right)}, i \leq r$, and s_{j} appears after $s_{j}-1$ in $w^{\max }$. From the definition of $w^{\text {max }}$, it is clear that u_{j} appears after s_{j} in $w^{\max }$ (notations are as in Section 8). Take $d=e_{i_{k}}, b=s_{j}-1, c=s_{j}, a=u_{j}$.

Lemma 9.21. Let d, b, c, a be a Type I bad occurrence in $w^{\max }$. Then
(1) $d \in I_{r}$, for some $r, 1 \leq r \leq m+1$.
(2) $a, c \notin I_{r}$, for any $r, 1 \leq r \leq m+1$.

Proof. Let d, b, c, a belong to the i th, j th, k th, and p th blocks, respectively, in $w^{\text {max }}$. Assertion (2) is immediate, since $p, k>1$. Note that assertion (1) is equivalent to the assertion that $i=1$. If $j=1$, then $i=1$, and (1) follows (cf. Lemma 5.3). Then let $j>1$. This implies $b \leq b_{j}-1<c$. Suppose $i>1$. Then we would obtain that $d \leq b_{i}-1 \leq b_{j}-1<c$, which is not possible. Hence $i=1$, and (1) follows.

REMARK 9.22. With notations as in Lemma 9.21, we have in fact $d \in I_{r}$ for some $r \geq 2$. This is clear if $j \geq 2$ (since $b \leq b_{j}-1<c<d$). If $j=1$, then we have $b_{1}-1<c<d$. Thus we get that $r \geq 2$.

Proposition 9.23. The maximal elements of $F_{w^{\max }}$ are precisely $\theta_{j}^{\max }$.
Proof. Let us denote j^{*} by r. Then with d, b, c, a as in Remark 9.20, we have that b, a, d, c occur in that order in $\theta_{j}^{\max }$. Let us denote $\theta_{j}^{\max }$ by τ^{\prime}. Let w^{\prime} (resp. τ) be the element of \mathscr{S}_{n} obtained from τ^{\prime} (resp. w) by replacing $b, a, d, c($ resp. $d, b, c, a)$, respectively, by $d, b, c, a(\operatorname{resp} . b, a, d, c)$. Then clearly $\tau \leq \tau^{\prime}$, and $w^{\prime} \leq w$. Furthermore, $\overline{B \theta_{j}^{\max } B}$ is $P-Q$ stable (cf. Lemma 9.10). Thus $\theta_{j}^{\max } \in F_{w^{\max }}$. Now let $\tau^{\prime} \in F_{w^{\max }}$. Let b, a, d, c be a bad occurrence in τ^{\prime}. Furthermore, let b, a, d, c appear in the p th, q th, r th, and s th blocks, respectively, in τ^{\prime} (note that $\tau^{\prime} \in W_{Q}^{\max }$). Let $b_{q}=s_{z}$ for some
$z, 1 \leq z \leq l$. If $a \leq b_{q}-1$, and $d>b_{q}-1$, then as in the proof of Proposition 9.16, we obtain $\tau^{\prime\left(a_{q}\right)}\left(a_{q}-t_{z}+2\right) \leq b_{q}-1\left(=s_{z}-1\right)$. This implies $\tau^{\prime} \leq \theta_{z}^{\max }$ (note that $z^{*}=q$).

We now distinguish the following two cases.
Case 1. $d \leq b_{q}-1$. Let $d \in I_{k}\left(=\left[e_{i_{k}}, s_{i_{k}}-1\right]\right)$ for some $k \geq 2$ (cf. Remark 9.22). Let $j=i_{k}^{*}$. We first observe that $j \leq q$. For, if $i_{k}=i_{k}^{*}(=j)$, then $j \leq q$ (since $d \leq b_{q}-1$). If $i_{k}>i_{k}^{*}$, then again in view of Lemma 5.4, we have $s_{i_{k}^{*}}<d \leq b_{q}-1$, and hence $b_{j}-1<b_{q}-1$ (note that $s_{i_{k}^{*}}=b_{j}$). Hence we get $j<q$. Thus in either case we have $j \leq q$.

We further divide this case into the following two subcases.
Subcase 1 (a). $j<i_{k}$. Now, I_{k} appears in $w^{\left(a_{j}\right)}$ as a block of consecutive integers (cf. Remark 5.2), and $s_{i_{k}}-1$ appears at the $\left(a_{j}-t_{i_{k}}+1\right)$ th place. Let the block in $w^{\left(a_{j}\right)}$ preceding this block end with $s_{i}-1$ at the ($a_{u}-$ $t_{i}+1$)th place, for some u and i. Then $u=j$ necessarily (since $j<i_{k}$), and hence $i^{*}=u=j$. Now, in view of Lemmas 9.9 and 9.11 for $\alpha=\epsilon_{y}-\epsilon_{y+1}$, where $y \in\left[s_{i}, d-1\right]$, the rank 1 parabolic subgroup P_{α} is contained in $P\left(=P_{w^{\text {max }}}\right)$. This, together with the fact that $d \notin \tau^{\left(a_{j}\right)}$, implies that $\left[s_{i}, d\right] \cap$ $\tau^{\left(a_{j}\right)} \neq \varnothing$ (in view of the P-stability on the left of $X\left(\tau^{\prime}\right)$ (cf. Lemma 9.4)). Hence we obtain that $\tau^{\prime\left(a_{j}\right)}\left(a_{j}-t_{i}+2\right) \leq s_{i}-1$, where $i^{*}=j$. This implies $\tau^{\prime} \leq \theta_{i}^{\max }$ (cf. Lemma 9.18).

Subcase 1 (b). $j=i_{k}$. Note that $j>1$. (cf. Remark 9.22). Consider $w^{\left(a_{j-1}\right)}$. Now I_{k} appears in $w^{\left(a_{j-1}\right)}$ as a block (cf. Remark 5.2, since $i_{k}^{*}>$ $j-1)$, and d belongs to this block. Furthermore, $s_{i_{k}}-1$ appears at the $\left(a_{j-1}-t_{i_{k}}+1\right)$ th place. Let the block in $w^{\left(a_{j-1}\right)}$ preceding this block end with $s_{i}-1$ at the $\left(a_{j-1}-t_{i}+1\right)$ th place for some i. Then $i^{*}=j-1$, necessarily (since $j=i_{k}$). Furthermore, for $\alpha=\epsilon_{y}-\epsilon_{y+1}$, where $y \in\left[s_{i}, d-1\right]$, the rank 1 parabolic subgroup P_{α} is contained in P (in view of Lemma 9.9, since $\left[s_{i}, d-1\right]$ does not contain $s_{t}-1$ for any $\left.t, 1 \leq t \leq l\right)$. Now, the fact that $d \notin \tau^{\prime\left(a_{q}\right)}$ implies that $\tau^{\prime\left(a_{j-1}\right)} \cap\left[s_{i}, d\right]=\varnothing$ (in view of P-stability on the left of $X\left(\tau^{\prime}\right)$). Hence we obtain $\tau^{\prime\left(a_{j-1}\right)}\left(a_{j-1}-t_{i}+2\right) \leq s_{i}-1$, where $i^{*}=j-1$. This implies $\tau^{\prime} \leq \theta_{i}^{\max }$ (cf. Lemma 9.18).

Case 2. $a>b_{q}-1$. Let d, b, c, a appear in the i th, j th, k th, and x th blocks, respectively, in $w^{\text {max }}$, where $i \leq j<k \leq x$. Let u be the smallest index such that $a \leq s_{u}-1$. We have $q \leq u^{*}$ (since $q>u^{*}$ would imply $a \leq s_{u}-1<b_{q}-1$, which is not true).

Claim. $x>u^{*}$. If $j \geq 2$, then we have $b_{q}-1<a<b \leq b_{j}-1$ (cf. Remark 9.8). Hence we obtain $u^{*} \leq j$, from which the claim follows (since $x>j$).

If $j=1$, let $b \in I_{v}$ for some $v \geq 2$ (cf. Lemma 5.3; note that $b_{q}-1<a<$ b implies $b>b_{1}-1$). We have $b_{q}-1<a<b \leq s_{i_{v}}-1$. Hence we obtain
$s_{u}-1 \leq s_{i_{v}}-1$, and $u^{*} \leq i_{v}^{*}$. Now, we have $b_{k}-1 \geq c>s_{i_{v}}-1 \geq s_{i_{v}^{*}}-1$ (by the definition of $w^{\max }$). This implies $c \notin w^{\left(a_{i v}^{*}\right)}$, and hence $k>i_{v}^{*} \geq u^{*}$. The claim now follows from this (since $x \geq k$). Thus we obtain $q \leq u^{*}<x$. Now the fact that $a \in \tau^{\prime\left(a_{q}\right)}$ implies $a \in{\overline{\tau^{\prime}}}^{\left(a_{u^{*}}\right)}$. This, together with the P stability on the left of $X\left(\tau^{\prime}\right)$, implies that $\left[a, s_{u}-1\right] \subset \tau^{\left(a_{\left.u^{*}\right)}\right)}$ (note that $s_{j}-1 \notin\left[a, s_{u}-1\right]$, for any $j \neq u$, and hence for $\alpha=\epsilon_{y}-\epsilon_{y+1}$, where $y \in$ [$a, s_{u}-2$], the rank 1 parabolic subgroup P_{α} is contained in P). From this, we obtain $\tau^{\prime\left(a_{u^{*}}\right)}\left(a_{u^{*}}-t_{u}+2\right) \leq s_{u}-1$ (since $\tau^{\prime\left(a_{u^{*}}\right)} \leq w^{\left(a_{u^{*}}\right)}$, and $a \notin w^{\left(a_{u^{*}}\right)}$ (note that $x>u^{*}$)). This implies $\tau^{\prime} \leq \theta_{u}^{\max }$ (cf. Lemma 9.18).

Theorem 9.24. Conjecture 9 holds for $X\left(w^{\max }\right)$.
Proof. As in the proof of Theorem 9.17, the result follows from Theorem 8.4 and Proposition 9.23.

REFERENCES

1. A. Borel, "Linear Algebraic Groups," 2nd ed., Springer-Verlag, New York, 1991.
2. N. Bourbaki, "Groupes et Algèbres de Lie," Chaps. 4, 5, and 6, Hermann, Paris, 1968.
3. W. Bruns and U. Vetter, "Determinantal Rings," Lecture Notes in Mathematics 1327, Springer-Verlag, New York, 1988.
4. A. Conca, "Gröbner Bases and Determinantal rings," Dissertation, Universität Essen, 1993.
5. A. Conca and J. Herzog, Ladder determinantal rings have rational singularities, preprint, 1996.
6. D. Cox, J. Little, and D. O'Shea, "Ideals, Varieties and Algorithms," Springer-Verlag, New York, 1992.
7. D. Glassbrenner and K. E. Smith, Singularities of certain ladder determinantal varieties, J. Pure Appl. Algebra 100 (1995), 59-75.
8. R. Hartshorne, "Algebraic Geometry", Springer-Verlag, New York, 1977.
9. J. Herzog and N. V. Trung, Gröbner bases and multiplicity of determinantal and Pfaffian ideals, Adv. Math. 96, (1992), 1-37.
10. G. Kempf and A. Ramanathan, Multicones over Schubert varieties, Invent. Math. 87 (1987), 353-363.
11. V. Lakshmibai, C. Musili, and C. S. Seshadri, Cohomology of line bundles of G / B, Ann. Sci. École Norm. Sup. (4) 7 (1974), 90-137.
12. V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert varieties in $\operatorname{SL}(n) / B$, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 45-52.
13. V. Lakshmibai and J. Weyman, Multiplicities of points on a Schubert variety in a minuscule G/P, Adv. Math. 84 (1990), 179-208.
14. A. Lascoux, "Foncteurs de Schur et Grassmannienne," Thesis, Université de Paris VII, 1977.
15. J. V. Motwani and M. A. Sohoni, Normality of ladder determinantal rings, preprint (1994).
16. S. B. Mulay, Determinantal loci and the flag variety, Adv. Math. 74 (1989), 1-30.
17. H. Narasimhan, The irreducibility of ladder determinantal varieties, J. Algebra 102 (1986), 162-185.
18. S. Ramanan and A. Ramanathan, Projective normality of Flag varieties and Schubert varieties, Invent. Math. 79 (1985), 217-224.
19. A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math. 80 (1985), 283-294.
20. A. Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 61-90.
21. P. Svanes, Coherent cohomology on Schubert subschemes of flag schemes, Adv. Math. 14 (1974), 369-453.

[^0]: ${ }^{1}$ E-mail: ngonciul@lynx.neu.edu
 ${ }^{2}$ Partially supported by National Science Foundation grant DMS 9502942 and by Northeastern University grant RSDF 95-96. E-mail: lakshmibai@neu.edu

