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Resistant bacterial infections are a major health problem in many parts of the world. The major commercial
antibiotic classes often fail to combat common bacteria. Although antimicrobial peptides are able to control bac-
terial infections by interfering with microbial metabolism and physiological processes in several ways, a large
number of cases of resistance to antibiotic peptide classes have also been reported. To gain a better understanding
of the resistance process various technologies have been applied. Here we discuss multiple strategies by which
bacteria could develop enhanced antimicrobial peptide resistance, focusing on sub-cellular regions from the sur-
face to deep inside, evaluating bacterial membranes, cell walls and cytoplasmic metabolism. Moreover, some
high-throughput methods for antimicrobial resistance detection and discrimination are also examined. This
article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, antibiotic resistance has increasingly become an
uncontrollable health problem. Bacterial infections caused by resistant
ial Resistance to Antimicrobial
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strains can be found in hospitals around theworld, being extremely com-
mon in immune compromised patients [1]. Antibiotics are able to control
bacterial infections, interfering with microbial metabolism and physio-
logical processes, such as DNA replication and cell wall biosynthesis. Al-
though multiple compounds are often used, cases of resistance to the
majority of antibiotic classes used in hospitals have been reported [2].

The last report from the American Centers for Disease Control esti-
mated that over two million illnesses and 23,000 deaths were caused
by drug-resistant microbes in the USA in 2013 [3]. These numbers
have encouraged health organizations to establish stricter policies for
antibiotic use in order to curtail the emergence of resistance. These
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policies are unquestionably helping to protect patients in many coun-
tries. If, on the one hand, a reliable policy for the use of antibiotics is nec-
essary, the development of new drugs with potential activity against
these pathogens is also essential.

Antimicrobial peptides (AMPs) are effective antibiotic agents found
in plants, animals and microorganisms. These molecules have a broad
spectrum of action, often being active against bacteria, fungi and proto-
zoans. The amphipathic structure, common to AMPs, facilitates their in-
teractions and insertion into the anionic cell wall and phospholipid
membranes of microorganisms [4]. Frequently, AMP activity results
from the disturbance of cell membrane integrity. However, AMPs can
act in different cell targets including DNA [5], RNA [6], regulatory en-
zymes [7] and other proteins [8], appearing as a promising alternative
to classic antibiotics [9]. Nevertheless, once AMPs have been put into
current clinical use, the development of AMP-resistant strainswill be in-
evitable [10–12]. Thus, the understanding of bacterial resistance against
these compounds is extremely necessary for a possible rational plan-
ning of the next antibiotic generation.

To shed some light on the bacterial resistance process, several
technologies including mass spectrometry and high-throughput tech-
niques have been applied to analyses of bacterial physiology in response
to antibiotic stress [13]. In this review article we discuss different strat-
egies by which bacteria can develop AMP resistance from the surface to
deep inside, evaluating the bacterial resistance process layer by layer.
Moreover, some technologies for detecting antimicrobial resistance
are also discussed.

2. Conventional and high-throughput methods to discriminate
bacterial resistance

Currently the increase in the development of bacterial resistance to
available antimicrobial agents is a major health public problem in the
21st century. Therefore, it is necessary to investigate and monitor antibi-
otic resistance in order to discriminate the pattern of resistant bacterial
strains and to propose the appropriate treatment. These efforts may be
helpful to reduce medical expenses and treat patients effectively [14].

In order tomeasure the resistance of microorganisms to antimicrobial
agents, awide variety of different and conventional laboratorymethods is
available. Among these can be cited the disk diffusion assay, the broth di-
lution test and automated commercial systems based on classical bio-
chemical analysis [14]. Either broth (macrodilution and microdilution)
or agar dilution methods may be used to measure quantitatively the
in vitro activity of an antimicrobial agent against a given bacterial isolate,
reporting the minimal inhibitory concentration (MIC).

In order to perform these tests, a series of tubes or plates is prepared
with a broth or agar medium, as appropriate to each test, in which var-
ious concentrations of the antimicrobial agents are added. The tubes or
plates are then inoculatedwith a standardized suspension of the test or-
ganism and after incubation, the tests are examined and the MIC is de-
termined [15]. In susceptibility testing methods using an agar-based
medium, such as disk diffusion and Etest, the sizes of the zones of
inhibition depend on many variables (i.e. the antimicrobial agent, disk
content and inocula), which may represent a disadvantage of these
methods [14,16]. These biases have been reducedusingfirmly established
standardized interpretative breakpoints and automated systems.

The commercial systems available are based primarily, or in part, on
some of these standardized manual methods and may provide results
essentially equivalent to these methods [15]. However, the use of
automated or semi-automated systems, i.e., VITEK® 2, BD Phoenix®
and MicroScan®WalkAway® [17] in microbiology labs, which also ex-
pose bacteria to graduated dilutions of antibiotic drugs, can give a result
in fewer hours than themanual methods. They provide an advantage in
detecting resistance, ordering fewer laboratory tests during the diag-
nostic process, completing the diagnostic workup using fewer sample
collections, reducing laboratory costs and preventing resistant
strains from spreading rapidly [18–20]. Automated systems performing
identification of reduced antimicrobial susceptibility strains are increas-
ingly being used [15,20]. But in some cases a diversity of screening non-
standardized methods plus confirmatory testing by more elaborate tech-
niques have to be used to detect different levels of antimicrobial resis-
tance between clinical isolates with a heterogeneous population of cells.
This was observed in the GISA strain (GISA, glycopeptides intermediately
susceptible to Staphylococcus aureus) and their heterogeneous variant
hGISA (hGISA, heterogeneous glycopeptides intermediately susceptible
to S. aureus), whose isolates probably represent the extremes of a com-
mon phenotype that confer a variable level of reduced susceptibility to
glycopeptides [21,22]. In addition, Lo-Ten-Foe and co-workers [20]
showed by comparison between testing different types of antimicrobial
susceptibility that the automated system used was a reliable and easy-
to-use tool to determine Enterobacter cloacae andAcinetobacter baumannii
colistin resistance, but that it cannot detect antimicrobial resistance in
hetero-resistant isolates [20].

Although resistance has usually been analyzed at the phenotypic
level by monitoring bacterial growth in the presence of various antibi-
otics, molecular high-throughput subtyping methods are available and
their use seems to be necessary in order to discriminate distinct levels
of bacterial resistance and to overcome the difficulties encountered in
conventional tests [23]. Moreover, in general, genotypic tests may be
advantageous over phenotypic assays, being much faster and capable
of circumventing problems associated with a sometimes low resistance
phenotypic expression [24]. Hence, the high-throughput methods
based on DNA-assays (genomic and transcriptomic tools) and on
proteomic-assays have been used to discriminate bacterial resistance
and to assist in the management of infections.

Studies carried out in pathogenic bacteria have revealed that genes
across diverse functional categories participate in determining the
level of intrinsic and acquired susceptibility/resistance to antibacterial
agents, known as the resistome, and the ongoing delineation of this
resistome may provide fundamental insights both into antimicrobials'
mode of action and into the bacterial response to inhibition and resis-
tance [14,25]. Thus, the use of these tools can be advantageous due to
their sensitivity and rapid turnaround times,whichmay provide clinical
benefits that offset the cost [26]. The molecular methods to detect anti-
biotic resistance based on genomic analysis, such as gene sequencing
[25,27,28], have been increasingly implemented in clinical laboratories
to complement diagnosis and treatment.

Some reports have described the development of variations on tech-
niques as demonstrated by Zimenkov and co-workers [29], in a study
which showed an uncomplicated and easily implemented microarray
technique. This was capable of detecting mutations in the gyrA and
gyrB genes responsible for fluoroquinolone resistance and mutations
in the rrs gene and the eis promoter locus that are associated with the
aminoglycosides and capreomycin resistance in Mycobacterium
tuberculosis.

Another genomic approach, Scalar Analysis of Library Enrichments
(SCALEs), was applied to map the effect of gene overexpression onto
Bac8c (an 8 amino acid AMP) resistance in parallel for all genes and
gene combination in the Escherichia coli genome, being capable of suc-
cessfully identifying an elaborate network of genes for which over-
expression leads to low-level resistance to this specific AMP [30]. In
addition, a molecular test in association with conventional screening
tests could provide valuable antibiotic resistance information to facili-
tate themanagement of patient therapy and theprevention of transmis-
sion [28].

Other DNA-based techniques, especially PCR, are often used to ex-
amine bacterial resistance genes [31]. Besides, real-time PCR (Q-PCR)
assays have also been used to detect and quantify genes correlated
with resistance, as demonstrated in S. aureus to achieve more accurate
and rapid detection of macrolide–lincosamide–streptogramin B resis-
tance genes (i.e., the erm genes). These genes are commonly observed
in Gram-positive bacteria, such as the genera Enterococcus, Bacillus,
Streptococcus and Staphylococcus correlated to bacteria 23S rRNA
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methylation, resulting in antibiotic resistance, and the Q-PCR test has
been considered not only the most accurate and sensitive, but also
the most rapid method used in these conditions [14,31]. In the case of
methicillin susceptibility testing for S. aureus, conventional phenotypic
methods use surrogate drugs and take about 48 h to become available
from the time that positive cultures are detected, but in contrast, the de-
tection by Q-PCR of the mecA gene, related to methicillin resistance,
takes less than 2 h and yields a secure answer [26]. Therefore, together
with the rapid turnaround time, the other main advantage of nucleic
acid amplification is that it allows for the detection of low copy numbers
of a specific organism's gene target in clinical samples, improving the
therapy and patient outcome, but sometimes the polymicrobial infec-
tions may be missed [32].

The transcriptomic approach has been used to analyze a set of tran-
scripts in a cell culture or a single cell that includes mRNAs encoding
proteins and small non-coding RNAs (i.e. ribosome, tRNA, miRNA) in dif-
ferent pathogenic organisms, such as M. tuberculosis [33], E. coli [34],
Aggegatibacter actinomycetemcomitans [35], Campylobacter jejuni [36]
and S. aureus [37]. Kamensek and Zgur-Bertok evaluated the response of
E. coli to colicin M, a bactericin that inhibits peptidoglycan synthesis,
and demonstrated by transcriptomic analyses that subinhibitory concen-
trations of colicin M alter the gene expression involved in bacterial cell
envelope, osmotic stress, cellmotility and also in genes related to the pro-
duction of exopolysaccharides and the CreBC system, already known to
promote an increase in colicin M and E2 resistance [38].

DNA-based and proteomic analysis have been widely carried out in
pathogenic bacteria through several experimental and analytic tools in
order to build up a complete picture of the biochemical events that
happen inside bacterial cells [39–41] and to characterize genes and pro-
teins involved in the antibiotic resistance mechanisms [13]. These anal-
yses when carried out together, may allow a better understanding of
physiology and overall cellular metabolism, enabling the identification
of connections between different metabolic and regulatory pathways
that remain unclear [40,42].

In general, through proteomic analysis it has been possible to
characterize a particular organism, tissue, or cell organelle structure by
identifying the largest possible number of proteins, or even just compar-
ing differentially expressed proteins, thus providing information com-
plementary to that obtained through genomic techniques [43]. The
use of this technology has been boosted with the emergence of ioniza-
tion techniques such as electrospray ionization (ESI) and matrix-
assisted laser desorption ionization (MALDI) and with the application
of liquid chromatography (LC), with high (HPLC) or ultra-efficiency
(UPLC),which are used to allowmeasurement and identification of pep-
tides with better sensitivity in complex biological samples [44,45].
The routine use of these techniques in clinical laboratories to identify re-
sistance is still rare, probably due to the high cost of expensive capital
equipment and the necessity of skilled labor. But advantages of these
methods include the identification of a wide range of microorganisms
resistant at one time and with minimal hands-on time, the high
throughput capacity, the relative low per-test cost and the very
rapid turnaround time [32,46].

MALDI-ToFMS has been applied to identify the different levels of bac-
terial resistance, for example in S. aureus strains resistant to methicillin
[23,47], Streptococcus pneumonia strains resistant to fluoroquinolones
[48] and E. coli resistant to multiple antibiotics [23,49]. Moreover, in
MALDI-ToF MS AMPs resistance analysis, the technique was also seen to
be efficient since it allowed the distinction between susceptible and
magainin I-resistant E. coli strains [50]. Using this tool, the mass spectra
acquired by MALDI-ToF MS for each isolate were used to construct a
main spectrum profile (MSP), allowing a comparison with each other in
a cluster tree. The distance between branches of these isolates showed
that the subtle differences in molecular masses between the susceptible
and resistant isolates permit the differentiation of the resistant strains
[50]. The use of the MALDI-ToF MS tool in the clinical laboratory could
rapidly and precisely discriminate the antibiotic-resistant pathogen
strains in infectious diseases, including the differentiating bacterial strains
with varying degrees of antibiotic resistance, having a high throughput
capacity, reducing therapeutic failure and consequently thedissemination
of resistance [23,51,52].

Moreover, by several proteomic approaches, various peptides and
proteins have been found with differential expression directly or indi-
rectly correlated to antimicrobial bacterial resistance, such as the porins
OprD, OprF, OprG, OprL, OmpH and theMexA protein of an efflux pump
in Pseudomonas aeruginosa resistant to ampicillin, kanamycin and tetra-
cycline [53,54]; the transmembrane channel TolC, F1-ATPA and DLD in
Vibrio parahaemolyticus, related to efflux and phospholipids biosynthe-
sis, increased, conferring resistance to AMPs [55]; there was also an
increase in intracellular phosphoglycerate cynase and peptideoglycan
hydrolase LytM in S. aureus resistant to methicillin and vancomycin
[46,56] and in the 41 differential proteins related to metabolism and
stress response in AMP magainin-I-resistant E. coli strains [10]. The
identification of these proteins and their tabulation in a database may
offer an additional support to discriminate the antimicrobial-resistant
bacterial strains.

Therefore, the high-throughput methods available to identify the
different bacterial resistance mechanisms outlined in this review
may aid in the interpretation of relative gene expression profile, in the
identification of potential genes and/or protein targets differentially
expressed in drug-resistant strains and in the validation of essential
gene expression for microorganism survival, including those activated
or repressed in a hostile environment such as in the presence of antibi-
otics and AMPs.

3. Membrane alterations that cause antimicrobial peptide resistance

Most AMPs are capable of permeabilizing microbial membranes
causing an osmotic cellular imbalance [57]. In general terms, the elec-
trostatic forces start the interaction between the negatively charged
cell surface and the positively charged peptide. This initial interaction
leads to a second step in which the peptide with hydrophobic patches
binds to the lipidic membrane, resulting in membrane disruption.
Barrel-stave, toroidal, and carpet are the main models of this concept
[58]. In barrel-stave, peptides seem to oligomerize and form transmem-
brane pores. Otherwise, toroidal pores could be formed by monomer
peptides, which induce a local membrane curvature that also results
in membrane disruption. Finally, a carpet mechanism occurs when
the AMPs cover the membrane surface, causing a detergent-like ef-
fect that is able to disintegrate the membranes. Although these
three classical mechanisms of action have been extensively discussed in
the last two decades, some authors have proposed several other possibil-
ities [8,57,58].

The mechanisms of bacterial resistance to AMPs are still not fully
established, but the modifications in the physical–chemical interaction
between the bacterial cell membrane and the AMP molecule seem to
be the first step commonly involved in the resistance process [59,60].
In general, bacterial resistance can be achieved by bacteria changing
the AMP target to make it less susceptible to AMP action or even by
mechanisms related to the removal of AMPs from their site of action
in the bacterial membrane (Fig. 1) [61,62]. Often, fluidity and perme-
ability of the bacterial cell membranes decrease due to alterations in
the architecture of the outer and inner membranes [62,63]. Reduced
levels of specific membrane proteins and ions (such as Mg2+ and
Ca2+) [63–65], and changes in membrane lipid composition afford pro-
tection to the site of action of variousAMPs. Thiswas observed in bacterial
resistance to polymyxins, defensins and cathelicidins, where these com-
pounds main target is the cytoplasmic bacterial membrane [64,66].

Included in the main constituents of bacterial membranes are vari-
ous types of phospholipids, such as phosphatidylethanolamine (PE),
phosphatidyglycerol (PG) and cardiolipin (CL) [67,68]. The bacterial
membrane structure fulfils several vital tasks, while the phospholipid
membrane composition prevents cell damage in unfavorable growth



Fig. 1.Membrane alterations that influence cAMPs bacterial resistance. (A) The bacteriummodulates its relative positive membrane charge (such as in the cardiolipin inclusion or in the
increase of aminoacylatedphospholipids content), changing themembrane lipid composition and reducing thenegativemembrane charge, avoiding the insertion of the positively charged
AMPs, as a protective tactic to prevent cell damage and consequently to resist cAMP action; (B) The expression offlippases proteins seems to be important in the translocation orflippingof
positively charged lipids from the inner to the outer leaflet of cytoplasmic membranes, resulting in changes in the membrane charge and composition, giving it a stable profile against
antimicrobial action and reducing the affinity between cell membrane and the AMP and consequently the effectiveness of AMPs binding and action; (C) Under the control of the two-
component signal regulatory systems (TCS) (i.e. PhoP–PhoQ), the bacteria perceive an environmental stimulus, activate signal transduction and respond to the presence of AMPs, controlling
the bacterial membrane modifications and resulting in increased AMP resistance; (D) The efflux pumps transduce the electrochemical energy to displace the antimicrobial drugs or cAMPs
out of the periplasm and their overexpression in bacteria closely correlated to their antibiotic resistance.
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conditions, and thismodulation seems to be crucial for bacterial survival
[69]. The roles of the various phospholipids, their biosynthesis, turnover
and regulation are very important in bacterial membrane structure and
function, showing a close relation to antibiotic resistance. One example
is about the expression of postulated flippase proteins that are required
for translocation of lipids from the inner to the outer leaflet of cytoplas-
mic membranes, resulting in changes in the membrane composition
and giving it a stable profile against antimicrobial action [69].

In a model membrane it was shown that inclusion of only 10% of CL
was already able to effectively suppress membrane translocation and
pore formation in liposomes by antibiotic action, resulting in resistance
[68]. Themethicillin-resistant S. aureus strains seem to utilize adaptations
in phospholipid cell membrane, mediated bymprF (multiple peptide re-
sistance factor), cls (cardiolipin synthase) and pgsA (phosphatidylglycerol
synthase), together with other mechanisms, to modulate its relative pos-
itive surface charge as a protective tactic, probably against the insertion of
positive charges of cationic AMPs (cAMPs) and also calibrate its cell
membrane order (fluidity versus rigidity) to resist the action of AMPs
[66,70,71]. In another membrane model, the presence of aminoacylated
phospholipids (Lys-PE, Gln-PE), a common secondary modification of
bacterial lipid bilayers of pathogenic bacteria, both Gram-negative and
Gram-positive, is required for its stabilization, protecting it against AMP
activity [72].

The reduction in negative charge resulting from alteration in the
phospholipid bilayer composition in association with the function of
the two-component signal regulatory systems (TCS), for example the
PhoP–PhoQ described in Salmonella enterica and P. aeruginosa [64]; the
ParR-ParS and PmrA–PmrB in P. aeruginosa [64,73]; the ApsR–ApsS
in Staphylococcus epidermidis and S. aureus [62], and the TCS/ABC of
B. subtillis (BceSR two-component system (TCS)/BceAB ABC transporter)
[74] and of S. aureus (BraSR/BraDE transporter module) [75], which con-
trol the bacterialmembranemodification according to the environmental
stimuli response, could reduce the affinity between cell membrane and
the AMPs and boost the effectiveness of AMP binding, increasing resis-
tance [10,62,64,76]. In S. aureus most AMP-inducible AMP-resistance
mechanisms, including dlt, mprF and vraFG genes, were found to be
under aps (ApsR–ApsS) control, and the regulatory response and target
mechanisms are mainly for cationic AMPs [62,77].
Under the control of the TCS systems, the bacteria perceive en-
vironmental stimulus, activate signal transduction and respond to the
presence of AMPs, resulting in increased AMP resistance [75,78]. Along
with this, the resistance is often also increased by the activity of trans-
membrane transporters, the efflux pumps that transduce electrochem-
ical energy to displace the drugs out of the periplasm [79]. Active efflux
plays a major role in this resistance, and multidrug efflux pumps de-
crease the accumulation of drugs within cells [80].

The tripartite-transport systems composed of inner and outermem-
brane proteins, connected by a periplasmic membrane fusion protein
(i.e. AcrABTolC in E. coli), are mainly an important efflux system to
pump cytotoxic compounds and antimicrobial drugs. Their overex-
pression in bacteria is really correlated with their antibiotic resistance
[80,81]. Thus, the bacteria can adapt to a wide range of environmental
conditions, including the presence of antimicrobial compounds, antibi-
otics and AMPs, which constitute environmental chemical stresses for
bacterial cells, through appropriate developed mechanisms that confer
protection against this external attack, such as the mechanism involving
the cell membrane that seems to be pivotal in bacterial survival and
resistance.

4. Modifications in cell wall of AMP-resistant bacterial strains

The bacterial cell envelope primarily consists of the cytoplasmic
membrane and cell wall [82]. The cytoplasmic membrane makes the
first physical barrier to protect the intracellular content. The cell wall
gives strength and structure to the bacterial cell [83] and ensures the
survival of most bacteria. Mycoplasma lacks a cell wall, but has a limited
lifestyle, needing a completely predictable environment. In that case
mycoplasma can survive without oxygen, but not in very high or very
low salt concentrations due to the absence of cell walls [84]. Other bac-
teria turn into L-forms (without a cell wall) under conditions of extreme
nutritional limitation or by mutation [85,86].

Structural differences in the bacterial cell wall led to the classifica-
tion of bacteria into Gram-positive and -negative. The Gram-positive
bacterial cell wall includes a thick peptidoglycan layer and another
polysaccharide coat, mainly formed by teichoics and teichuronic acids.
Furthermore, the Gram-negative bacterial cell wall proves to be more
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complex, including thin layers of peptidoglycans, lipoproteins, lipopoly-
saccharides and an outer membrane [82].

All antimicrobial peptides establish some kind of interaction with
the cell wall to unleash their bactericidal activity, including ionic and
hydrophobic interactions [87,88], since bacteria possess an overall neg-
ative surface charge. Therefore, bacterial defense toward this kind of ac-
tion often relies on cell wall modifications, which usually alter the ionic
cell wall potential, essentially on interaction spots, reducing the attach-
ment of antibiotic peptides [89–91].

4.1. Modifications in the polysaccharide layer

Gram-positive bacteria usually resist antimicrobial peptides by par-
tially neutralizing their cell wall [89]. Gram-positive cell walls have a
large amount of anionic polysaccharides (up to 60%) attached to cyto-
plasmic membrane or the peptidoglycan layer. Lipoteichoic acid (LTA)
and lipoglycans bind to the cytoplasmic membrane, while wall teichoic
acid (WTA), teichuronic acid and other anionic polysaccharides connect
to peptidoglycans [92,93]. LTA and WTA are composed of repeating
monomeric alditol units (i.e. ribitol and glycerol) joined by anionic
phosphodiester linkages, which confer an anionic character on these
teichoic acids [93].

Finally, peptidoglycans comprise the main constituents of the
Gram-positive cell wall: a disaccharide formed by two sugars (N-
acetylglucosamine and N-acetylmuramic acid) linked to a short peptide
chain (three to five amino acid residues). The disaccharide portion varies
slightly in different bacteria, while the peptide chain, linked to the
carboxyl group of N-acetylmuramic acid, shows wide variation in its
composition [94,95]. The WTA is covalently linked to the peptidoglycan
by a special coupling to O-6 or N-acetylmuramic acid [92]. Together
with peptidoglycan, teichoic acids (WTAand LTA) determine the negative
surface of most Gram-positive bacteria [93], which is essential for many
cell functions, such as maintenance of homeostasis, cell shape and the
activity of autolytic enzymes [96].

Gram-positive bacteria do not possess outer membrane protection
[82]. The layer of peptidoglycans and teichoic acids receives all the ex-
tracellular pressure andmakes the first contact with harmfulmolecules,
Fig. 2. AMP resistance fromD-alanylation of teichoic acids. Schematic representation of the cell e
(right). D-Alanine transferring to teichoic acids (TA) through DltABCDproteins provides the cou
precludes the ionic interaction between cAMP and LTA and WTA and the cAMP action on Gram
likely host defense peptides [97]. Some Gram-positive bacteria evade
the attack of antimicrobials. Extensive studies on this ability revealed
that bacteria with the dlt operon promote D-alanylation of teichoic
acids, reducing their anionic charges [98] (Fig. 2). Because many Gram-
positive bacteria have the dlt operon, Devine and Hancock [99] suggested
the D-alanylation of teichoic acids as a natural defense of this Gram-type.
Also, Peschel et al. [100] observed that D-alanine-esterified teichoic acids
may represent a virulence factor due their occurrence in several patho-
genic bacteria, such as streptococci, enterococci, clostridia, listeria, and
bacilli.

Peschel and co-workers [98] reported that S. aureus and Staphylococcus
xylosus with many copies of dlt operon were resistant to cationic pep-
tides (defensin, protegrins, tachyplesins, magainin II, gallidermin and
nisin) and a neutral peptide (gramicidin D). But mutant bacteria, lacking
dlt operon, were sensitive up to 50-fold more to cationic peptides only.
The mutant teichoic acid lacked D-alanine esters and remained highly
charged by deprotonized phosphate groups in its glycerolphosphate re-
peating units, allowing the action of cationic peptides, but not of neutral
gramicidin.

Peschel et al. [101] reported similar results in glycopeptide antibi-
otics, such as vancomycin and teicoplanin: S. aureus lacking D-alanine
esters in teichoic acid proved three-fold more sensitive to glycopeptide
antibiotics. Chan et al. [102] investigated the role of D-alanylation of
lipoteichoic acid (LTA) in Streptococcus gordonii. The authors concluded
that D-alanylation of LTA in this strain influences the host immune
system by modulating cytokine production and promoting relative
resistance to antimicrobial peptides. When they knocked out the dltA
gene of S. gordonii, its susceptibility to polymyxin B, nisin, magainin II,
and human β defensins 1 and 2 markedly increased [102]. Kristian
et al. [96] obtained similar results in Group A Streptococcus mutant
with allelic replacement of the dltA genewith the chloramphenicol ace-
tyltransferase gene.

However, Saar-Dove et al. [103] investigated the interactions of the
human pathogen Group B Streptococcus with cationic antimicrobial
peptides with different properties. According to them, D-alanylation
probably alters LTA conformation, which increases the cell wall density,
flexibility and permeability, acting as a physical barrier to linear peptides.
nvelope of a Gram-positive bacterium before (left) and after D-alanylation of teichoic acids
nter ion that partially neutralizes the net anionic charge of the TA. Then, the repulsion force
-positive cell wall.
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The dlt operon contains four genes, dltA, dltB, dltC, and dltD, all of them
being involved in the teichoic acids' D-alanylation [93,104]. The exact
process of the D-alanine transferring to external polymers of the Gram-
positive cell wall remains uncertain [89], but it is known that the dltA
encodes a D-alanine-D-alanyl carrier protein ligase (Dcl), which activates
and transfers D-alanine to the D-alanine carrier protein (encoded by
dltC); DltB participates in D-alanine incorporation into teichoic acids and
transfer of activated D-alanine across the cytoplasmic membrane; and
DltD assists the transfer of D-alanine from the membrane carrier to
teichoic acids [93].

4.2. Lipid A alterations

Gram-negative bacteria possess an extra barrier, the outer mem-
brane (OM), in comparison to Gram-positive strains. The OMmaintains
cell integrity in the face of environmental changes and controls the en-
trance of hostile molecules into the cell. The outer membrane is an
asymmetrically organized bilayer membrane that has an inner layer
composed of phospholipids and proteins; its externally exposed layer
is composed of specific proteins and lipopolysaccharides (LPS), the
latter being its major surface component [105]. Lipopolysaccharidemo-
lecular structures include three different subunits: an endotoxin (lipid
A), a core oligosaccharide and an O-antigen polysaccharide [106]. The
lipid A anchors the LPS unit to the outer membrane. This endotoxin cor-
responds to a β-1′,6-linked glucosamine disaccharide, hexa-acylated
and bisphosphorylated. The lipid A negative charge, and consequent an-
ionic cell surface of Gram-negative bacteria, results from its core phos-
phorylation [91,106].

SomeGram-negative bacteria incorporate positive charges into lipid
A, which reduces the negative net charge from the cell envelope and the
electrostatic repulsion between neighboring LPS molecules, thus
decreasing affinity for antimicrobial peptides [107,108] (Fig. 3).
Lipid A modifications often result from changes in at least one the
following substituents that occurs at 1- or 4′-phosphate groups:
palmitate, phosphoethanolamine and 4-amino-4-deoxy-L-arabinose (4-
aminoarabinose) [106]. High levels of lipid A modifications with these
substituents appear to be related to cationic antimicrobial peptide resis-
tance [90] and bacterial virulence, as seen in polymyxin B [109–111]. The
4-aminoarabinose attachment to lipid A occurs bymeans of a phosphodi-
ester bond in its anomeric carbon; phosphoethanolamine attachment
often occurs as a pyrophosphate [90]; and palmitate residue transfer
occurs from a phospholipid to the N-linked hydroxymyristate on the
proximal unit of lipid A [109]. The two-component regulatory system,
PhoP–PhoQ (PhoPQ), usually controls all three modifications of lipid A.

The PhoPQ system induces the expression of the pmrD gene, which
activates the PmrA–PmrB two-component system (PmrAB) by post-
translational modifications. These two regulatory systems control a
group of genes required for antimicrobial resistance and pathogenesis
[111]. The polymyxin resistance operon (pmr) is required for amino-
arabinose LPS modification. In Salmonella enterica serovar Typhimurium,
Bijlsma and Groisman [112] reported that the binding of PmrD protein
to phosphorylated PmrA prevents dephosphorylation, activating PmrA-
regulated genes. Johnson et al. [111] reported that, in Salmonella
typhimurium, cation chelating properties of extracellular DNA activate
PhoPQ/PmrAB regulatory systems and, consequently, the antimicrobial
peptide resistance (for an extensive study of Salmonella PmrAB reg-
ulation, see Gunn [113]). In Murray's work [114], a msbB Salmonella
expressing PmrA(Con) protein confers polymyxin resistance by lipid A
modification with phosphoethanolamine. Navarre et al. [115] reported
an unusual linkage between PhoPQ and SlyA regulatory systems of
S. typhimurium. The expressionof pagC andmig-14, genes required for vir-
ulence and antimicrobial peptide resistance, known to be controlled by
PhoP/PhoQ, appeared also regulated by SlyA.

However, P. aeruginosa promotes LPSmodification independently of
the PmrAB or PhoPQ system [116]. Since its PhoQ protein lacks the
AMP-binding domain and depends on divalent cation-limitation,
P. aeruginosa mediated regulation of the arnBCADTEF (pmrHFIJKLM)
LPS modification operon to become resistant to antimicrobial peptides
[117]. Kawasaki et al. [118] observed that a strain of S. enterica lacked
the conventional lipid A modifications, and the deacylation of lipid A
by PagL promoted bacterial resistance to polymyxin B. Although PagL
expression is also under the control of the PhoP–PhoQ two-component
regulatory system, the deacylation of lipid A is not usual in vivo due to
PagL latency. PagL needs to be released from latency to compensate for
the loss of resistance to polymyxin B. Additionally, Reinés et al. [119]
reported the temperature-dependence of Yersinia enterocolitica re-
sistance to antimicrobial peptides, governed by PhoPQ and PmrAB
two-component systems. They demonstrated the down-regulation
of lipid A modifications with aminoarabinose and palmitate at
37 °C when compared to 22 °C (room temperature).

Recently, Hankins et al. [120] characterized for the first time another
lipid A modification, lipid A glycylation, and associated it with poly-
myxin resistance of El Tor Vibrio cholerae. The proteins encoded by the
almEFG operon, responsible for glycine addition, remain from the
Gram-positive system required for D-alanylation of teichoic acids. In
their next work, the same research group reported the detailed mecha-
nism of how aminoacyl esterification occurs in the glycine or diglycine
for lipid A in V. cholerae [89]. Their model infers that AlmE starts the
process, activating glycine by adenylation. Then AmlE transfers it to
the 4′-phosphopantetheine group of the aminoacyl carrier protein
AlmF, which becomes active. AlmG transfers the glycine substrate
from the AlmF to the hydroxylauryl chain of lipid A.

However, a single bacterial species may resort to many resistance
mechanisms at the same time. This is what happenswithNeisseria men-
ingitides [121] and P. aeruginosa [64]. The data obtained by Tzeng and
co-workers [121] indicate that meningococci use multiple mechanisms
to modulate levels of cationic antimicrobial peptide resistance, includ-
ing the MtrC–MtrD–MtrE efflux pump, lipid A modification and the
type IV pilin secretion system. Skiada et al. [64] reviewed the adap-
tive resistance to cationic compounds in P. aeruginosa. In the pres-
ence of aminoglycosides, the MexXY-OprM efflux pump mediated
P. aeruginosa resistance; while the ParR–ParS two-component sys-
tem regulated the resistance induced by cationic peptides through
incorporation of 4-aminoarabinose in lipid A.

4.3. Other cell wall modifications

Cell wall thickening is a common feature of S. aureus resistance to sev-
eral classic antibiotics such as erythromycin [122], vancomycin [123,124]
and acriflavine [125], but just recently it was observed in antibiotic resis-
tance to peptides [126]. Indeed, Cui et al. [127] correlated the reduced
daptomycin susceptibility with vancomycin resistance in vancomycin-
intermediate S. aureus (VISA), relating both to cell wall thickening. How-
ever, Yang et al. [128] reported the evidence of multiple resistancemech-
anisms to daptomycin in S. aureus, including cell wall thickening. Kramer
et al. [129] concluded that nisin tolerance ofMicrococcusflavus and Listeria
monocytogenes previously exposed to antibiotic pressure results from
changes in cell wall thickness and cell wall charge. In a comparative pro-
teomic analysis of magainin II resistant and susceptible E. coli strains,
Maria-Neto and co-workers [10] suggested that cell wall thickness is
one of themultiple defensemechanisms used by E. coli against antimicro-
bial peptides. The authors found the glutamine synthetase up-regulated,
exerting a direct influence on the synthesis of the cell wall peptidoglycan
layer.

Recently, Taneja et al. [130] reported the association of D-alanine in-
corporation and resistance to AMPs in Bordetella pertussis, a Gram-
negative bacterium. The B. pertussis dra locus shows high homology
with the dlt operons that decrease the negative charge of teichoic
acids in Gram-positive bacteria (previously described). The dra operon
inactivation resulted in enhanced sensitivity of B. pertussis to structural-
ly different antimicrobial peptides, such as the human neutrophil
peptides, HNP-1 and HNP-2 (β-sheet structure and disulfide bridges);



Fig. 3. AMP resistance from lipid A modification. (A) Schematic representation of the cell envelope of a Gram-negative bacterium before (left) and after reduction of cell surface negative net
charge (right). Substituents on lipid A incorporate positive charges into LPS and promote electrostatic repulsion of antimicrobial peptides. (B) Major lipid A modifications and substituents:
L-Ara4N (4-aminoarabinose), pEtN (phosphoethanolamine), glycylation (incorporation of glycine), acylation (incorporation of palmitate), deacylation (removal of long-chain fatty-acyl).
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LL-37 (α-helical); polymyxin B (cyclic and amphipathic); and hSPLUNC1,
similar to a BPI (bactericidal/permeability increasing) protein (helixes
and a β sheet mixer structure [131]). The authors suggested dra
involvement in the incorporation of D-alanine into an outer membrane
component and subsequent surface modification. Further studies are
needed tomore comprehensively understand the role of dra in antimicro-
bial peptide resistance.

5. Subverting cellular metabolism

The exposure to antimicrobial peptides results in the cellular stress
often noted in cell metabolism. Bacteria avoid the imminent threat of
death by regulating the expression of several pathways, such as prote-
ases, modification of surface structures, biofilm formation and suppres-
sion of vulnerable features [132].

Recent research reported by Rodrígues-Rojas and co-workers [12]
showed that AMPs targeting the cell wall do not stimulate the bacterial
mutation rates or promote the stress-pathway induction, as occurswith
classic antibiotics. The authors treated E. coli for four continuous hours
with the cAMPs cecropin A, melittin, magainin II, pexiganan, and LL-
37, at 50% of minimal inhibitory concentration. None of these AMPs
showed changes in mutation rate when compared to the control, while
the antibiotics ampicillin, ciprofloxacin and kanamycin increased it
three or four times. Similarly, AMP treatments did not result in differential
expression of genes related to stress-induced mutagenesis. These data
suggest that bacterial adaptation and resistance development to AMPs is
not a result of by accelerated mutation rate.

On the other hand, proteolytic cleavage of antimicrobial peptides has
been referred to as an inherentmechanismof bacterial resistance and vir-
ulence in several common pathogenic bacteria [133]. Sieprawska-Lupa
et al. [134] and Jusko et al. [135] directly correlated the level of secreted
endogenous extracellular proteases to the level of bacterial susceptibility
to antimicrobial peptides. In Sieprawska-Lupa'swork [134], S. aureuswith
larger amounts of the metalloprotease aureolysin degraded cathelicidin
LL-37, contributing to the natural resistance of this pathogen. Aureolysin
inactivates LL-37 bactericidal activity by cleaving C-terminal peptide
bonds. Similarly, a metalloprotease of Tannerella forsythia, karilysin,
also cleaved the antimicrobial peptide LL-37, significantly reducing its
bactericidal activity [136]. Karilysin high-expressing T. forsythia strains
were more resistant than low-expressing strains [135]. Similarly, the
extracellular metalloprotease ZapA of Proteus mirabilis cleaves human
β-defensin 1 (hBD1) into six short peptides and LL-37 into at least
nine, reducing their antimicrobial activity [137].

Proteolytic cleavage of nisin represents a novel mechanism for anti-
microbial resistance in strains of non-nisin-producing Lactococcus lactis
[138] and of nisin-controlled gene expression systems (NICE) [139]. The
protein encoded by the nisin resistance gene (nsr) inactivated nisin
in vitro by removing six amino acids from the carboxyl terminal of
nisin [138]. A recent study indicates that cytosolic peptidases also
might cause resistance to antimicrobial peptides active in the bacterial
cytosol [140]. The authors observed that the overexpression of the
serine peptidase oligopeptidase B in E. coli reduces the susceptibility of
bacterial cells to proline-rich antimicrobial peptides up to 30 residues
in length, such as bovine peptides Bac5 and Bac7, and porcine peptide
PR-39.

In Streptococcus pyogenes, the proteolytic inactivation of LL-37 by
the cysteine protease SpeB was reported both in vitro [141] and
in vivo, in patients with several streptococcal infections [142]. The SpeB-
mediated inactivation of LL-37 occurs through the α2-macroglobulin-
protease complexes at the streptococcal surface. S. pyogenes expresses
surface-attached GRAB (G-related α2-macroglobulin-binding) protein,
which binds to the protease inhibitor α2-macroglobulin. Next, the
GRAB-α2-macroglobulin complex traps Speb, which is retained at the
bacterial surface. Speb remains proteolytically active and readily cleaves
small peptides that have penetrated the complex, such as LL-37 [143],
leading to the bacterial resistance mechanism.
Schmidtchen et al. [144] reported that P. aeruginosa, Enterococcus
faecalis and S. pyogenes use a common mechanism to modulate and
evade α-defensin action. Extracellular proteinases secreted by these
strains degrade dermatan sulfate-containing proteoglycans, subse-
quently releasing free dermatan sulfate into the environment. Then,
the released compound binds to neutrophil-derived α-defensin and
completely neutralizes its bactericidal activity. Another extracellular
trap contributes to Group A Streptococcus resistance to cathelicidin
[145]. M1 protein on the Streptococcus surfacemightmediate resistance
to LL-37 through its entrapment and inactivation into the fimbrial-like
extension of M1 protein before the cathelicidin reaches its cell mem-
brane target of action. Similarly, a pilus protein of Group B Streptococcus
seems to capture cathelicidin antimicrobial peptides [146]. In this work,
Maisey and co-workers studied the heterologous expression of PilB, a
protein subunit forming the Gram-positive pilus backbone, in L. lactis.
They suggested the association of cathelicidin with the cell wall-
anchored PilB, which may capture or trap the peptide.

The development process of biofilm formation is an important
mechanism of resistance to antimicrobial compounds and environmen-
tal stresses [147]. In biofilm formation, the autonomous bacterial cells
are encased in an extracellular matrix, consolidating a multicellular
surface-association. The biofilm matrix produces an extracellular poly-
meric substance (EPS) where the cells are embedded. EPS has a charac-
teristic structure and is mainly composed of amyloid and adhesive
fimbriae, non-fimbrial large surface proteins, exopolysaccharides, and
extracellular DNA [148]. Biofilm-formation bacteria resist the majority
of conventional antibiotics [149], but do not resist several antimicrobial
peptides that act as antibiofilm agents [150,151]. However, Mulcahy
and co-workers [152] reported that extracellular DNA of P. aeruginosa
biofilm induces resistance to polymyxin B and colistin. Extracellular
DNA chelates cations from the environment, and P. aeruginosa under-
stands this as a signal to induce LPS modification genes and resistance
to antimicrobials. Kai-Larsen et al. [151] reported another biofilm struc-
ture involved in antimicrobial peptide resistance, a curli fimbriae. They
suggested the LL-37 resistance of a curliated E. coli resulted from a
curli–LL-37 interaction. At the same time that LL-37 inhibits curli forma-
tion by preventing the polymerization of the major curli subunit, CsgA,
curli traps LL-37, blocking its action on bacterial biofilm.

6. Outlook and conclusive remarks

As previously described, bacterial resistance is a complex problem
that needs to be solved or at least reduced. In order to successfully con-
trol resistant bacterial infections, wemust adoptmultiple strategies that
include the discovery of novel antibiotic compounds or the extension of
the lifespan of our current repertoire of antibiotics. There are several
strategies to do this that include a restriction on the quantity of antibiotics
in agriculture; a reduction in the number of antibiotics that are prescribed
for virus diseases such as influenza; better education in the community so
that patients are aware that they must finish their whole antibiotic pre-
scription; and the use of antibiotic adjuvants [153].

Nevertheless, for efficient drug development, it is essential to gain a
complete understanding of bacterial resistance at the different develop-
mental stages in an infection. One pitfall is that each antibiotic has a dis-
tinct expression profile, which clearly makes it difficult to identify
proteins, carbohydrates and lipids involved in the resistance process.
At this point it is tremendously difficult to select a single technique
that could solve the bacterial resistance enigma. In fact, all techniques
present their positive points and their drawbacks. For example, proteo-
mics has been extremely important for protein panorama visualization,
but does not show the coverage of transcriptomics and genomics tech-
niques [154].

Indeed, the two latter techniques do not elucidate what is really oc-
curring in the bacterial cell, since nothing guarantees that the tran-
scripts produced will effectively be transformed into real proteins.
Given this, the union of several techniques and a multi-task team are
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necessary to make a real contribution in this field. No less important or
urgent is the development of new methods to detect resistance in real
time. Despite the speed of MALDI ToF and other techniques described
here, we will need portable and inexpensive equipment that can
be used in any part of the world [155]. Such technology, which also
needs to be easy to handle, will open possibilities for rapid detection
of resistant pathogens and pave the way to more accurate antibiotic
prescriptions.

In summary, despite clear efforts by the scientific community,we are
just starting to comprehend bacterial resistance, andmany great strides
aremade daily, withmore needed. The battle against resistantmicrobes
is just beginning, and further studies will be vital to control lethal path-
ogens and decrease the harm produced.
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