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a b s t r a c t

The Kantorovich–Rubinstein theorem provides a formula for
the Wasserstein metric W1 on the space of regular probability
Borel measures on a compact metric space. Dudley and de
Acosta generalized the theorem to measures on separable metric
spaces. Kellerer, using his own work on Monge–Kantorovich
duality, obtained a rapid proof for Radon measures on an
arbitrary metric space. The object of the present expository
article is to give an account of Kellerer’s generalization of the
Kantorovich–Rubinstein theorem, together with relatedmatters. It
transpires that a more elementary version of Monge–Kantorovich
duality than that used by Kellerer suffices for present purposes.
The fundamental relations that provide two characterizations of
the Wasserstein metric are obtained directly, without the need
for prior demonstration of density or duality theorems. The latter
are proved, however, and used in the characterization of optimal
measures and functions for the Kantorovich–Rubinstein linear
programme. A formula of Dobrushin is proved.

© 2011 Elsevier GmbH. All rights reserved.

1. Introduction

The present paper is an exposition of the elements of Kantorovich–Rubinstein theory. Little
originality can be claimed for the proofs offered here, but our treatment is in several respects simpler
and more direct than that in a number of standard accounts.

The theory has evolved from the original Kantorovich–Rubinstein theorem concerning optimal
transport (see [12,11]). Let (X, d) be a metric space, let B(X) denote the set of all Borel subsets of
X , and suppose that µ, ν are regular probability Borel measures on X . We denote by P (µ, ν) the set
of regular probability Borel measures π on the topological product X × X such that

µ(E) = π(E × X) and ν(E) = π(X × E) for all E ∈ B(X). (1.1)
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For f : X → R, we define the expression ‖f ‖L by the equation

‖f ‖L = sup{|f (x)− f (y)|/d(x, y) : x, y ∈ X; x ≠ y}. (1.2)

Then the Kantorovich–Rubinstein theorem of [12,11] states that, if the space (X, d) is compact, we
have

inf
π∈P (µ,ν)

∫
X×X

d(x, y)π(dxdy) = sup
∫

X
f dµ−

∫
X
f dν : ‖f ‖L ≤ 1


. (1.3)

Dudley [6], in work completed by de Acosta [1], generalized this theorem to separable metric spaces
(see also [7]) and, in that setting, showed that the infimum is attained if the measures µ, ν are
tight. In a slightly different direction, Kellerer [14, Theorem 1] generalized the theorem to Radon
measures on an arbitrary metric space as follows (but see also Section 9). Let Pd(X) denote the set
of probability Radon measures on a metric space (X, d) such that, for some and hence all x0 ∈ X , we
have


X d(x, x0)µ(dx) < ∞, and letΠ(µ, ν) be the set of all probability Radon measures π on X × X

satisfying the condition (1.1). Then Kellerer’s result [14, Theorem 1], slightly modified, tells us that
for an arbitrary metric space (X, d) Eq. (1.3) remains true if µ, ν ∈ Pd(X) and P (µ, ν) is replaced by
Π(µ, ν). Moreover, the infimum is attained.

Whereas Dudley and de Acosta [6,1,7] make use ofMonge–Kantorovich duality for compactmetric
spaces, Kellerer [14] invokes a stronger version of Monge–Kantorovich duality, valid for arbitrary
topological spaces. This allows Kellerer to abridge the Dudley–de Acosta argument to obtain a very
direct proof of his theorem that obviates the need for an elaborate approximation from the casewhere
the underlying space is compact. Note, however, that the Monge–Kantorovich duality theorem used
by Dudley and de Acosta is much simpler to prove than the more general version used by Kellerer
(in effect [13, Theorem 2.6]). In the present article, we show that it suffices for Kellerer’s argument to
invoke instead an elementary formulation of Monge–Kantorovich duality that has a relatively simple
proof (see [8, Theorem 4.1]).

The paper is organized as follows. We work with measures on a non-empty metric space
(X, d). After establishing our notation and giving various definitions in Section 2, we summarize in
Section 3 what we shall need concerning Monge–Kantorovich duality. Then in Section 4, by means of
arguments taken from [6,1,7,14], we prove the generalization of the Kantorovich–Rubinstein theorem
to Radon measures on arbitrary metric spaces. As a consequence, we see at once that the expression
W (µ, ν) defined below by Eq. (2.2) is a metric for Pd(X). We treat also the Kantorovich–Rubinstein
transshipment problem, in which the above condition (1.1) is replaced by the requirement that

π(E × X)− π(X × E) = µ(E)− ν(E) for all E ∈ B(X). (1.4)

An advantage of using Kellerer’s improvement of the Dudley–de Acosta approach is that the results
of Section 4 are obtained rapidly, without the need for a prior demonstration of density or duality
theorems of the type we prove later in Sections 6 and 7 (compare [1,6,7,11,12,15,16]). In Section 5,
we digress to show that in a metric space the formula (5.3) of Dobrushin [5] can be deduced from
Lemma 4.2. The main theorem of Section 6 shows that the probability measures on X having finite
support are dense in Pd(X)with respect to the metricW . This leads to the representation in Section 7
of Lip(X, d) modulo the constant functions as the Banach dual of a certain normed vector space
of measures, a fact which allows us finally, in Section 8, to characterize the optimal measures and
functions of Kantorovich–Rubinstein theory. In Section 9, we add a few concluding remarks.

In Sections 2–8, we confine attention to Radon measures, for the theory of which see, for
instance, [2–4,10]. This is not a restriction if the metric space (X, d) is complete and separable since,
by Ulam’s theorem (see, for example, [7, Theorem 7.1.4]), every finite Borel measure on X is then a
Radon measure.

2. Definitions and notation

In what follows, (X, d) will always be a non-empty metric space. We shall denote by M(X) the
space of real Radon measures on X and by M+(X) the set of non-negative measures belonging to
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M(X). We denote by M+

d (X) the set of all µ ∈ M+(X) such that for some, and hence all, x0 ∈ X , we
have ∫

X
d(x, x0)µ(dx) < ∞,

and byMd(X) the set of allµ ∈ M(X) such that |µ| ∈ M+

d (X). (Thus we havePd(X) = {µ ∈ M+

d (X) :

µ(X) = 1}.) Finally, we denote by M0(X) the set of allm ∈ M(X) such thatm(X) = 0, and by M0
d(X)

the set M0(X) ∩ Md(X).
In what follows, we shall frequently use the functional notation for integrals. For example, if

µ ∈ M+(X) and f ∈ L1(X, µ), then µ(f ) is shorthand for

X f (x)µ(dx).

Given f : X → R, we have defined ‖f ‖L by the Eq. (1.2), we define Lip(X, d), the space of Lipschitz
functions on X , as the set of all f such that ‖f ‖L < ∞, and we denote by Lip1(X, d) the set of f such
that ‖f ‖L ≤ 1. Note that ‖ · ‖L is a seminorm on Lip(X, d) and that ‖f ‖L = 0 if and only if f is constant.
It is obvious that Lip(X, d) is a vector subspace of RX ; it is in fact a vector sublattice, as one sees by
noting that | |f (x)| − |f (y)| | ≤ |f (x) − f (y)|. If l ∈ Lip1(X, d) and ρ ∈ M+

d (X) then l ∈ L1(X, ρ). To
see this, let x0 ∈ X and observe that

l(x0)− d(x, x0) ≤ l(x) ≤ l(x0)+ d(x, x0). (2.1)

The product space Z = X × X is metrizable, and we take its metric to be given by

δ(z, z ′) = d(x, x′)+ d(y, y′),

where x, x′, y, y′
∈ X and z = (x, y), z ′

= (x′, y′). The phrase ‘uniformly continuous on Z ’ will always
mean ‘uniformly continuous with respect to δ’. Note that d is uniformly continuous on Z , because

|d(x, y)− d(x′, y′)| ≤ d(x, x′)+ d(y, y′).

Given functions f , g : X → [−∞,∞), we shall denote by f ⊕ g the function on Z defined by the
equation (f ⊕g)(x, y) = f (x)+g(y). For example, if l is a real function onX , thenwehave l ∈ Lip1(X, d)
if and only if l ⊕ (−l) ≤ d.

We define projections p1, p2 : Z → X by writing p1(x, y) = x and p2(x, y) = y. The associated
maps of measures M+(Z) → M+(X) will also be denoted by p1 and p2 (see, for example, [2,
Proposition 1.15] or [3, Theorem 9.1.1]). Thus, when π ∈ M+(Z) the measures µ = p1(π) and
ν = p2(π) satisfy the condition (1.1).

Conversely, given µ, ν ∈ M+(X) such that µ(X) = ν(X), we write

Π(µ, ν) = {π ∈ M+(Z) : p1(π) = µ, p2(π) = ν}.

Then Π(µ, ν) ≠ ∅, trivially if µ(X) = 0, and because µ ⊗ ν/µ(X) ∈ Π(µ, ν) if µ(X) > 0.
If f , g are real Borel functions in L1(X, µ) and L1(X, ν) respectively and π ∈ Π(µ, ν), we have
f ⊕ g ∈ L1(Z, π) and

π(f ⊕ g) = µ(f )+ ν(g).

Now assume, in addition, thatµ, ν ∈ M+

d (X). Then d ∈ L1(Z, π). For let x0 ∈ X . The inequalities 0 ≤

d(x, y) ≤ d(x, x0) + d(x0, y) can be written as 0 ≤ d ≤ a ⊕ b, where a(x) = d(x, x0) and
b(y) = d(x0, y). But a, b are continuous, hence Borel, and a ∈ L1(X, µ), b ∈ L1(X, ν). Hence a ⊕ b ∈

L1(Z, π) and therefore d ∈ L1(Z, π). The setΠ(µ, ν) is a σ(M(Z), Cb(Z))-compact subset ofM+(Z)
(see [8, Theorem 2.3]). The map Π(µ, ν) ∋ π → π(d) is lower semicontinuous because π(d) =

limn→∞ π(dn), where dn = min(d, n). Hence π → π(d) attains its infimum on Π(µ, ν). The
Wasserstein metric W1(µ, ν) for Pd(X), which we shall denote simply by W (µ, ν), is defined by the
equation

W (µ, ν) = min{π(d) : π ∈ Π(µ, ν)}. (2.2)

Clearly 0 ≤ W (µ, ν) < ∞; we shall see below thatW is indeed a metric for Pd(X).
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Form ∈ M0
d(X)we let

Γ (m) = {γ ∈ M+(Z) : p1(γ ), p2(γ ) ∈ M+

d (X); p1(γ )− p2(γ ) = m}

and we define theWasserstein functional ‖m‖W ofm by the equation

‖m‖W = inf{γ (d) : γ ∈ Γ (m)};

note that Γ (m) ⊇ Π(m+,m−) ≠ ∅, wherem = m+
−m− is the Jordan decomposition ofm, and that

0 ≤ ‖m‖W < ∞. Finally, form ∈ M0
d(X), we write

‖m‖
∗

L = sup{m(l) : l ∈ Lip1(X, d)}. (2.3)

3. Monge–Kantorovich duality

We recall here a result from [8] that will be used below. Let U, V be non-empty completely regular
spaces, let µ and ν be bounded non-negative Radon measures on U and V respectively such that
µ(U) = ν(V ), and let T be the topological product U × V . Let Λ(µ, ν) denote the set of all bounded
non-negative Radonmeasuresλ on T such thatµ(E) = λ(E×V ) and ν(F) = λ(U×F) for all E ∈ B(U)
and F ∈ B(V ). For each lower semicontinuous function c : T → [0,∞] let Θ(c) denote the set of
pairs (u, v) of Borel functions u : U → [−∞,∞) and v : V → [−∞,∞) such that u ∈ L1(µ) and
v ∈ L1(ν) and which satisfy

(u ⊕ v)(x, y) ≡ u(x)+ v(y) ≤ c(x, y) for all (x, y) ∈ T .

Theorem 3.1. Let c : T → [0,∞] be a lower semicontinuous function. Then we have

min
λ∈Λ(µ,ν)

λ(c) = sup{µ(u)+ ν(v) : (u, v) ∈ Θ(c)}. (3.1)

(Here, the case in which both terms are +∞ is not excluded, but this will not occur in the application we
make of this result below.)

For this, see [8, Theorem 4.1]. (As already remarked, Kellerer’s Theorem 2.6 in [13] is stronger, but has
a much more difficult proof.)

Given a topological space S, we shall denote by B∞(S) the set of all bounded real Borel functions
on S.

Corollary 3.2. Let c : T → [0,∞] be a lower semicontinuous function. Then

min
λ∈Λ(µ,ν)

λ(c) = sup{µ(u)+ ν(v) : u ∈ B∞(U), v ∈ B∞(V ); u ⊕ v ≤ c}. (3.2)

Proof. The following proof is due to Kellerer [14]. By Theorem 3.1 and the monotone convergence
theorem we have

min
λ∈Λ(µ,ν)

λ(c) = sup{µ(u ∧ n)+ ν(v ∧ n) : (u, v) ∈ Θ(c); n ∈ N}.

Hence, we can add to the right-hand side of Eq. (3.1) the requirement that the functions u, v are
to be bounded above. But if u, v ≤ n and u ⊕ v ≤ c then u ≤ u ∨ (−n), v ≤ v ∨ (−n), and
(u∨ (−n))⊕ (v ∨ (−n)) ≤ c . It follows that, in Eq. (3.1), we can also stipulate that the functions u, v
are to be bounded below. Hence we have Eq. (3.2). �

4. The Kantorovich–Rubinstein theorem

Here is Kellerer’s extension of the Kantorovich–Rubinstein theorem to Radon measures on an
arbitrary metric space.

Theorem 4.1. Let (X, d) be a metric space, let µ, ν ∈ M+

d (X), and suppose that µ(X) = ν(X). Then

W (µ, ν) = ‖µ− ν‖∗

L . (4.1)
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For comments on the proof which follows, see Section 1. First, note that we have, by Theorem 3.1 and
Corollary 3.2,

W (µ, ν) = sup{µ(f )+ ν(g) : f , g ∈ B∞(X) : f ⊕ g ≤ d} (4.2)
= sup{µ(f )+ ν(g) : (f , g) ∈ Θ(d)}. (4.3)

For µ, ν ∈ M+

d (X)with µ(X) = ν(X) let

R(µ, ν) = sup{µ(l)− ν(l) : l ∈ Cb(X), l ⊕ (−l) ≤ d}.

Lemma 4.2. Let µ, ν ∈ M+

d (X) and suppose that µ(X) = ν(X). Then

R(µ, ν) = W (µ, ν). (4.4)

Proof. By Corollary 3.2,

R(µ, ν) = sup{µ(l)− ν(l) : l ∈ Cb(X), l ⊕ (−l) ≤ d}
≤ sup{µ(f )+ ν(g) : f , g ∈ B∞(X) : f ⊕ g ≤ d} = W (µ, ν).

Now, suppose that ϵ > 0. Then there exist f , g ∈ B∞(X)with f ⊕ g ≤ d such that

W (µ, ν)− ϵ < µ(f )+ ν(g).

We nowmake use of a standard construction, as follows. For x ∈ X let

k(x) = inf
y∈X
(d(x, y)− g(y)).

Then k(x) ∈ R and

k(x)− k(x′) = inf
y∈X

sup
y′∈X

(d(x, y)− d(x′, y′)− g(y)+ g(y′))

≤ sup
y′∈X

(d(x, y′)− d(x′, y′)) ≤ d(x, x′).

Hence k ∈ Lip1(X, d). Moreover

f (x) ≤ k(x) ≤ d(x, x)− g(x) = −g(x),

and hence k is bounded, and f ⊕ g ≤ k ⊕ (−k). So, for π ∈ Π(µ, ν), we have

W (µ, ν)− ϵ < µ(f )+ ν(g) = π(f ⊕ g) ≤ π(k ⊕ (−k))
= µ(k)− ν(k) ≤ R(µ, ν) ≤ W (µ, ν).

This completes the proof. �

Proof of Theorem 4.1. If l ∈ Lip1(X, d) then (l,−l) ∈ Θ(d) (see (2.1)). Hence, by Lemma 4.2, we have

W (µ, ν) = sup{µ(l)− ν(l) : l ∈ Cb(X), ‖l‖L ≤ 1}
≤ sup{µ(l)− ν(l) : l ∈ Lip1(X, d)}
≤ sup{µ(f )+ ν(g) : (f , g) ∈ Θ(d)} = W (µ, ν).

By definition (2.3), this completes the proof. �

In the article [1] of de Acosta the results corresponding to Theorem 4.4 have a long and somewhat
intricate proof. Theorem 4.1 allows us to make short work of this.

Lemma 4.3. The map m → ‖m‖
∗

L is a seminorm for the vector space M0
d(X).

Proof. Let m ∈ M0
d(X). By Theorem 4.1 we have ‖m‖

∗

L = W (m+,m−) and hence 0 ≤ ‖m‖
∗

L < ∞.
Next, −l ∈ Lip1(X, d) if and only if l ∈ Lip1(X, d), and hence ‖ − m‖

∗

L = ‖m‖
∗

L . More generally, we
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have ‖αm‖
∗

L = |α|‖m‖
∗

L for each real constant α. This is obvious if α ≥ 0, and for α < 0, we have

‖αm‖
∗

L = ‖(−α)(−m)‖∗

L = (−α)‖ − m‖
∗

L = |α|‖m‖
∗

L .

Finally, it is almost obvious that ‖ · ‖
∗

L is subadditive. �

For each r > 0 let M+

d (X)r denote the set of µ ∈ M+

d (X) such that µ(X) = r .

Theorem 4.4. For each r > 0 the map

M+

d (X)r × M+

d (X)r ∋ (µ, ν) → W (µ, ν)

is a metric for M+

d (X)r . Consequently the functional ‖·‖
∗

L is a norm for the vector spaceM0
d(X). Moreover,

if µ, ν, λ ∈ M+

d (X) with µ(X) = ν(X), then

W (µ+ λ, ν + λ) = W (µ, ν). (4.5)

Proof. The fact that 0 ≤ W (λ, µ) = W (µ, λ) ≤ W (µ, ν)+W (ν, λ) is evident from Eq. (4.1) and the
preceding lemma.

Now, suppose that µ, ν ∈ M+

d (X)r with µ(X) = ν(X) and W (µ, ν) = 0. Let F be a closed
non-empty subset of X and let f (x) = d(x, F). Then f ∈ Lip1(X, d). Let fn(x) = nf (x) ∧ 1. Then
n−1fn ∈ Lip1(x, d) and hence, by Theorem 4.1, µ(fn) = ν(fn) for all n. But fn ↑ 1G as n → ∞,
where G = {F . Hence µ(G) = ν(G). Thus µ and ν agree on open sets and hence µ = ν. Thus
(µ, ν) → W (µ, ν) is a metric for M+

d (X)r .
To prove that ‖ · ‖

∗

L is a norm it will suffice, by Lemma 4.3, to show that if m ∈ M0
d(X) with

‖m‖
∗

L = 0 then m = 0. But the condition ‖m‖
∗

L = 0 is equivalent to saying that W (m+,m−) = 0,
whence m+

= m− and so m = 0.
Finally, Eq. (4.5) is now an immediate consequence of Theorem 4.1. �

Turning to the transshipment problem, we obtain another expression for W (µ, ν), which will be
important in Sections 6–8.

Theorem 4.5. Let (X, d) be a metric space, let µ, ν ∈ M+

d (X), and suppose that µ(X) = ν(X). Then

W (µ, ν) = ‖µ− ν‖W . (4.6)

Consequently ‖m‖W = ‖m‖
∗

L for all m in the vector space M0
d(X), and hence ‖ · ‖W is a norm for M0

d(X).

Proof. Our preceding results allow us to follow without further preliminaries the very last part of
Appendix B in [1]. SinceΠ(µ, ν) ⊆ Γ (µ− ν), we have

‖µ− ν‖W ≤ W (µ, ν).

Now, suppose ϵ > 0 and choose γ ∈ Γ (µ− ν) such that

γ (d) < ‖µ− ν‖W + ϵ.

Letm = µ− ν, γ1 = p1(γ ), and γ2 = p2(γ ). Then

γ1 − γ2 = µ− ν = m+
− m−.

So there exist measures σ , τ ∈ M+

d (X) such that

µ = m+
+ σ , ν = m−

+ σ , γ1 = m+
+ τ , γ2 = m−

+ τ .

NowW (γ1, γ2) = minπ∈Π(γ1,γ2) π(d) ≤ γ (d), and so, by Theorem 4.4,

W (µ, ν) = W (m+,m−) = W (γ1, γ2) ≤ γ (d) < ‖µ− ν‖W + ϵ,

henceW (µ, ν) ≤ ‖µ− ν‖W , so in fact we have equality here.
By Theorems 4.1 and 4.4, the final assertion is now clear. �
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5. The indicator metric

The indicator metric j for X is defined as follows.

j(x, y) =


0 if x = y,
1 if x ≠ y.

It is a bounded lower semicontinuous function on Z . The set Lip1(X, j) contains an abundance of
non-measurable functions (I owe this observation to Gordon Blower). To see this, note that Lip1(X, j)
consists of all functions l : X → R such that osc l ≤ 1, where

osc l = sup l − inf l.

Now, let jn(x, y) = min(nd(x, y), 1) for x, y ∈ X and n ≥ 1. Then each jn is a bounded metric for
X, jn ≤ jn+1 for all n, and jn(x, y) → j(x, y) as n → ∞. Moreover, each metric jn is topologically
equivalent to d.

Now let d be a bounded metric for X that is topologically equivalent to d. Note that M+
d (X) =

M+(X). Suppose we are given two measures µ, ν ∈ M+(X) such that µ(X) = ν(X). The setΠ(µ, ν)
remains unchanged if we replace the metric d by d. So, if we define q(d) by the equation

q(d) = sup{µ(l)− ν(l) : l ∈ Cb(X) ∩ Lip1(X, d)},

then, by Lemma 4.2, we have minπ∈Π(µ,ν) π(d) = q(d). In particular,

min
π∈Π(µ,ν)

π(jn) = q(jn)

for all n. Next, Lip1(X, jn) ⊆ Lip1(X, j), and hence q(jn) ≤ q(j), where

q(j) = sup{µ(l)− ν(l) : l ∈ Cb(X) ∩ Lip1(X, j)}.

Noting also that for l ∈ Cb(X)∩Lip1(X, j), we have l⊕ (−l) ≤ j and henceµ(l)−ν(l) = π(l⊕ (−l)) ≤

π(j), we see that

min
π∈Π(µ,ν)

π(jn) = q(jn) ≤ q(j) ≤ min
π∈Π(µ,ν)

π(j). (5.1)

Lemma 5.1. Let Ω be a compact Hausdorff space and let (un) be an increasing sequence in C(Ω) with
pointwise limit u : Ω → (−∞,∞]. Then

lim
n→∞

min
ω∈Ω

un(ω) = sup
n

min
ω∈Ω

un(ω) = min
ω∈Ω

u(ω).

Proof. This is a close relative of Dini’s theorem. For a proof see, for example, [8, Lemma 4.2]. �

Now, for h ∈ Cb(Z) and π ∈ Π(µ, ν) write ĥ(π) = π(h). Then ĥ : Π(µ, ν) → R is continuous with
respect to the σ(M(Z), Cb(Z))-topology, and we recalled in Section 2 that the latter makes Π(µ, ν)
a compact Hausdorff space. By the monotone convergence theorem limn→∞ ĵn(π) = ĵ(π). Hence, by
Lemma 5.1,

min
π∈Π(µ,ν)

π(jn) = min
π∈Π(µ,ν)

ĵn(π) → min
π∈Π(µ,ν)

ĵ(π) = min
π∈Π(µ,ν)

π(j)

as n → ∞. Applying this to the inequalities (5.1), we deduce that

min
π∈Π(µ,ν)

π(j) = q(j). (5.2)

Now let D(µ, ν) be defined by

D(µ, ν) = min
π∈Π(µ,ν)

π(j) = min
π∈Π(µ,ν)

π(Z \∆),

where∆ denotes the diagonal in Z = X × X . By Eq. (5.2), we have the following result.

Theorem 5.2. Let µ, ν ∈ M+(X) with µ(X) = ν(X) Then

D(µ, ν) = sup{µ(l)− ν(l) : l ∈ Cb(X); 0 ≤ l ≤ 1}.
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This leads to the formula of Dobrushin [5]:

Corollary 5.3. Under the same conditions, we have

D(µ, ν) = sup{µ(E)− ν(E) : E ∈ B(X)}. (5.3)

Proof. By Theorem 5.2,

sup{µ(φ)− ν(φ) : φ ∈ B∞(X); 0 ≤ φ ≤ 1} ≥ D(µ, ν).

On the other hand,whenφ ∈ B∞(X)with 0 ≤ φ ≤ 1,we haveφ⊕(−φ) ≤ j, and so, forπ ∈ Π(µ, ν),
we have

µ(φ)− ν(φ) = π(φ ⊕ (−φ)) ≤ π(j)

and therefore

sup{µ(φ)− ν(φ) : φ ∈ B∞(X); 0 ≤ φ ≤ 1} ≤ D(µ, ν).

So we must, in fact, have equality here. Now let X = X+ ∪ X− be a Hahn decomposition of X for the
measurem = µ− ν and let

ψ(x) =


1 if x ∈ X+,
0 if x ∈ X−.

Then ψ ∈ B∞(X), 0 ≤ ψ ≤ 1, and it is evident that

m(ψ) = sup{m(φ) : φ ∈ B∞(X); 0 ≤ φ ≤ 1} = D(µ, ν).

On the other hand,

m(ψ) = m(X+) = m+(X) = sup{m(E) : E ∈ B(X)}
= sup{µ(E)− ν(E) : E ∈ B(X)}.

This completes the proof of Dobrushin’s formula (5.3). �

This is not the shortest proof of Dobrushin’s formula, because it can also be proved directly, without
using Theorem 5.2, by evaluating max{π(∆) : π ∈ Π(µ, ν)}—see [18] for some indications. Our
object here has simply been to derive the formula by an application of Lemma 4.2.

6. Two density theorems

Let us denote byM+

f (X) the set of allµ ∈ M+(X) such that suppµ is a finite set. Thus, the elements
of M+

f (X) are precisely the measures that are of the form
∑

α∈A tαεα , where A is a finite subset of X
and tα ∈ R+ for all α ∈ A.

Theorem 6.1. Let µ ∈ M+

d (X) and suppose that ϵ > 0. Then there exists σ ∈ M+

f (X) such that
µ(X) = σ(X) and W (µ, σ ) < ϵ.
Proof. For the case of compact or separable X , this result has been given a number of proofs, some
decidedly difficult. Here we adapt the argument of de Acosta [1], who credits B. Simon with the
main idea. We first recall a couple of properties of Radon measures. Suppose that µ ∈ M+(X) and
A ∈ B(X). Let µA : B(X) → R be defined by the formula µA(B) = µ(A ∩ B). Then it is trivial to
show that µA ∈ M+(X). Next, suppose that S, T are Hausdorff spaces, that h : S → T is a continuous
map, and that σ ∈ M+(S). Then the image measure h(σ ) = σ ◦ h−1 belongs to M+(T ) (see, for
instance, [2, Proposition 1.15] or [3, Theorem 9.1.1]). Moreover, for f ∈ L1(T , h(σ )), we have f ◦ h ∈

L1(S, σ ) and

S f ◦ h(s)σ (ds) =


T f (t)τ (dt), where τ = h(σ ).

It will suffice to prove the theorem for the case in which µ ∈ Pd(X). Suppose that ϵ > 0, and let
a0 ∈ X . Then d(·, a0) ∈ L1(µ) and hence, because the measure µ is tight, we can find a non-empty
compact set K such that∫

{K
d(x, a0)µ(dx) < ϵ.
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We can partition K into a finite union
n

r=1 Ar of Borel sets Ar each of diameter at most ϵ. For each r ,
choose ar ∈ Ar and let hr(x) = (x, ar) ∈ Z for all x ∈ X and r = 0, 1, . . . , n. For each E ∈ B(Z), let

π(E) =

n−
r=1

µ(Ar ∩ h−1
r (E))+ µ(O ∩ h−1

0 (E)),

where O = {K . Then, for instance,

µ(Ar ∩ h−1
r (E)) = µAr (h

−1
r (E)) = hr(µAr )(E),

so it is clear that π ∈ M+(Z).
Next we compute p1(π) and p2(π). For A ∈ B(X), we have

p1(π)(A) = π(A × X) =

n−
r=1

µ(Ar ∩ A)+ µ(O ∩ A) = µ(A).

Thus p1(π) = µ. And, for B ∈ B(X), we have

h−1
r (X × B) = {x ∈ X : (x, ar) ∈ X × B} =


X if ar ∈ B,
∅ if ar ∉ B,

and hence

p2(π)(B) = π(X × B) =

n−
r=1

µ(Ar)εar (B)+ µ(O)εa0(B).

Thus p2(π) =
∑n

r=1 µ(Ar)εar + µ(O)εa0 ∈ M+

f (X); so π ∈ Π(µ, σ ), where σ = p2(π).
Finally, we estimate


Z d(x, y)π(dxdy). For each r we have∫

Z
d(x, y)hr(µAr )(dxdy) =

∫
X
d ◦ hr(x)µAr (dx) =

∫
X
d(x, ar)µAr (dx).

Hence

W (µ, σ ) ≤

∫
Z
d(x, y)π(dxdy) =

n−
r=1

∫
X
d(x, ar)µAr (dx)+

∫
X
d(x, a0)µO(dx)

=

n−
r=1

∫
Ar

d(x, ar)µ(dx)+

∫
O
d(x, a0)µ(dx) < ϵµ(K)+ ϵ ≤ 2ϵ,

so the proof is complete. �

Given x, y ∈ X , we denote by εxy the measure εx − εy. A simple element of M0(X) is one that is a finite
linear combination of measures of the form εxy. We denote by M0

s (X) the set of all simple elements
of M0(X). Let us also denote by M0

f (X) the set of µ ∈ M0(X) such that suppµ is a finite set. (Recall
that, for a signed Radon measure, suppµ = suppµ+

∪ suppµ−.)

Lemma 6.2. An element of M0(X) is simple if and only if it has finite support. Thus M0
s (X) = M0

f (X) ⊆

M0
d(X).

Proof. The simple elements of M0(X) are obviously measures with finite support. Conversely,
suppose that µ ∈ M0

f (X). Then, for some finite subset A of X and real numbers ta, we have µ =∑
a∈A taεa, with

∑
a∈A ta = 0. Now let b ∈ X . Then µ =

∑
a∈A ta(εa − εb) =

∑
a∈A taεab ∈ M0

s (X). The
inclusion M0

f (X) ⊆ M0
d(X) is obvious. �

Theorem 6.3. The set M0
s (X) of simple elements of M0(X) is a dense vector subspace of M0

d(X) with
respect to the norm ‖ · ‖W .
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Proof. Let m ∈ M0
d(X) and suppose that ϵ > 0. By Theorem 6.1 we can choose measures σ , τ ∈

M+

f (X) such that σ(X) = m+(X), τ(X) = m−(X) and

W (m+, σ ) < ϵ, W (m−, τ ) < ϵ,

and let ρ = σ − τ . Then, by Lemma 6.2, ρ is a simple element of M0(X) and

‖m − ρ‖W = ‖(m+
− σ)+ (τ − m−)‖W

≤ ‖m+
− σ‖W + ‖τ − m−

‖W

= W (m+, σ )+ W (τ ,m−) < 2ϵ. �

7. The dual of M0
d(X)

Here we study M0
d(X) as a vector space endowed with the norm ‖ · ‖W .

Lemma 7.1. For all x, y ∈ X, we have ‖εxy‖W ≤ d(x, y).
Proof. We can assume that x ≠ y. Then εx ⊗ εy = ε+

xy ⊗ ε−
xy ∈ Γ (εxy). Hence

‖εxy‖W ≤

∫
X×X

d(s, t)(εx ⊗ εy)(dsdt) = d(x, y). �

Now, suppose that f ∈ Lip(X, d). Then for each m ∈ M0
d(X), we define f̂ (m) by the equation

f̂ (m) =

∫
X
f dm.

Lemma 7.2. For f ∈ Lip(X, d) the map f̂ : M0
d(X) → R is a continuous linear functional, and ‖f̂ ‖

= ‖f ‖L.

Proof. For γ ∈ Γ (m), we have f̂ (m) =

Z (f (x)− f (y))γ (dxdy). Hence

|f̂ (m)| ≤

∫
Z
|f (x)− f (y)|γ (dxdy) ≤ ‖f ‖L

∫
Z
d(x, y)γ (dxdy) = ‖f ‖Lγ (d).

Taking the infimum over γ ∈ Γ (m), we obtain |f̂ (m)| ≤ ‖f ‖L‖m‖W , and thus ‖f̂ ‖ ≤ ‖f ‖L.
On the other hand, we have, by Lemma 7.1,

‖f̂ ‖ = sup{|f̂ (m)| : m ∈ M0
d(X); ‖m‖W ≤ 1}

≥ sup{|f̂ (εxy)|/d(x, y) : x, y ∈ X; x ≠ y}
= sup{(f (x)− f (y))/d(x, y) : x, y ∈ X; x ≠ y} = ‖f ‖L.

Hence in fact ‖f̂ ‖ = ‖f ‖L. �

Now, let φ ∈ M0
d(X)

∗. Fix some a ∈ X and let u(x) = φ(εxa) for all x. Then, for all x, y, we have
φ(εxy) = φ(εxa − εya) = u(x)− u(y). Therefore

|u(x)− u(y)| = |φ(εxy)| ≤ ‖φ‖ ‖εxy‖W ≤ ‖φ‖d(x, y).
This shows that u ∈ Lip(X, d). Moreover, û(εxy) =


X u(s)εxy(ds) = u(x) − u(y). Therefore, we see

that û and φ are continuous linear functionals on M0
d(X) that agree on M0

s (X). So, by Theorem 6.3, we
have φ = û. We have proved the following theorem.

Theorem 7.3. Themap f → f̂ is a linear surjection of Lip(X, d) onto the Banach dual of (M0
d(X), ‖·‖W );

the kernel of the map f → f̂ is the set of all constant functions on X. Moreover ‖f̂ ‖ = ‖f ‖L for all
f ∈ Lip(X, d). Thus, the dual of (M0

d(X), ‖ · ‖W ) is Lip(X, d)modulo the constant functions.

Corollary 7.4. Suppose that m ∈ M0
d(X). Then there exists f ∈ Lip(X, d) with ‖f ‖L = 1 such that

f̂ (m) = ‖m‖W .
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Proof. This follows from Theorem 7.3, by the Hahn–Banach theorem. �

We can also obtain as a corollary the Kirszbraun–McShane–Whitney theorem:

Corollary 7.5. Suppose that ∅ ≠ Y ⊆ X, let L = Lip(X, d) and L′
= Lip(Y , d), and let f ∈ L′. Then f can

be extended to an element F of L such that ‖F‖L = ‖f ‖L′ .

Proof. By uniform continuity, we can suppose that f has been extended to Y . This means that we
can assume that Y is a closed subset of X . That in turn means that we can regard M0

d(Y ) as a vector
subspace of M0

d(X). Let f (m) =

Y f dm for all m ∈ M0

d(Y ). Then f is a continuous linear functional
on M0

d(Y ) with norm ‖f ‖L′ . By the Hahn–Banach theorem, f can be extended to a continuous linear
functional φ : M0

d(X) → R without change of norm. But now, by Theorem 7.3, we have φ = G for
some G ∈ L and

‖G‖L = ‖G‖ = ‖f ‖ = ‖f ‖L′ .

SinceG and f agree on M0
d(Y ), we must have G(y) − f (y) = c for some constant c and all y ∈ Y . Let

F = G − c. Then F ∈ L, F extends f , and ‖F‖L = ‖G‖L = ‖f ‖L′ . �

8. Optimal measures and functions

Choose and fixm ∈ M0
d(X). By an optimal measure on Z form, we shall understand a measure ρ ∈

Γ (m) such that ρ(d) = inf{γ (d) : γ ∈ Γ (m}). The existence of such a ρ follows from Theorem 4.5,
together with the fact thatW (m+,m−) = min{π(d) : π ∈ Π(m+,m−)}. By an optimal function form,
we shall mean a function g ∈ Lip1(X, d) such that m(g) = sup{m(l) : l ∈ Lip1(X, d)}. The existence
of such a function follows from Corollary 7.4, together with Theorem 4.5.

Theorem 8.1. Let m ∈ M0
d(X), γ ∈ Γ (m), and g ∈ Lip1(X, d). Then the following statements are

equivalent:

(i) γ is an optimal measure, and g an optimal function, for m;
(ii) g(x)− g(y) = d(x, y) for all (x, y) ∈ supp γ .

Proof. Suppose that γ and g are both optimal for m. Then, writing γ1 = p1(γ ) and γ2 = p2(γ ), we
have

‖m‖W = γ (d) ≥

∫
Z
(g(x)− g(y))γ (dxdy)

= γ1(g)− γ2(g) = m(g) = ĝ(m) = ‖m‖W .

Hence we have equality throughout, and so∫
Z
(d(x, y)− g(x)+ g(y))γ (dxdy) = 0,

with the integrand non-negative, and so statement (ii) follows.
Suppose, conversely, that we are given that γ and g satisfy statement (ii). Then

‖m‖W ≤ γ (d) =

∫
Z
(g(x)− g(y))γ (dxdy)

= γ1(g)− γ2(g) = m(g) = ĝ(m) ≤ ‖m‖W .

We again must have equality throughout, and statement (i) follows. �

9. Concluding remarks

Variants of Theorem 4.1 are proved by Fernique [9] and Bogachev [3] by approximation from the
case where the initial measures have finite supports. See also [17,18]. For Polish spaces, a radically
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different treatment ofMonge–Kantorovich duality has been given byVillani [20],which yields formula
(4.1) as an immediate consequence—see [20, Remark 6.5]. A second generalization by Kellerer of
the Kantorovich–Rubinstein theorem to arbitrary metric spaces is given by [14, Theorem 2], where
a formulation for τ -additive measures is obtained. This, however, lies outside the scope of the present
article.

We obtained Dobrushin’s formula (5.3) above as a corollary of a result for the indicator metric in
the style of the Kantorovich–Rubinstein theorem, namely Theorem5.2. On the other hand, Villani [19],
using Monge–Kantorovich duality, offers for Polish spaces a Kantorovich–Rubinstein formula for
arbitrary lower semicontinuous metrics, noting that the indicator metric is just a special case.
Unfortunately, his argument appears to be incomplete, since the measurability of certain functions
in play is not established.

The Kantorovich–Rubinstein theorem has given rise to an extensive literature, and only the most
elementary treatment has been attempted in the present article. A survey of many variants and
generalizations of the theory may be found in [15, Chapter 4]. Villani [20, Chapter 6] treats the
Wasserstein metrics Wp (1 ≤ p < ∞) and their applications at some length, and also provides a
very valuable guide to the literature.
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