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The mammalian innate immune response is responsible for the early stages of defense against invading
pathogens. One of the major receptor families facilitating innate immune activation is the Toll-like receptor
(TLR) family. These receptors are type 1 membrane proteins spanning the membrane with a single transmem-
brane domain (TMD). All TLRs form homo- and hetero-dimers within membranes and new data suggest that
the single transmembrane domain of some of these receptors is involved in their dimerization and function.
Newly identified TLR dimers are continuously reported but only little is known about the importance of the
TMDs for their dimer assembly and signaling regulation. Uncontrolled or untimely activation of TLRs is related
to a large number of pathologies ranging from cystic fibrosis to sepsis and cancer. In this review we will focus
on the contribution of the TMDs of innate immune receptors – specifically TLR2–to their regulation and function.
In addition, we will address the current issues remaining to be solved regarding the mechanistic insights of this
regulation. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the
Cell's Physiology, Pathology and Therapy.

© 2014 Elsevier B.V. All rights reserved.
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1. Background

1.1. Membrane proteins and their transmembrane domains (TMDs)

Membrane proteins represent about 20–30% of the genome in a
variety of different organisms. These proteins cross the cell membrane
brane Structure and Function:
.
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and are critical for the ability of cells to “sense” their environment,
maintain their homeostasis levels of nutrients and ions, detect signals
sent from other cells or organs, respond to any infiltration of foreign
objects and communicate with other cells. Consequently, membrane
protein defects account for diseases ranging from cystic fibrosis to
cancer and possibly other pathologies as well [1–5]. The process of
protein assembly is considered crucial for most proteins with respect
to their function and in particular to membrane proteins. To date, it is
clear that the transmembrane domain is involved in the assembly
process [6]. This concept has been shown in a wide range of biological
systems. For example, it has been shown that functional bacteriorho-
dopsin [7,8] and lactose permease [9] can be obtained from separate
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transmembrane segments. Other types of membrane proteins, such as
immunological related proteins, function only as hetero-oligomers,
such as the T-cell receptor [10–12] and MHC class II [13,14].

1.2. Sequences mediating transmembrane domain interactions within
the membrane

Although much is known regarding the extra- and intra-cellular
portions of membrane proteins, our knowledge of the factors that
control protein–protein interactions and recognition of the membrane-
embedded domains is still limited. Studies in recent years using compu-
tational methods and other cutting edge techniques revealed that TMDs
have a role in protein assembly and function [15–18]. Furthermore, in
several cases it was shown that TMDs also have further roles in the
activation and regulation of their corresponding membrane proteins.
However, despite the increase in knowledge regarding the assembly of
TMDs, the precise functions and motifs driving TMD assembly are still
largely unknown. In general terms, as proteins are inserted into the
membrane and their secondary structure is created, tertiary interactions
are created between TMD helical fragments. This process is largely
attributed to the maximization of Van der Waals contacts through
matching knobs-into-holes type interactions. Several motifs mediating
a noncovalent association of native TMDs were recognized [19–21], the
most common is the GxxxG motif originally discovered in the TMD
of Glycophorin A [22–24]. This motif has a significant influence on the
ability of membrane proteins to self-assemble [25]. Studies have shown
that disrupting thismotif by pointmutations of the Glycines or enlarging
the distance between them lowers the ability of the proteins to form
proper dimers [26]. Other transmembrane motifs have been found
[27–31]: each related to a certain type of TMD and has its own signifi-
cance for the assembly and functional processes. These include: (i) the
Ser-Thr rich domain, (ii) a helix association domainwhichwas described
to be significant in the HCV replication complex, (iii) the polar-xx-polar
motif where polar include Ser, Thr, Asn, Asp, Glu, andGln, (iv) Gly zipper,
and (v) aromatic-xx-aromatic motif [31–34]. Additionally, leucine
zippers and polar residues expressed in TMDs were shown to be
significant for protein function [35,36]. Nevertheless, there are probably
other, yet unknown, motifs which control interactions between TMDs.

1.3. The importance of TM–TM interactions for the function of a protein

Receptor assembly has been shown tomediate activity in a variety of
signal transduction cascades. One of the most investigated examples is
the family of ErbB growth factor receptors (reviewed in [37,38]). This
family of receptor tyrosine kinases consists of four members that
through their combinatorial association are able to recognize a wide
array of ligands [39,40]. Although specificity of binding is mainly driven
by recognition through the extracellular regions, it was also postulated
that the TM domains of these proteins are able to self-associate, thus
influencing biological activity [41–43]. Indeed, in an influential work
by Mendrola et al., it was shown that the TMDs of these receptors can
self-associate where the association was the strongest for ErbB4 and
the weakest for ErbB3 [19]. Further analysis of these interactions
revealed that this interaction is mediated by several GxxxG motifs and
that their role is in both hetero- and homo-dimerization. While it was
established that the GxxxG in the C terminus TMD of ErbB1 and ErbB2
was involved in homo-dimerization, Gerber et al. showed that another
GxxxG motif located at the N′ terminus of the TMD is involved in
hetero-assembly between ErbB1 and ErbB2 [44]. Thus, it is proposed
that these regions allow for fine tuning of these receptors in response
to different ligands.

Integrins are a family of membrane receptors that mediate cell
adhesion and their TMDs were shown to be directly involved in activa-
tion of thesemolecules [45–47]. A seminal study by Li et al. showed that
their TMDs are capable of forming oligomers in SDS PAGE [45] and it
was proposed that these interactions are based on the GxxxG motifs
present within these regions. Indeed, mutational analysis revealed
that the interaction between the TMDs of the integrins αIIB and β3
is GxxxG dependent, and is sensitive to other residues as well. Thus,
it was proposed that the GxxxG combined with other flanking residues
allow for subtle conformational changes within this region that
ultimately affect stability [45]. In a different study, Yin et al. showed
that an exogenous peptide that corresponds to the TMD of the integrin
αIIb is able to activate these integrins in vitro [48]. The model proposed
for integrin activity suggests that in their resting state, the heterodimer
TMDs are packed closely together, while in their activated state the
heterodimer TMDs dissociated and there is a greater tendency towards
homodimer formation. These examples highlight the important role of
the TMD in regulating as well as executing the precise outcome in
various receptor families.

In addition to the importance of the direct stable association of
TMDs, many TMDs enter dynamic associations which are essential for
protein function. In the past several years studies have shown that
in order for receptors to properly initiate signal transduction, TMD
movements are pivotal [49,50]. These movements frequently transmit
an extracellular domain ligand-binding event across the bilayer to
intracellular domains, thus activating a variety of signaling cascades.
Generally, four main potential movements have been proposed to
occur in order for a signal to pass through the membrane via a TMD
(reviewed in [51,52]). (1) Transmembrane helices can move in the
membrane plane to stabilize transient interactions (translational
motion). (2) Individual transmembrane helices can move in a piston
motion through the lipid bilayer (perpendicular to the membrane).
(3) Pivot movement in which transverse helix movements result in
tilting of individual helices or in changes in the tilt angle (along an
axis parallel to the membrane). (4) Rotation of the helices along an
axis perpendicular to the membrane. All of these motions result in a
reorientation of intra- and extracellular domains. Consequently, inaccu-
rate localization of the TMD to a less permissive site within the
membrane may interfere with these dynamic movements and lead
to impairment of receptor activation. In addition to their contribution
to signal transduction transmembrane domain segments were shown
to directly associate with specific membrane phospholipids. For exam-
ple, G coupled protein receptors (GPCRs) display a clear preference
for PE [53,54]. This specific localization is apparently favorable to pro-
tein functionality as described in the case of rhodopsin [53,54].

2. Toll-like receptor (TLR) structure, function and regulation

The Toll protein family was first discovered as a developmental
related receptor in Drosophila [55]. Since then, homologs of these
receptors have been identified inmost eukaryotes with themain differ-
ence being in the number of proteins in the family [56]. In mammals
these receptors play a pivotal role in the innate immune system both
as activators of cascades leading to immediate responses, and as linkers
for the recruitment and activation of the adaptive immune system
(Fig. 1) [57–60]. Furthermore, in recent years, studies proposed that in
mammals, TLRs play a significant role in development as well [61–63].

As humans have a small number of innate immune receptors
available to respond to an unlimited number of microbial molecules,
these receptors must have extensive flexibility [64]. The current
dogma for TLR-ligand recognition, that was laid by the late Charles
Janeway almost two decades ago, is that they recognize common
patterns and are thus referred to as pattern recognition receptors
[65,66]. To date, 10 TLRs have been reported in humans and 13
in mice. They are involved in the recognition of multiple groups of
microbial molecules that usually are not found in humans, as well as
several endogenous ligands termed DAMPs (damage-associatedmolec-
ular patternmolecules) [67]. The spectrum of TLR ligands is unusually
broad for a single family of proteins; they can form stable complexes
with molecules ranging from hydrophilic nucleic acids to hydropho-
bic lipids, which vary in size from small-molecule drugs to large
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macromolecules. For example, TLR2 forms heterodimeric complexes
with either TLR1 or TLR6 that can bind to lipid conjugates as well
as lipopeptides or lipoproteins from bacterial membranes [68].
Uncontrolled activation of TLRs is involved in many infectious and
non-infectious diseases and may have fatal outcomes. Thus, TLRs
are important targets for a number of immune regulating therapeu-
tics [69]. Recent studies have shown that TLRs, in particular TLR2
and TLR4, are activated in tissues affected by chronic inflammatory
diseases, suggesting that they play a role in these pathogenic
processes [70].

Due to their involvement in such essential processes, TLRs activity is
highly regulated. This regulation is multilayered and involves systemic
regulation, signaling regulation and protein–protein interactions, all
serving to keep TLR activity well balanced [71–74]. In general, these
examples signify the delicate and fine tuning needed for a specific and
well balanced response. Notably, another mode of regulation of TLR
activity is achieved through specific TLR homo- or hetero-dimers.
While some TLRs such as TLR3 and TLR5 are active as homodimers,
others such as TLR2 and TLR1/6 work as heterodimers. Recently, TLR4,
that was known to be active as a homodimer, was shown to form
functional heterodimers with TLR6. These heterodimers are capable of
recognizing altered self-molecules such as oxidized lowdensity lipopro-
teins LDL and aβ amyloid peptides [75]. In addition, a recent study
described the interaction between TLR4 and TLR2 upon recognition of
the HIV-1 gp120 protein [76]. These intriguing findings raise the possi-
bility that other yet unidentified functional pairs of heterodimers exist,
thus creating additional layers of TLR regulation. These findings also
indicate that substances which can modulate TLR dimer assembly
might be of major importance for regulating TLR activity.

TLRs form homotypic or heterotypic multimers at the plasma
membrane, without bound ligands [77,78]. According to current
models, these multimers are weakly bound to each other and their TIR
domains (Toll/interleukin 1 receptor homology domains; the intra-
cellular sites that the signaling molecules associate with) are relatively
far apart. Upon ligand binding, the association between the receptors
becomes stronger, bringing their TIR domains closer together, serving
as a platform for the initiation of downstream signaling (Fig. 1) [79].
Several studies further shed light on the specificity of the different
heterodimers towards their ligands [79,80]. A number of amino acids
within the interface between these proteins form hydrophobic and ionic
interactions that are important for the stability of the receptor–ligand
complex. In addition, recent mutagenesis assays revealed critical amino
acids in the cytoplasmic TIR domain that are important for the TLR signal-
ing [81–83]. Despite extensive work focusing on the extracellular and
cytoplasmic domains of the different TLRs, only very few studies have
focused on the transmembrane region of these proteins. Consequently,
this region has been left as a ‘black box’waiting to be explored.

3. TLRs activation and signaling

TLRs are reported to be activated within lipid microdomains
[78,84,85]. Upon their activation TLRs actively translocate to specific
lipid locations within the lipid bilayer [84]. This phenomena represents
perhaps a more general theme as it has been shown for other receptors
as well [86]. Although the precise mechanism driving TLR accumulation
at these lipid microdomains is currently unknown, it is highly reason-
able that the TMD sequence and/or the sequences in its closest vicinity,
which may also interact with the lipid bilayer, are crucial for these
localization events. One example of such a localization signal is the
proposed Cholesterol Recognition Amino-Acid Consensus (CRAC)
sequence [87–90]. This sequence has been implicated to strongly corre-
late with the appearance of proteins within distinct membrane micro-
domains. One classical example is the gp41 of HIV-1 which expresses
an LWYIK motif immediately before the TMD. It was described to
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depend on cholesterol for its embedment into the membrane as well
as to redistribute cholesterol [91]. Furthermore it was shown that
mutations in these motifs lead to impairment of the parental proteins'
function [89,92,93]. An additional possibility of membrane related
regulation of TLR activity rises from the findings of the effect of gangli-
osides (a specific type of glycospingolipid) on regulation of immune
responses. Although to date no studies reported the direct regulation
of TLRs by gangliosides, other receptors which function in similar man-
ners (e.g. Insulin receptor and Epidermal Growth Factor receptor) were
reported to be regulated by gangliosides by controlling the passage of
the extracellular signal through the membrane [94–97].

Since uncontrolled TLR signaling may result in devastating outcomes
such as autoimmunity, TLR activation is negatively regulated at the
receptor, adaptor, transcription and post-transcriptional levels. For
example; the TIR domain of TLR8, a TLR member important in gut ho-
meostasis, intestinal inflammation and colitis-associated tumorogenesis,
is required for attenuation of the recruitment of the MyDsome (the
complex of Myd88-IRAK4-IRAK2 DD— the platform of the TLR signaling
cascade) to the receptor [98]. In all TLR pathways, sophisticatedmodes of
regulation were described to allow for the tight management of the
immune response.

4. TLRs in pathology

TLRs are implicated in a number of pathologies. For example, their
impact on cancer progression has been widely described [99–101].
They affect the tumor microenvironment in various means as well as
affecting the growth patterns of malignant cells. Recent studies showed
that in inflammatory bowel disease TLR signaling may on the one hand
reduce the severity, while at other time points, may worsen the
outcome [102–104]. Emerging studies have indicated the involvement
of TLR activation in Alzheimer disease [105–107]. Activation of brain
residential microglia as well as infiltrating macrophages induces an
immune response in the brain that under certain conditions leads to
neuronal cell death. An additional pathology associated with an unreg-
ulated immune response is rheumatoid arthritis (RA) [108–111]. In RA
the exact mechanism of disease progression is currently not fully
known. Nevertheless, it is referred to as an autoimmune disease and it
is tightly related to uncontrolled inflammation in the joints. As TLRs
are key participants in the initiation of an immune response they are
currently under investigation for their participation in RA.

5. The TMD of TLR2 regulates its assembly and function

As such large systemic regulatory networks are being revealed,
biochemical and molecular biology approaches are indispensable
for understanding the more subtle regulation of these receptors at the
protein level. Such examples include regulation by phosphorylation,
heterodimerization, recruitment into lipid microdomains and altered
trafficking [78,83,112]. Hetero-dimerization with different partners
was shown to be extremely important in the case of TLR2 and TLR1/6.
Specific interactions of thesemolecules resulted in recognition of differ-
ent microbial components. Although TLR4 is known to homodimerize
for recognition of LPS [113], a recent article by Stewart et al. has
shown a functional heterodimer of TLR4 and TLR6 that is able to recog-
nize altered self-ligands [75]. These ligands are added to the growing list
of endogenous ligands that are recognized by TLRs and to the complex
layers of regulation for these proteins.

Recent studies provide evidence that the TMDs of TLR2 and 6 are
important for the activation and regulation of these proteins and to
the nature of the TLR's assembly. The TMDs of TLR2 and TLR6 interact
one with each other and have a preference for heterodimers rather
than homodimers [114]. It was demonstrated that the TMD of TLR2
also contributes to the specificity of the interactions generated in the
presence of a certain ligand. For example, when expressed in the ToxR
system, the TLR2 TMD does not interact with the TMDs of TLR4 and
TLR5 but only with TLR1/6 and TLR10 [114] (Fig. 2). However, in the
presence of a non-canonical activator such as ethanol, TLR2 and TLR4
physically associate and induce an inflammatory response in neuronal
cells [115]. Therefore, in response to a specific ligand it is possible that
specific conformational changeswill occur, which lead to the generation
of a specific functional dimer. Recent studies indicate that, at least in
part, the TMD participates in this regulatory state [116]. Therefore it
was hypothesized that interrupting with TMD associations may lead
to impaired responses. In a recent study by Fink et al., synthetic peptides
derived from the TMDs of TLR2/6 were added to compete with the
native interactions [116]. Indeed, the peptides showed strong associa-
tion with the TMDs of the native proteins and they further showed
high potent inhibition of the in vitro activation of TLR2/6 in a ligand
specific manner. This was demonstrated by ELISA of two major cyto-
kines secreted by activatedmacrophages; IL-6 and TNFα. The inhibition
was only achieved upon activation with LTA/PamCysK but not LPS.
Throughmutational analysis the significance of the exact TMDsequence
to drive this interaction was demonstrated; these studies insinuate that
the TM domains are important for the hetero-assembly of this complex
and that this assembly is a target for interference. A current mode of
action for these peptides is shown in Fig. 3. This hypothesis is based
on the findings suggesting that the peptides prefer hetero-rather than
homo-assembly, as well the fact that they preferentially bind to their
reciprocal receptors (TLR2 TMD to TLR6p and TLR6 TMD to TLR2p). In
addition, the indications that these TMDs are capable of interacting
in the context of a biological membrane within the ToxR reporter
system further emphasize this concept.

Several other findings contribute to the notion that these regions
functionally participate in TLR activity. A recent study showed that a
single nucleotide polymorphism in the TMD of hTLR1 (I602S) correlates
with the modified immune response to tri-acylated lipopeptides, insin-
uating that this region might be involved in the regulation or activation
of the TLR1/2 complex [117]. In addition, this SNPwas also shown to be
associated with Crohn's disease, a pathology that leads to constant
chronic inflammation in the ileum [118]. More evidence for the role of
the TMDs in TLR activation can be found in a study showing that the
hydrophobic domain surrounding the TMD of TLR4 is able to affect the
dimerization state of this protein [119]. The corresponding region in
TLR2/6 is included in the TLR synthetic peptides previously described,
strengthening the idea that the peptides are involved in the dimeriza-
tion of these receptors. Other studies have shown that the TMD of
TLR9 is involved in the trafficking of this receptor [120]. Interestingly,
TLR2 contains a CRAC homologous domain [87] within its TM domain,
suggesting that the TMD of TLR2 might be involved in recruitment in
lipid microdomains (Reuven EM and Shai Y, unpublished data). These
assumptions are supported by the studies showing that TLRs are differ-
entially targeted into specificmicrodomains upon activation [78]. Taken
together; all the studies mentioned above strongly support the concept
that these previously uncharacterized TM regions of TLR6 and TLR2 are
involved in the activation or regulation of the proteins.

6. TLR2 regulation by TLR TMD peptides in vivo

TLR regulation is highly critical for themaintenance of body homeo-
stasis. This can be reflected by the fact that over-activation of TLR4 by
LPS injection can cause septic shock and death, which is in part attribut-
ed to high TNF levels present in the blood stream. Currently, the only
available drug to treat severe bacterial sepsis shows only a modest
improvement in patient outcome (6% absolute increase in survival)
and general use is limited due to severe and lethal side effects
[121,122]. As death due to sepsis from bacterial infections is becoming a
major health concern, a very recent study [116] provides initial evidence
that inhibiting TLR2 in vivo by TMD peptides is a promising way to com-
bat sepsis. For example, when sepsis was induced inmice by pure LTA in-
jection, as well as, by heat killed gram positive bacteria, all the untreated
mice died whereas 62.5% and 40%, respectively, survival was foundwhen



Fig. 2. Cell-surface Toll-like receptor heterotypic interactions. A dominant-negative ToxR assay was used to study heterotypic interactions of the cell-surface TLRs. Two TLR TMDs were
encoded in the FHK12 E. coli reporter strain, one with a functional ToxR domain (dominant phenotype) and one with a nonfunctional ToxR* domain (negative phenotype). Interaction
between the two different TMDs leads to a reduction in signal from that seen for homotypic interactions. The TMDs for GpA, TLR1, TLR2, and TLR6 were used with the functional ToxR
domain while TMDs for poly-Leucine, TMD5, integrin aIIb, TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 were used with the nonfunctional ToxR* domain. Interactions were most prominent
for the TLRs known to have heterotypic interactions: TLR2–TLR1 and TLR2–TLR6. TLR10 also showed strong interactions with TLR2. Moderate interaction was seen with other TMDs that
could be attributed to non-specific interactions from similar TMDmotifs as completely unrelated receptors showed similar levels of knockdown. Each dominant phenotype was done in 3
technical replicates with each negative phenotype and 6 measurements made for each replicate. Error bars depict the standard error of the mean.
Figure taken with permission from Ref. [114].
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the mice were treated with the TMD of TLR2 [116]. Furthermore, the
peptide also showed some protective effect when injected one hour
earlier to the LTA challenge. These results strengthen the idea that TLR2
TMD peptides can target and inhibit TLR2 activation, and can be useful
as a platform for further therapeutic research. Interestingly, this peptide
did not seem to affect TLR4 driven septic shock. This result is clearly in
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7. Remaining questions regarding the mechanisms of
TMD regulation

Although our understanding of the importance of TMDs to their
parental protein function has advanced greatly, still major issues are
awaiting further investigation. One of the interesting questions is to
decipher the precise driving forces of TLR TMDs' interactions, as well
as, the exact dynamic motion occurringwhile the various TLR combina-
tions are generated. It is highly probable that in any given TLR dimer
(homo/hetro-dimer) diverse forces induce TM–TM stabilization, as
well as, different motions that allow distinct interactions. Additionally,
themutual effects on the TMDmotions induced by specific lipid compo-
sitions within specific microdomains necessary for TLR signaling, will
shed much light on the complete means of regulation of this important
family of receptors.

Particularly in the case of the TLR2 TMD another intriguing question
is what is the significance of the TMD embedded Cys residues. Using the
approach of peptide interference with mutated TMDs, it was found
that the cysteines within the TMDs might play a significant role in the
activation and regulation of these receptors (unpublished data). While
some Cys residues such as Cys606 on TLR6 did not seem to affect
peptide activity or in vitro dimerization, Cys609 on TLR2 seemed to
enhance peptide activity. Finally, the two adjacent cysteine residues
on TLR2 (Cys595 and Cys596) seem to negatively affect the peptide's
activity and TM dimerization, most probably due to conformational
change resulting in a β sheet structure. It is hypothesized that the
cysteines in this region are sensitive to the redox potential of the
membrane and that these cysteines might form a molecular switch
that prevents prolonged activation under oxidative conditions. In
support of this idea, TLR2 has been recently shown to be sensitive to
the oxidized lipid product ω-(2-carboxyethyl) pyrrole (CEP), thus
relating TLR2 activation to oxidative burst in macrophages [124]. It
can be speculated that an oxidative environment can trigger activation
through Cys609 on TLR2 while the double Cys on TLR2 can prevent
hyper-activation under a highly oxidized environment, as can be seen
in highly active phagocytosis. Although at this stage these assumptions
are highly speculative, another recent study from our labmight provide
some indirect evidence for these results. In this work Ashkenazi et al.
have provided evidence for the involvement of Cys residues within
the HIV fusion protein GP41 in the fusion process [125]. These residues
were neglected so far and considered to have no effect on protein
activity. Nevertheless, careful examination of these residues under
reduced or oxidized peptides provided evidence for their involvement
in the fusion process, mainly in the hemifusion stage [125]. Since
these residues were routinely mutated to alanines within inhibitory
peptides derived from this region, the actual role of these residues
was overlooked. Macrophages transfected with specific plasmids
with and without these cysteines or in different combinations will
help to provide some more information about these intriguing
findings. Supplementary biophysical analysis will help to elucidate
the involvement of these residues on TM–TM interactions.

Of note, the therapeutic potential of TMD derived synthetic peptides
targeting the TMDs of membrane receptors is very promising. Future
studies are ongoing to evaluate the complete range of pathologies
such peptides may affect and the means to improve their targeting
and specificity in-vivo. They are expected to open new strategies to
fight various diseases.
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