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a b s t r a c t

In this paper, we study the logarithmic coefficients of circularly symmetric functions.
Also, we investigate the relative growth of successive coefficients of circularly symmetric
functions. Furthermore, we obtain the sharp estimate for the order of ‖Dn| − |Dn−1‖ by
using the method of the logarithmic coefficients.
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1. Introduction

Let S denote the class of functions of the form

f (z) = z +
∞∑
k=2

akzk, (1.1)

which is analytic and univalent in the unit disk∆ = {z ∈ C : |z| < 1}.
Let S∗ denote the subset of S consisting of those functions f (z) in S for which f (∆) is starlike with respect to 0. It is well

known (see [1] or [2]) that if f (z) is analytic in∆, then f ∈ S∗ if and only if Re zf
′(z)
f (z) > 0, for all z in∆. Finally, we let Sc denote

the set of those functions f (z) in S for which there exists a real number α and a function g(z) in S∗ such that

Re
zf ′(z)
eiαg(z)

> 0, z ∈ ∆.

The elements of Sc are called close-to-convex functions. Clearly, S∗ ⊂ Sc .
Associated with each f (z) in S is a well-defined logarithmic function

log
f (z)
z
= 2

∞∑
k=1

γkzk, z ∈ ∆. (1.2)

The numbers γk are called the logarithmic coefficients of f . Thus the Koebe function k(z) = z(1 − z)−2 has logarithmic
coefficients γn = 1

n , n ∈ N = {1, 2, 3, . . .}.
The inequality |γn| ≤ 1

n holds for functions f (z) in S
∗, but is false for the full class S, even in order of magnitude. Indeed,

(see Theorem 8.4 on p. 242 of [1]) there exists a bounded function f (z) ∈ S with logarithmic coefficients γn 6= O(n−0.83).
In the paper [3], it is presented that the inequality |γn| ≤ 1

n is false for n ≥ 2.

E-mail address: Dqsx123@126.com.

0893-9659/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2010.08.018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82217545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:Dqsx123@126.com
http://dx.doi.org/10.1016/j.aml.2010.08.018


1484 Q. Deng / Applied Mathematics Letters 23 (2010) 1483–1488

LetD be a domain in C with 0 ∈ D. We shall say thatD is circularly symmetric if, for every Rwith 0 < R < +∞,D∩{|z| =
R}, is either empty, is the whole circle |z| = R, or is a single arc on |z| = R which contains z = R and is symmetric with
respect to the real axis. Following [3,4], we shall denote by Y the class of those functions f (z) in S which map ∆ onto a
circularly symmetric domain. The elements of Y will be called circularly symmetric functions.
The objective of the present paper is to study the logarithmic coefficients of circularly symmetric functions Y (except

f (z) ≡ z). We obtain the inequality |γn| ≤ An−1 log n (A is an absolute constant) which holds for circularly symmetric
functions Y . Furthermore, we investigate the relative growth of successive coefficients of circularly symmetric functions Y
(except f (z) ≡ z), and obtain the sharp estimate of ‖Dn| − |Dn−1‖ by using the method of the logarithmic coefficients.
Let A denote the absolute constant whose value varies in different places.

2. A necessary condition for a function to be in Y

First, we give the following lemmas.

Lemma 1 ([4]). Let f (z) ∈ Y . Then

Im
{
zf ′(z)
f (z)

}
≥ 0, Im{z} ≥ 0;

Im
{
zf ′(z)
f (z)

}
≤ 0, Im{z} ≤ 0.

Lemma 2 ([4]). Let the function f (z) be defined by (1.1). If f (z) ∈ Y , then f (z) ≡ z or a2 > 0.

Theorem 1. If f (z) ∈ Y , then

Re
{
(1− z2)

g(z)
z

}
> 0,

where g(z) = 1
a2
{
zf ′(z)
f (z) − 1}.

Proof. Suppose z = reiθ , 0 < r < 1, 0 ≤ θ ≤ π , then

Re
{
(r2 − z2)

g(z)
z

}
= Re{2r sin θ · (−ig(z))} = 2r sin θ Im{g(reiθ )} = 2r sin θ ·

1
a2
Im
{
zf ′(z)
f (z)

}
.

By means of Lemmas 1 and 2, we obtain

Re
{
(r2 − z2)

g(z)
z

}
≥ 0. (2.1)

Whenπ ≤ θ ≤ 2π , the inequality (2.1) also holds. So the inequality (2.1) also holds for |z| < r from themaximumprinciple.
Letting r → 1− 0 in (2.1), we obtain Re{(1− z2) g(z)z } > 0. �

3. Logarithmic coefficients of circularly symmetric functions Y

In order to obtain Theorem 2, we need the following lemmas.

Lemma 3. Let f (z) ∈ S. Then, for z = reiθ , 0 < r < 1,∣∣∣∣∫ 2π

0

∂

∂θ

(
log
f (z)
z

)
e
−iarg z

1−z2 dθ
∣∣∣∣ ≤ A log 1

1− r
. (3.1)

Proof. Integration by parts gives∣∣∣∣∫ 2π

0

∂

∂θ

(
log
f (z)
z

)
e
−iarg z

1−z2 dθ
∣∣∣∣ = ∣∣∣∣∫ 2π

0
log
f (z)
z
e
−iarg z

1−z2
∂

∂θ

(
arg

z
1− z2

)
dθ
∣∣∣∣ . (3.2)

Applying the distortion theorems of the univalent function, we have (see [5])∣∣∣∣log f (z)z
∣∣∣∣ ≤ log ∣∣∣∣ f (z)z

∣∣∣∣+ ∣∣∣∣arg f (z)z
∣∣∣∣ ≤ 3 log 1

1− r
. (3.3)
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Since function z
1−z2
∈ S∗, we have (see [2])

∂

∂θ

(
arg

z
1− z2

)
> 0 and

∫ 2π

0

∂

∂θ

(
arg

z
1− z2

)
dθ = 2π. (3.4)

By applying (3.3) and (3.4), from (3.2) we obtain∣∣∣∣∫ 2π

0

∂

∂θ

(
log
f (z)
z

)
e
−iarg z

1−z2 dθ
∣∣∣∣ ≤ A log 1

1− r
. �

Lemma 4. Let f (z) ∈ S. Then, for z = reiθ , 0 < r < 1, n ≥ 2,

1
2π

∣∣∣∣∫ 2π

0

zf ′(z)
f (z)

e
−2iarg z

1−z2 einθdθ
∣∣∣∣ ≤ 2n + 2√2

(
log

1
1− r2

) 1
2

. (3.5)

Proof. Since z(log f (z)z )
′
=
zf ′(z)
f (z) − 1, we have

zf ′(z)
f (z) = 1+

∑
∞

k=1 2kγkz
k. So integration by parts gives

1
2π

∣∣∣∣∫ 2π

0

zf ′(z)
f (z)

e
−2iarg z

1−z2 einθdθ
∣∣∣∣ = 1

2π

∣∣∣∣∣
∫ 2π

0

(
1+

∞∑
k=1

2kγkzk
)
e
−2iarg z

1−z2 einθdθ

∣∣∣∣∣
=
1
π

∣∣∣∣∣
∫ 2π

0

[
einθ

n
+

∞∑
k=1

2kγk
n+ k

rkei(n+k)θ
]
e
−2iarg z

1−z2
∂

∂θ

(
arg

z
1− z2

)
dθ

∣∣∣∣∣
≤
1
π

∫ 2π

0

∣∣∣∣∣einθn +
∞∑
k=1

2kγk
n+ k

rkei(n+k)θ
∣∣∣∣∣ ∂∂θ

(
arg

z
1− z2

)
dθ. (3.6)

It is well known that (see [6])

∞∑
k=1

k|γk|2r2k ≤ log
1

1− r2
. (3.7)

Applying the Schwarz inequality, we have

1
n
+

∞∑
k=1

2k
n+ k

|γk|rk ≤
1
n
+

(
∞∑
k=1

k|γk|2r2k
∞∑
k=1

4k
n2

) 1
2

≤
1
n
+

(
log

1
1− r2

) 1
2
(
∞∑
k=1

4k
n2

) 1
2

=
1
n
+
√
2
(
log

1
1− r2

) 1
2

. (3.8)

By applying (3.8), from (3.6) we obtain

1
2π

∣∣∣∣∫ 2π

0

zf ′(z)
f (z)

e
−2iarg z

1−z2 einθdθ
∣∣∣∣ ≤ 2n + 2√2

(
log

1
1− r2

) 1
2

. �

Theorem 2. Let f (z) ∈ Y . Then, for n ≥ 2,

|γn| ≤ An−1 log n, (3.9)

where the exponent −1 is the best possible.

Proof. Write p(z) = (1− z2) g(z)z , where g(z) =
1
a2
{
zf ′(z)
f (z) − 1}. Then Rep(z) > 0. Clearly,

p(z) = 2Rep(z)− p(z). (3.10)

Since z(log f (z)z )
′
=
zf ′(z)
f (z) − 1, we have

zf ′(z)
f (z)

= 1+
∞∑
k=1

2kγkzk.



1486 Q. Deng / Applied Mathematics Letters 23 (2010) 1483–1488

Then, for z = reiθ , 0 < r < 1, we have

2nγn =
1
2π i

∮
|z|=r

zf ′(z)
f (z)

z−n−1dz =
1
2π

∫ 2π

0

zf ′(z)
f (z)

r−ne−inθdθ. (3.11)

By applying (3.10), from (3.11) we obtain

|2nγnrn| =
∣∣∣∣ 12π

∫ 2π

0

zf ′(z)
f (z)

e−inθdθ
∣∣∣∣ = 1

2π

∣∣∣∣∫ 2π

0
p(z)

a2z
1− z2

e−inθdθ +
∫ 2π

0
e−inθdθ

∣∣∣∣
≤
a2
2π

∣∣∣∣∫ 2π

0
2Rep(z)

z
1− z2

e−inθdθ
∣∣∣∣+ a22π

∣∣∣∣∫ 2π

0
p(z)

z
1− z2

e−inθdθ
∣∣∣∣ = I1 + I2. (3.12)

Now we estimate two terms I1 and I2.

I1 ≤
a2
π

∫ 2π

0
Rep(z)

∣∣∣∣ z
1− z2

∣∣∣∣ dθ = a2π Re
∫ 2π

0
p(z)

∣∣∣∣ z
1− z2

∣∣∣∣ dθ
=
1
π
Re
[∫ 2π

0

zf ′(z)
f (z)

1− z2

z

∣∣∣∣ z
1− z2

∣∣∣∣ dθ − ∫ 2π

0

1− z2

z

∣∣∣∣ z
1− z2

∣∣∣∣ dθ]
=
1
π
Re
[∫ 2π

0

zf ′(z)
f (z)

e
−iarg z

1−z2 dθ −
∫ 2π

0
e
−iarg z

1−z2 dθ
]
. (3.13)

It is clear that

zf ′(z)
f (z)

=
1
i
∂

∂θ

(
log
f (z)
z

)
+ 1. (3.14)

By means of Lemma 3 and (3.14), from (3.13) we get

I1 ≤
1
π

∣∣∣∣∫ 2π

0

∂

∂θ

(
log
f (z)
z

)
e
−iarg z

1−z2 dθ
∣∣∣∣+ 2π

∣∣∣∣∫ 2π

0
e
−iarg z

1−z2 dθ
∣∣∣∣

≤ A log
1
1− r

+ 4. (3.15)

By means of Lemma 4, we obtain

I2 =
1
2π

∣∣∣∣∣
∫ 2π

0

(
zf ′(z)
f (z)

)(
1− z2

z

)
z

1− z2
e−inθdθ −

∫ 2π

0

(
1− z2

z

)
z

1− z2
e−inθdθ

∣∣∣∣∣
=
1
2π

∣∣∣∣∣
∫ 2π

0

(
zf ′(z)
f (z)

)
e
2iarg z

1−z2 e−inθdθ −
∫ 2π

0
e
2iarg z

1−z2 e−inθdθ

∣∣∣∣∣
≤
1
2π

∣∣∣∣∫ 2π

0

zf ′(z)
f (z)

e
−2iarg z

1−z2 einθdθ
∣∣∣∣+ 1 ≤ 2n + 2√2

(
log

1
1− r2

) 1
2

+ 1. (3.16)

Combining (3.15) and (3.16), from (3.12) we obtain

|γn| ≤
1
n
(2rn)−1

[
A log

1
1− r

+ 4+
2
n
+ 2
√
2
(
log

1
1− r2

) 1
2

+ 1

]
. (3.17)

Let r = 1− 1
n in (3.17), we obtain, for n = 2, 3, . . .

|γn| ≤ An−1 log n. (3.18)

Since the Koebe function k(z) = z(1 − z)−2 ∈ Y has logarithmic coefficients γn = 1
n , the exponent −1 is the best

possible. �

4. On the successive coefficients of circularly symmetric functions Y

If f (z) ∈ S, and taking into account (1.2), we obtain

ϕ(z) =
[
f (z)
z

]λ
= 1+

∞∑
k=1

Dk(λ)zk = exp

(
∞∑
k=1

2λγkzk
)
0 < λ ≤ 1. (4.1)
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We form a function with an arbitrary parameter t , |t| = 1,

ψ(z) = (1− tz)ϕ(z) = 1+
∞∑
k=1

(Dk − tDk−1)zk, (4.2)

and we shall start from its representation

ψ(z) = q(z)(1− tz)1−λ, (4.3)

where

q(z) = (1− tz)λϕ(z) =
∞∑
k=0

Bk(t)zk, (4.4)

log q(z) =
∞∑
k=1

(
2λγk −

λtk

k

)
zk =

∞∑
k=1

Ak(t)zk. (4.5)

The relative growth of successive coefficients is a difficult and interesting problem in the univalent function area. The
authors studied the relative growth of successive coefficients ‖Dn| − |Dn−1‖ of ϕ(z) (see [5,7–13]). In this paper, for the
circularly symmetric function which is the subclass of the univalent function, we have resolved the problem and obtained
a sharp estimate. In order to obtain our result (Theorem 3), we need the following lemma.

Lemma 5 ([7]). For coefficients Bk of function q(z), for any n ≥ 1 and for some tn, |tn| = 1, one has the inequality

n−1∑
k=0

|Bk| ≤ Anλ. (4.6)

Theorem 3. Let f (z) ∈ Y , ϕ(z) = [ f (z)z ]
λ
= 1+

∑
∞

k=1 Dk(λ)z
k, 0 < λ ≤ 1. Then

‖Dn| − |Dn−1‖ ≤ Anλ−1 log n.

Proof. From (4.2)–(4.4), we have

∞∑
k=0

(Dk − tDk−1)zk =
∞∑
k=0

Bkzk
(
1−

∞∑
k=1

βktkzk
)

(D−1(λ) = 0,D0(λ) = 1), (4.7)

where

(1− tz)1−λ = 1−
∞∑
k=1

βktkzk.

It is known that for k ≥ 1

βk =
1− λ
k

(
1−

1− λ
1

)(
1−

1− λ
2

)
· · ·

(
1−

1− λ
k− 1

)
. (4.8)

So we have that βk > 0 for k ≥ 1 and {βk} is a monotonically decreasing sequence.
Comparing the coefficients of the same powers of z in (4.7) and taking absolute value, we obtain

|Dn − tDn−1| ≤ |Bn| + β1|Bn−1| + · · · + βn.

Wemake the last inequality coarser

|Dn − tDn−1| ≤ max
n−m≤w≤n

|Bw|

(
m∑
k=1

βk + 1

)
+ βm+1

n−m−1∑
k=0

|Bk|, 0 ≤ m < n. (4.9)

First we estimate |Bw|, w = n−m, n−m+ 1, . . . , n. From (4.4) and (4.5) it follows that

wBw = wAw + (w − 1)Aw−1B1 + · · · + 2A2Bw−2 + A1Bw−1,

wherewAw = 2λwγw − λtw.
However, for circularly symmetric functions Y it is known (see Theorem 2) that

w|γw| ≤ A logw, w = 2, 3, . . . .
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Therefore

|wAw| = |2λwγw − λtw| ≤ (2A logw + 1)λ

and

w|Bw| ≤ max
1≤w≤n

|wAw|
n−1∑
k=0

|Bk| ≤ Aλ log n
n−1∑
k=0

|Bk|.

Taking into account (4.6), we obtain for t = tn, |tn| = 1 andw = 1, 2, . . . , n

|Bw| ≤
Aλ log n
w

nλ. (4.10)

Also by (4.6) we have for 0 ≤ m ≤ n− 1

n−m−1∑
k=0

|Bk| ≤
n−1∑
k=0

|Bk| ≤ Anλ. (4.11)

Now we estimate βk. It is known that

n∑
k=1

βk ≤ 1 (4.12)

and

βk =
1− λ
k

(
1−

1− λ
1

)(
1−

1− λ
2

)
· · ·

(
1−

1− λ
k− 1

)
=
1− λ
k

(
1+

λ− 1
1

)(
1+

λ− 1
2

)
· · ·

(
1+

λ− 1
k− 1

)
≤
1− λ
k
exp(λ− 1)

(
1+

1
2
+ · · · +

1
k− 1

)
≤
1− λ
k
kλ−1 =

1− λ
k2−λ

, k ≥ 1. (4.13)

We insert (4.10)–(4.13) into (4.9), assuming thatm = n
2 if n is even andm =

n+1
2 if n is odd. We carry out the computations

for n even (for n odd it is similar). We have for n ≥ 1

|Dn − tDn−1| ≤
Aλnλ log n

n
2

+
1− λ( n
2 + 1

)2−λ Anλ ≤ Anλ−1 log n.
So, we obtain

‖Dn| − |Dn−1‖ ≤ |Dn − tDn−1| ≤ Anλ−1 log n. �
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