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Abstract 

Given a simple connected graph G, let K(n) [2(n)] be the minimum cardinality of a set of 
vertices [edges], if any, whose deletion disconnects G and every remaining component has more 
than n vertices. For instance, the usual connectivity and the superconnectivity of G correspond 
to x(0) and ~c(1 ), respectively. This paper gives sufficient conditions, relating the diameter of G 
with its girth, to assure optimum values of these conditional connectivities. 

1. Introduction 

The standard graph theoretic terms not defined in this paper can be found in [3]. 

A simple connected graph G = (V, E )  with diameter D is said to be l-geodetic i f  l 

is the maximum integer, 1 <<.I<<.D, such that for any x , y  E V(G)  there exists at most 

one x ~ y path o f  length less than or equal to l. I f  l --  D, the graph G is called 

strongly geodetic, see [2,8]. Notice that i f  G has girth g, then G is /-geodetic for 

l = /(g - 1) /2/ .  Reciprocally,  i f  G is /-geodetic, then its girth g is either 2l  + 1 or 

2 l + 2 .  

A sufficient condition for an /-geodetic graph to have maximum connectivity [edge- 

connectivity] can be formulated in terms o f  l and D, see [4,9,10]. 

Theorem 1.1. Let  G be an l-geodetic graph with m & i m u m  degree 6, diameter D, 

connectivity tc and edge-connectivity 2. Then 

X = fi i f D < < . 2 l -  1, 

~ = 6 i f  D<.2 l .  
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Suppose that G ~ gr-_ 1 is a maximally connected graph with minimum degree 8, i.e. 
x = 8. I f x  E V(G) is a vertex of degree 8, then the set of  vertices adjacent to x, F(x), 

is a trivial minimum order disconnecting set of  vertices. It is said that G is super-x if  
every disconnecting set of  vertices of  cardinality 8 is trivial, see [1]. Analogously, G 

is said to be super-2 if all its minimum edge-disconnecting sets are trivial. 

Let us define a non-trivial set of  vertices or edges as a vertex or edge set that does not 

contain a trivial disconnecting one. The authors and Escudero have proved in [6] that 

if  G = (V,E) is /-geodetic with minimum degree 8 > 2 and diameter D<<,2l - 2, and 

F C V, IFI ~<28-3,  is non-trivial, then G - F  is connected. Analogously, i f D ~ < 2 / -  1 

and A C E ,  IAI-..<28- 3, is non-trivial, then G - A  is connected. Thus, G is super-x if 
D<~21- 2 and G is super-2 if D<~21- 1. To reformulate these results, let us define 

x(1) as the minimum cardinality of  a non-trivial set of  vertices F, if  any, such that 
G -  F is not connected. Define 2(1) in a similar way. Then, x(1) and 2(1) measure 

the superconnectivity and edge-superconnectivity of  G. Hence, from the above results, 

we have: 

Theorem 1.2. Let G be an l-geodetic graph with minimum degree 8 > 2 and diameter 

D. Then, 

x(1 )>~28-  2 / fD~<2l  - 2, 

2 (1 )~>28-  2 i f  D<~2l - 1. 

If  we have no further information about the structure of  G, then Theorem 1.2 is best 

possible in the following sense. Suppose that G contains an edge with endvertices x 
and y of  degree 8 and such that F(x) M F(y)  = 9. The set F = F(x) U F(y )  - {x, y}  

could be an example of  non-trivial disconnecting set with 28 - 2 vertices. Thus, for 
such a graph G, x(1)-~<28- 2 and, by the results given in Theorem 1.2, D<<.2l-2 is 

a sufficient condition for x(1) = 28 - 2. The edge case can be discussed similarly. 

2. The connectivities r(n) and ~.(n) 

I f  H is a subgraph of G, let N(H)  denote the set Uusr (~)F(u)  - V(H). 
Given a graph G = (V,E) and a fixed integer n~>0, let us say that F C  V(G) is 

non-trivial if  F does not contain a set N(H )  for any subgraph H C G with k vertices, 
1 ~< k <~ n (for n = 0, any F C V is non-trivial). Now, generalizing the definition of ~c(1 ) 
given in Section 1, let us define the conditional connectivity x(n) as the minimum 
cardinality of a non-trivial disconnecting set. In what follows it is supposed that, for 
the graphs considered, such x(n) exists. The conditional edge-connectivity 2(n) can be 
defined in an analogous way. 

Given a graph G and a graph-theoretic property 4~, Harary [7] defined the condi- 
tional connectivity x(G; ~ )  [2(G; ~ ) ]  as the minimum cardinality of  a set of  vertices 
[edges], if any, whose deletion disconnects the graph and every remaining component 
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has property ~ .  From this point of  view, x(n) --- x ( G ; ~ n )  [2(n) - -  , ~ ( G ; ~ - ~ n ) ]  where 

~ ,  is the property of  having more than n vertices. 

When G is not a complete graph, then x(0) [,~(0)] corresponds to the connectivity 

x [2]. So, x(0)~<6 [2(0)-..<6] and, by Theorem 1.1, D<~21- 1 [D~<21] is a sufficient 

condition for G to be maximally connected, i.e. ~¢ = 6 [2 = 3]. For n = 1, x(1 ) [2(1)] 

measures the superconnectivity [edge-superconnectivity] of  G and Theorem 1.2 gives 

a sufficient condition to have optimum superconnectivity [edge-superconnectivity]. 

I f  n > 1, let us say that K(n) and 2(n) measure the n-extraconnectivity of  G. 

Suppose that a tree Tn+l, with n + 1 vertices each of  degree 6 in G, is a subgraph 

of  G. I f  F = N(T,+I), then Tn+l is a component of  G - F .  Moreover, if G - F  is 

not connected and each other component has at least n + 1 vertices, then it is clear 

that ~¢(n)~< IF[ ~< (n + 1 ) 3 -  2n. In the following section, a sufficient condition for ~c(n) 

[2(n)] to be optimum, i.e. K(n)>~(n + 1)6 - 2n [2(n)>~(n + 1)3 - 2n], is derived. This 

condition relates the parameters l and D. To derive it we always assume that 6 > 2. 

3. Maximally extraconnected graphs with large girth 

In what follows, n/> 0 denotes an even integer, G an/-geodet ic  graph with parameter 

l > ½n and F C V(G), IF I < (n + 1)6 - 2n, stands for a non-trivial set o f  vertices. 

Given a component C of  G - F ,  the set of  vertices in C at maximum distance from F 

is denoted Z(C), i.e. Z(C) = {z E V(C) : d(z ,F)  -- r}, where r = maxx~z(c)d(x,F). 

Proposit ion 3.1. Any z E Z(C) is in a path Pz o f  G - F o f  length at least ½n + 1. 

Proof The case n = 0 being trivial (as IF[ < 6 in that case), assume n~>2. I f  C 

contains a cycle, then its length is at least n + 3 because l > ½n and the result clearly 

holds. Now suppose that C is a tree. Condition l > ½n implies that N(u)  ~ N(v)  

for any pair of  vertices of  C, u,v, such that d(u,v)<~n. Hence, C must have diameter 

greater than n; otherwise IN(C)I = IFI ~>(n + 1 ) 6 -  2n. Then, component C contains at 

least one u ~ v shortest path of  length at least n + 1. Consequently, for any z E Z(C) 
there exists in G - F either a z ~ u or a z +--, v path of  length greater than ½n. [] 

Note that, in fact, Proposition 3.1 holds for any z E V(C). 
To prove our main theorem, we need to take into account a tree T, considered as a 

subgraph of  C, of  one of  the following types: 
Type I: T is simply a path of  length n>~0, 

WO, W I ,  . . .  ,Wn/2--1,Wn/2,Wn/2+l,... ,Wn--I,Wn 

such that d(wi, F)  = d(wn-i ,F)  = r - i, O<.i<~ ½n. 
Type II: Let n ~> 2. The structure of  T is as shown in Fig. 1. More precisely, given 

z E Z(C), consider a path Pz as described in Proposition 3.1 and take a subpath P~, 
of  length ½n, that contains z. The tree T has order n and is obtained by attaching an 
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Fig. 1. Tree of  type II. 

° P • 

Fig. 2. Tree T ~. 

edge ww ~ to each internal vertex w of  P~. Note that if  every internal vertex w of  P '  

satisfies d(w,F)  > 1, then C contains a tree T of  type II (as 6 > 2). Moreover, if  

n > 2 let z and P~ be such that z is not an endvertex of  P~. 

Type III: Again let n be at least 2. I f  d(u ,F)  = 1 for some vertex u in the path 

Pz that contains z, then it could happen that component C does not contain a tree o f  

type II. In this case, let us consider in C a tree T ~ with structure as shown in Fig. 2. 

As in the preceding case, T' is obtained by joining an edge to each internal vertex o f  

a path that contains a vertex z E Z(C),  but now this path P has length p < ½n. The 

endvertices o f  P,  9 and h, satisfy d(9 ,F)  = d(h ,F)  = 1 and d(w ,F)  > 1 for every 

internal vertex w of  P. The order o f  T'  is 2p.  Now, let T be a tree o f  order n that 

contains T'. As C has more than n vertices, the existence of  such a tree T is assured. 

Let T be a tree contained in C such that T contains a vertex z E Z(C).  For every 

vertex u o f  T consider a path Pu = uo, ul . . . . .  Us-l,Us, s>>. l, uo = u, ul ~ V(T), such 

that d(ui ,F) > d(Ui_l,F), 1 <<.i<<.s, and d(v,F)<<.d(us,F) for every v ¢ us-i adjacent 

to us (if  such a path does not exist, let s = 0 and consider the trivial path Pu = u). 

Define N*(u) as the set o f  vertices adjacent to us that are different from Us-1 ( i f s  = 0, 

then define N*(u) as F ( u ) -  V(T)).  Given u, v C V(T), let pr(u, v) denote the u ~ v 

path in T. Besides, given a path P in the graph G, IP] will denote its length. 

Lemma 3.1. Let T be a tree o f  type I, II or III. For any pair u,v o f  different vertices 

o f  T, the lenoth o f  the path 

Us, Us--1 . . . . .  Ul ,  pT(U, V), 91 . . . . .  Vs '--I ,  Vs' (1) 

is at most n. Moreover, N*(u) N N*(v) = O. 
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tOO U_ lln 

Fig. 3. Tree of type I with the paths Pu and Pv. 

Proo f  According to the type of  T, consider the following cases: 
Type I: By the structure of  the path T, if  u = wi, O<<.i<<.n, we have 

lus~U[<~ { i, O<~i<-in, 
n - i ,  i n < i<<.n. 

Moreover, if  u = wi and v = w 2, O~<i < j<~n, then ]pr(u,v)] = j -  i. Therefore, the 
length ]Us ~ u] + ]pr(u,v)] + Iv ~ vs,] of  the path given in (1) is bounded by 

i + ( j - i ) + j = 2 j < ~ n ,  O<~i < j < ~ i  n, 
i + ( j - i ) + ( n - j ) = n ,  O<~i<~½n, i n < j<~n, 
( n - i ) + ( j - i ) + ( n - j ) = 2 ( n - i )  < n ,  in < i < j < . n .  

See Fig. 3. 

Type II: First, suppose that p r ( u , z )  and pr ( z , v )  have a common subpath of  length 

k > 0, and assume [pr(u,z)[ >~[pr(z, v)[. Clearly, the length of  the path u~, u s - l , . . . ,  u l, 
u is at most r - d (u ,F) .  Analogously, the length of  v, vl , . . . ,Vs,-1,vs,  is at most 

r - d ( v , V ) .  Moreover, [pr(u,z  )] > . r - d ( u , F ) ,  [pr(z,v)] > ~ r - d ( v , F )  and Ipr(z,v)[ <~k + 
1. Thus, the length of  (1) is upper bounded by 

(r - d ( u , F ) )  + [pr(u,z)l  + [pr(z,v)l  - 2k + (r - d ( v , F ) )  

<~2([pr(u,z)] + [pv(z,v)[ - k )<<.Z([pr(u,z)[ + 1)~<n. (2) 

I f  p r ( u , z )  and pr(z ,  v) are edge disjoint paths, clearly ]pr(u ,z )[+lpr(z ,  v)[ = [pr(u,  v)[ 
_< i n and, reasoning as in Eq. (2), we find that the length of  (1) is bounded by 

(r - d ( u , F ) )  + [pr(u,z)] + [pr(z,v)] + (r - d ( v , F ) )  

<~2([pr(u,z)[ + [pr(z,v)l)<.n.  

Type III: The length of  the path given in (1) is now bounded by 

lus ~ u[ + Ipr(u ,v)[  + Iv ~ vsl. 

But [Us +-+ u[ and Iv +-~ Vs] are at most r -  1 and p > ~ 2 ( r -  1). Besides, we clearly 

have IPr(U,v)l ~<(n - 2 p )  + p since in the worst case p r ( u , v )  contains vertices of  T ~ 
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which has diameter p. Thus, the length of  (1) is bounded by 

2 ( r -  1 ) +  p + ( n -  2p)  = n -  p +  2 r - 2 < . n .  

Note that if  p = 0 (and so r = 1 ), the above bound is in fact n - 1 since in this case 

Ipr(u,v)] <~n - 1. 
These results imply that all the vertices in (1) must be different and that N * ( u ) A  

N*(v) = 0, otherwise 9(G)<~n + 2  contradicting l > ½n. [] 

Given a tree T contained in C such that T contains a vertex z E Z(C),  let N*(T)  

be the set Uu~v(r)N*(u). Moreover, if T is o f  type I, II or III, then [N*(T)[/> [N(T)I. 

Besides, given x E N*(T)  let f x  denote a vertex in F such that d(x, f x )  = d(x,F). 

Lemma 3.2. Let n>~O be an even integer and let G be an l-geodetic graph, l > ½n. 

I f  F c V(G), IF[ < ( n +  1 ) 6 - 2 n ,  is non-trivial, then in any component o f  G - F  

there exists a vertex z such that d(z,F)>>.l- ½n. 

Proof The proof  goes through the following argument: in any given component C 

of  G - F  a tree T ~ of  order n + 1 containing a vertex z E Z(C), and such that 

IN*(T')I/> IN(T')I >~(n + 1)6 - 2n > IF] can be found . Thus, we have f x  = f y  = f 
for some x ,y  E N*(T~), x ~ y. Vertices x and y are adjacent to Us and v~,, respectively, 

endvertices o f  the paths Pu = U, Ul . . . . .  u~ and Pv = V, Vl . . . . .  v~, for some u and v in 

V(TI). By the construction of Pu and Pv , it is clear that a cycle containing us, vs, and 

f is formed by considering the closed walk 

f +-~X, Us,...,ul,pr,(U,V),Vl .. . .  Vs',y +-* f ,  (3) 

where f ~ x and y ~ f are shortest paths. As we will see, tree T'  is in general 

a tree obtained by adding a vertex to a tree T of  type II or type III. In any case, 

Lemma 3.1 will assure that the length o f  (3) is at most d ( x , F ) + d ( y , F ) + n + 2 .  Thus, 

d(x ,F)  + d (y ,F )  + n + 2 >~9(G) ~>2l + 1. It follows that either x or y is at distance at 

least l - ½n from F,  as claimed. Moreover, for any z E Z(C), r = d(z,F)>~l - ½n. 

Certainly any component C of  G - F  contains a tree o f  type II or type III. Just 

begin at a vertex z o f  Z(C),  form two paths towards F and stop if either the length of  

the combined path (with z as a middle vertex) has length ½n or if  the endvertices have 

distance 1 to F. Now construct from this combined path a tree of  type II or type III 

as described above. However, to handle some particular values of  n and r = d(z ,F)  it 

is useful to consider trees of  type I. Note that the above reasoning proves the lemma 

when C contains a tree T of  type I (T I = T in this case). 
(a) Suppose that C contains a tree T of  type II (n~>2). Suppose also that for a 

certain vertex w E V(T), the path Pw = W, Wl . . . . .  w~ has length s > 0. In this case, 

let T' be the tree obtained by joining to T the edge WWl, and consider now N*(T').  

Reasoning as in the proof  o f  Lemma 3.1, we conclude that for any pair u, v o f  different 

vertices o f  T', N * ( u ) A  N*(v) = 0 and the length o f  path (1) is at most n. Since T'  

has order n + 1, we have ]N*(T')[ ~>(n + 1 ) 6 -  2n > IF[ and f x  = f y  = f for some 
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x , y  E N*(T ' ) .  So, a cycle o f  length at most d ( x , F )  + d ( y , F )  + n + 2 is found from 

the closed walk (3). It follows that either x or y is at distance at least l - ½n from 

F. 
I f  T is such that for every w E V(T)  the length of  the corresponding path Pw is 

0, let v f[ V ( T )  be a vertex adjacent to an endvertex u of  P~, the path of  length ½n 

that contains vertex z (by Proposition 3.1 and the definition of  T, Pz ~ is a subpath of  

a path Pz of  length ½n + 1). Let T ~ be the tree obtained by joining to T the edge vu. 

Now, consider the path P~ = Vo, vl . . . . .  Vs, defined with respect to T ~. The length of  

the path 

Vs, Vs--1 . . . . .  Vl, v, pr (u ,  w )  (4) 

is bounded by (r - d ( v , F ) )  + 1 + Ipr(u,w)l, for any w E V(T) .  Let us consider the 

following subcases: 

(a.1) I f n  > 2, since z is not an endvertex of  the path Pz ~, we have r - d ( v , F )  

<~ Ipr,(v,z)l <, ½n and the length o f  (4) is at most ' n  + ' n  + 1 = n + 1. If  the length 

of  (4) is precisely n + 1, then d(vs, F )  = r and the path pT(z ,u) ,v ,  vl . . . . .  Vs is a tree 

of  type I contained in C. So, in this case the lemma holds. On the other hand, if the 

length of  (4) is bounded by n, consider N*(T ' ) .  Again we have IN*(T')I > IFI and, 

reasoning as before, a vertex x such that d ( x , F ) > ~ l -  ½n can be found in C. 

(a.2) In the case n = 2, if r = d ( z , F )  -- 1, then the path Pv = v is trivial and the 

length of  (4) is at most 2. Else, when r > 1, take as v a vertex adjacent to z and 

reason as in case (a.1). In particular, if d ( v , F )  -- r - 1, consider the tree o f  type I 

formed by z, v, vl, where v, vl is Pv. 

(b) Now let us consider a tree T of  type III contained in the given component C 

(n >~2). If  Pw is non-trivial for at least one vertex w in V(T) ,  the lemma is proved as 

in case (a). I f  the length o f  Pw is 0 for every w E V(T) ,  then join to T an edge uv for 

some v q~ V ( T )  adjacent to u E V(T).  I f  p > 0, reasoning as in the proof o f  Lemma 

3.1, we obtain that, for any w E V(T) ,  the length o f  the path Vs . . . . .  Vl,V, p r ( u , w )  is 

now bounded by 

( r -  1 ) + l + p + ( n - 2 p ) = r - p + n < , n ,  

because p>~2(r - 1). I f  p = 0 (and r = 1), then vs = v and the length of  v, p r ( u , w )  

is again at most n. 

Now, reasoning as in case (a), the vertex claimed by the lemma is found. [] 

When n is an odd integer, apply Lemma 3.2 to n ~ -- n ÷ 1 to obtain the following 

corollary. 

Corol lary  3.1. Let  n be an odd positive integer and let G be an l-geodetic graph, 

l > ½(n+ 1). I f F c  V(G), IFI < ( n +  1 ) 6 - 2 n ,  is non-trivial, then in any component 

o f  G - F there exists a vertex z such that d ( z , F )  >~ l - ½(n + 1). 
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A sufficient condition for x(n)  to be optimum is given in the following theorem. 

Theorem 3.1. Let  G be an l-geodetic graph with diameter D. Then, x (n)>~(n+ 1 ) 6 -  

2n i f  

(a) n is even and D < ~ 2 l -  n -  1; or 

(b) n is odd and D <~ 2l - n - 2. 

P r o o f  Let F C V(G), IF[ < (n + 1 ) 6 -  2n, be a non-trivial vertex set. Let us consider 

the case when n is even. We will show that, if D < 2 l -  n, then G -  F is connected, 

that is, between any pair o f  vertices x, y E V(G)  there is in G an x ~ y path that 

contains no vertex o f F .  Since l<~D, condition D < 2 l -  n implies n < l. 

According to Lemma 3.2, in G - F there exist x ~ x ~ and y ~ y~ paths such that 

d(x~,F) and d ( j , F )  are at least l - ½n. Therefore, an x ~ ~ y~ path o f  length at most 

D < 2 ( / -  in)  avoids F.  

The case n odd is proved analogously from Corollary 3.1. [] 

In what follows the edge version o f  Theorem 3.1 is considered. We only give a 

sketch of  the proof since it essentially goes along the same ideas used before. 

Theorem 3.2. Le t  G be an l-geodetic graph with diameter D. Then, 2(n)>~(n+ 1 ) 6 -  

2n i f  

(a) n is even and D<<.2l - n; or 

(b) n is odd and D < ~ 2 l - n -  1. 

Suppose that G -  A is not connected and let A be minimal so that each compo- 

nent C of  G - A  is an induced subgraph. Now, let F denote the set o f  endvertices 

o f  the edges o f  A belonging to C. As in the vertex case, the existence of  a ver- 

tex z E C such that d(z,F)>>.l - ½n can be assured. The proof is based again on 

the existence in C of  a tree T' of  order n + 1, obtained from a tree T of  type I, 

II or III, which satisfies Lemma 3.1. However, the distance d (u ,F ) ,  u E V(TP), can 

now be equal to zero. From the extension of  T ~, formed by attaching a path Pu to 

each vertex u E V(T ' ) ,  the existence from the closed walk (3) o f  a cycle containing 

z is obtained. The main difference from the vertex case is the following: if  u E F 
and the path Pu of  the extension of  T t is trivial (s = 0), then define N*(u)  = {u}. 

Moreover, for each edge of  A incident to such a vertex u consider a trivial path 

u~fu.  
The results given by Theorems 3.1 and 3.2 for n = 2 were previously obtained by 

the authors [5]. Besides, Theorems 3.1 and 3.2 prove, when n is even, the conjecture 

also stated in [5] that, for all n, D<~21 - n - 1 [D<~2l - n] suffices to assure x(n)>>. 

(n + 1 ) 6 -  2n [)(n)>/(n + 1 ) 6 -  2n]. 
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