
Science of Computer Programming 6 (1986) 207-211 
North-HoUand 

207 

S M A L L  P R O G R A M M I N G  EXERCISES 10 

M. REM 

Department of Mathematics and Computing Science, Eindhoven University of Technology, 
5600 MB Eindhoven, The Netherlands 

Our two new exercises are graph problems. In the first one the Strahler number  
of a given binary tree has to be computed. It is a nice little exercise allowing a 
solution that is l inear in the size of the tree. 

The other exercise involves an acyclic directed graph. Such a graph has sources, 

i.e. vertices without incoming arcs. We have to determine all vertices that are at 
least a given 'distance'  removed from the sources. An unexpected property of this 

exercise is that although the arcs have weights attached to them, we can still find 
a solution that is l inear in the number  of arcs and vertices of the graph. 

~xercise 25: Strahler number of  a binary tree 

A binary tree T is either empty or it consists of a vertex, the root of T, and two 

subtrees To and 7"1, each of which is again a binary tree. The Strahler number or(T) 
of  a_ binary tree T is defined as follows, o-(T) = 0 if  T is empty. If  T has subtrees 
To and 7"1 the Strahler number is given by 

or(To) max ~(T1) if or(To) # cr(Tl), 
or(T)= ~(To)+ 1 if cr( To) = cr( T~). 

We have to compute or(T) of a given binary tree T of N vertices, N I> 1. The 

vertices are numbered 0 through N -  1. Vertex 0 is the root of T. As in Exercise 17, 
the tree is recorded in an integer array v(i: 1 <~ i < N):  

(Ai: 1 ~< i < N:  the tree with vertex v(i) as its root has a 
subtree with vertex i as its root) 

The functional specification is 

I[N: int; {N>~ 1} 

v(i: 1 ~< i <  N): array of int; 

{v represents binary tree T} 

I[p: int, 

S 

{p = or(T)} 

]1 
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Exercise 26: K-sequel o f  an acyclic digraph 

Given is an acyclic directed graph G each arc of which has a positive weight. 
The weight of a path is the sum of the weights of  its arcs. A vertex without 
predecessors is called a source. For each K >t 1 the K-sequel of  G is defined as the 
set of all vertices j for which the weight of each path from a source to j is at least 
K. 

Graph G is represented in arrays b and e in the usual way. The weights are given 

by an array w(i: 0 << - i<  M): the arc from vertex j to vertex e(i), b(j)<- i<  b ( j+  1), 
has weight w(i). 

We are requested to find a statement list S such that 

I[ N, M , K :  int; {N>~ I A M ~O A K >~ I} 

b(j :  O<~j << - N): arrayof int; 

e, w ( i: 0 <~ i < M): array of in t; 

{suc(G, b, e)A G acyclic A (Ai: 0~<i<  M: w(i)>t 1)} 

I[a(j: 0~<j < N): array of bool; 

S 

{(Aj: 0<~ j<  N:  a(j)=- - (j  in the K-sequel of  G))} 

]1 

]1 

Solution of  Exercise 23 (problem of  the masks) 

A P(i: 0 ~ < i < M ) - m a s k  in X ( j : O < ~ j < N )  is an increasing integer sequence 

r(i: 0<~ i < M )  that satisfies 

(Ai: 0<~ i < M: 0 < - r ( i ) <  NA P(i) = X(r( i ) ) ) .  

We have to determine S such that 

I[M, N:  int; {M>~ 1A N>~0} 

P( i: 0 <~ i < M ) ,  X ( j :  0 <~j < N):  array of int; 

{(Ai: 0 ~  < i < M :  (Nh: 0 ~  < h < M:  P(h) = i) = 1)} 

I[a: int; 

S 
{a = (number of P(i: 0<~ i< M)-masks  in X ( j :  0<~j<  N))} 

]1 

]1 
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If  we replace in the postcondition the constant N by a variable n we get the 

following invariant: 

a = (number of  P(i: 0 < - i< M)-masks  in X(j :  O~<j< n)) 

AO<~n<<.N. 

It can be initialized with n, a = O, O. In order to determine the number of P(i: O~ i 
M ) - m a s k s  in X( j :  0 <~j < n + 1) we need to know the number of  P( i :  0 <~ i < M -  
1)-masks in X( j :  O ~ j  < n), since variable a has to be increased by that number if 

P ( M -  1) = X(n) .  Consequently, rather than a single count of masks we need a 

whole array b(h: O~ h ~ M)  of them. The invariant then becomes 

P: (Ah: O<-h<~ M: b(h)= B(h, n)) 

AO<~n<~N 

in which B(h, n) denotes the number of P(i: 0<~i< h)-masks in X( j :  O<~j< n). 

The proper  initialization for n = 0 and the way in which array b should be 

changed when increasing the value of  n follow directly from the recurrence relation 

for B(h, n): 

B(O, n)= 1, 

B(h, O) = 0  for h~> 1 

and for h >10 and n I> O, 

~ B ( h + l , n ) + B ( h , n )  i f X ( n ) = P ( h ) ,  
B ( h +  1, n-t- 

1 ) = [  B(h+ 1, n) if X ( n ) #  P(h). 

If  O~ X ( n )  < M there exists one h such that X(n)  = P(h). In order to determine 

that h we need the inverse of P. To that end, we introduce an integer array 

q(h: 0<~ h < M)  and establish 

(Ah: 0<~ h < M: q(P(h))= h) 

The solution is now straightforward. 

S: I[n: int; 

q(h: 0<~ i< M),  b(h: 0 < - h <~ M):  array of int; 

b: (0) = 1 

; I[h: int; h:=O 

; d o h # M - ~ q : ( P ( h ) ) = h ; h : = h + l ; b : ( h ) = O o d  

]l 

; n : = O  
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d o n #  N 

-~ if O < ~ X ( n ) A X ( n ) < M  

-> [[h: int; h := q ( X ( n ) )  ; b: ( h + l ) = b( h + l ) + b(h )]l 

[q O> X ( n ) v  X(n)>~ M 

-~ skip 

fi 

; n :=  n + l  

od 

; a : =  b ( M )  

]1 
Our solution has a computation time that is linear in M and N. 

Solution o f  Exercise 24 (recognizing h-sequences) 
An h-sequence is a sequence of zeros and ones generated by the grammar  

(h-seq) : := 01 l(h-seq)(h-seq). 

We have to solve S in 

I[N: int; {N~>0} 

H(i:  0<~ i < N ) :  array of int; 

{(Ai: 0 ~  < i <  N :  H(i )  = 0 v  H(i )  = 1)} 

I[b: bool; 

S 

{b ~ ( H ( i :  0<~ i <  N )  is an h-sequence)} 

]1 

]1 
In the second part of  the grammar a concatenation of two h-sequences occurs, 

so we should be looking at the problem of recognizing concatentations of  h- 

sequences. Since a proper prefix of an h-sequence is not an h-sequence, a sequence 

of  zeros and ones can in at most one way be partit ioned into a concatenation of  

h-sequences. 
A 0 by itself is an h-sequence. Consequently,  a sequence of zeros and ones 

that starts with a 0 is a concatenation of  m, m ~> 1, h-sequences if and only if the 
rest of  the sequence is a concatenation of  m -  1 h-sequences. A 1 followed by two 
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h-sequences is an h-sequence. Consequently, a sequence of zeros and ones that 

starts with a 1 is a concatenation of  m, m I> 1, h-sequences if and only if the rest of  

the sequence is a concatenation of  m + 1 h-sequences. 

The program follows immediately from these two observations. Its invariant is 

H( i :  0 << - i <  n) followed by m h-sequences is an h-sequence 

AO<~n<~NAm>~O. 

S: [[m, n: int; m, n := 1, 0 

; d o m ~ O ^ n #  N 

-> if  H ( n ) = O - > m : = m - 1  

[q H ( n ) =  1-> m:= m + l  

fi 

; n : = n + l  

od 

; b : = ( m = O ^ n = N )  

]1 

The program has an execution time that is proportional to N. 


