
Science of Computer Programming 6 (1986) 207-211
North-HoUand

207

S M A L L P R O G R A M M I N G EXERCISES 10

M. REM

Department of Mathematics and Computing Science, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands

Our two new exercises are graph problems. In the first one the Strahler number
of a given binary tree has to be computed. It is a nice little exercise allowing a
solution that is l inear in the size of the tree.

The other exercise involves an acyclic directed graph. Such a graph has sources,

i.e. vertices without incoming arcs. We have to determine all vertices that are at
least a given 'distance' removed from the sources. An unexpected property of this

exercise is that although the arcs have weights attached to them, we can still find
a solution that is l inear in the number of arcs and vertices of the graph.

~xercise 25: Strahler number of a binary tree

A binary tree T is either empty or it consists of a vertex, the root of T, and two

subtrees To and 7"1, each of which is again a binary tree. The Strahler number or(T)
of a_ binary tree T is defined as follows, o-(T) = 0 if T is empty. If T has subtrees
To and 7"1 the Strahler number is given by

or(To) max ~(T1) if or(To) # cr(Tl),
or(T)= ~(To)+ 1 if cr(To) = cr(T~).

We have to compute or(T) of a given binary tree T of N vertices, N I> 1. The

vertices are numbered 0 through N - 1. Vertex 0 is the root of T. As in Exercise 17,
the tree is recorded in an integer array v(i: 1 <~ i < N):

(Ai: 1 ~< i < N: the tree with vertex v(i) as its root has a
subtree with vertex i as its root)

The functional specification is

I[N: int; {N>~ 1}

v(i: 1 ~< i < N): array of int;

{v represents binary tree T}

I[p: int,

S

{p = or(T)}

]1
31

0167-6423/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82217466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

208 M. Rem

Exercise 26: K-sequel o f an acyclic digraph

Given is an acyclic directed graph G each arc of which has a positive weight.
The weight of a path is the sum of the weights of its arcs. A vertex without
predecessors is called a source. For each K >t 1 the K-sequel of G is defined as the
set of all vertices j for which the weight of each path from a source to j is at least
K.

Graph G is represented in arrays b and e in the usual way. The weights are given

by an array w(i: 0 << - i< M): the arc from vertex j to vertex e(i), b(j)<- i< b (j+ 1),
has weight w(i).

We are requested to find a statement list S such that

I[N, M , K : int; {N>~ I A M ~O A K >~ I}

b(j : O<~j << - N): arrayof int;

e, w (i: 0 <~ i < M): array of in t;

{suc(G, b, e)A G acyclic A (Ai: 0~<i< M: w(i)>t 1)}

I[a(j: 0~<j < N): array of bool;

S

{(Aj: 0<~ j< N: a(j)=- - (j in the K-sequel of G))}

]1

]1

Solution of Exercise 23 (problem of the masks)

A P(i: 0 ~ < i < M) - m a s k in X (j : O < ~ j < N) is an increasing integer sequence

r(i: 0<~ i < M) that satisfies

(Ai: 0<~ i < M: 0 < - r (i) < NA P(i) = X(r(i))) .

We have to determine S such that

I[M, N: int; {M>~ 1A N>~0}

P(i: 0 <~ i < M) , X (j : 0 <~j < N): array of int;

{(Ai: 0 ~ < i < M : (Nh: 0 ~ < h < M: P(h) = i) = 1)}

I[a: int;

S
{a = (number of P(i: 0<~ i< M)-masks in X (j : 0<~j< N))}

]1

]1

Small programming exercises 209

If we replace in the postcondition the constant N by a variable n we get the

following invariant:

a = (number of P(i: 0 < - i< M)-masks in X(j : O~<j< n))

AO<~n<<.N.

It can be initialized with n, a = O, O. In order to determine the number of P(i: O~ i
M) - m a s k s in X(j : 0 <~j < n + 1) we need to know the number of P(i : 0 <~ i < M -
1)-masks in X(j : O ~ j < n), since variable a has to be increased by that number if

P (M - 1) = X(n) . Consequently, rather than a single count of masks we need a

whole array b(h: O~ h ~ M) of them. The invariant then becomes

P: (Ah: O<-h<~ M: b(h)= B(h, n))

AO<~n<~N

in which B(h, n) denotes the number of P(i: 0<~i< h)-masks in X(j : O<~j< n).

The proper initialization for n = 0 and the way in which array b should be

changed when increasing the value of n follow directly from the recurrence relation

for B(h, n):

B(O, n)= 1,

B(h, O) = 0 for h~> 1

and for h >10 and n I> O,

~ B (h + l , n) + B (h , n) i f X (n) = P (h) ,
B (h + 1, n-t-

1) = [B(h+ 1, n) if X (n) # P(h).

If O~ X (n) < M there exists one h such that X(n) = P(h). In order to determine

that h we need the inverse of P. To that end, we introduce an integer array

q(h: 0<~ h < M) and establish

(Ah: 0<~ h < M: q(P(h))= h)

The solution is now straightforward.

S: I[n: int;

q(h: 0<~ i< M), b(h: 0 < - h <~ M): array of int;

b: (0) = 1

; I[h: int; h:=O

; d o h # M - ~ q : (P (h)) = h ; h : = h + l ; b : (h) = O o d

]l

; n : = O

210 M. Rein

d o n # N

-~ if O < ~ X (n) A X (n) < M

-> [[h: int; h := q (X (n)) ; b: (h + l) = b(h + l) + b(h)]l

[q O> X (n) v X(n)>~ M

-~ skip

fi

; n := n + l

od

; a : = b (M)

]1
Our solution has a computation time that is linear in M and N.

Solution o f Exercise 24 (recognizing h-sequences)
An h-sequence is a sequence of zeros and ones generated by the grammar

(h-seq) : := 01 l(h-seq)(h-seq).

We have to solve S in

I[N: int; {N~>0}

H(i: 0<~ i < N) : array of int;

{(Ai: 0 ~ < i < N : H(i) = 0 v H(i) = 1)}

I[b: bool;

S

{b ~ (H (i : 0<~ i < N) is an h-sequence)}

]1

]1
In the second part of the grammar a concatenation of two h-sequences occurs,

so we should be looking at the problem of recognizing concatentations of h-

sequences. Since a proper prefix of an h-sequence is not an h-sequence, a sequence

of zeros and ones can in at most one way be partit ioned into a concatenation of

h-sequences.
A 0 by itself is an h-sequence. Consequently, a sequence of zeros and ones

that starts with a 0 is a concatenation of m, m ~> 1, h-sequences if and only if the
rest of the sequence is a concatenation of m - 1 h-sequences. A 1 followed by two

Small programming exercises 211

h-sequences is an h-sequence. Consequently, a sequence of zeros and ones that

starts with a 1 is a concatenation of m, m I> 1, h-sequences if and only if the rest of

the sequence is a concatenation of m + 1 h-sequences.

The program follows immediately from these two observations. Its invariant is

H(i : 0 << - i < n) followed by m h-sequences is an h-sequence

AO<~n<~NAm>~O.

S: [[m, n: int; m, n := 1, 0

; d o m ~ O ^ n # N

-> if H (n) = O - > m : = m - 1

[q H (n) = 1-> m:= m + l

fi

; n : = n + l

od

; b : = (m = O ^ n = N)

]1

The program has an execution time that is proportional to N.

