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a b s t r a c t

A measurement technique of viscoelastic properties of polymers is proposed to investigate complex Pois-
son’s ratio as a function of frequency. The forced vibration responses for the samples under normal and
shear deformation are measured with varying load masses. To obtain modulus of elasticity and shear
modulus, the present method requires only knowledge of the load mass, geometrical characteristics of
a sample, as well as both the amplitude ratio and phase lag of the forcing and response oscillations.
The measured data were used to obtain the viscoelastic properties of the material based on a 2D numer-
ical deformation model of the sample. The 2D model enabled us to exclude data correction by the empir-
ical form factor used in 1D model. Standard composition (90% PDMS polymer + 10% catalyst) of silicone
RTV rubber (Silastic� S2) were used for preparing three samples for axial stress deformation and three
samples for shear deformation. Comprehensive measurements of modulus of elasticity, shear modulus,
loss factor, and both real and imaginary parts of Poisson’s ratio were determined for frequencies from
50 to 320 Hz in the linear deformation regime (at relative deformations 10�6 to 10�4) at temperature
25 �C. In order to improve measurement accuracy, an extrapolation of the obtained results to zero load
mass was suggested. For this purpose measurements with several masses need to be done. An empirical
requirement for the sample height-to-radius ratio to be more than 4 was found for stress measurements.
Different combinations of the samples with different sizes for the shear and stress measurements exhib-
ited similar results. The proposed method allows one to measure imaginary part of the Poisson’s ratio,
which appeared to be about 0.04–0.06 for the material of the present study.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction one-dimensional deformation of a thin long rod. In the simplest
After influential studies of Cauchy, Green, Stokes and other
founders of material strength theory it is now commonly accepted
that elastic properties of an isotropic material are characterized by
only two parameters (Timoshenko, 1953). Accordingly, any defor-
mation field can be expanded into two elementary components
of volume-conservative shear deformations and volume-noncon-
servative elastic deformations (Landau and Lifschitz, 1986).

The relation between the deformation and the applied shear
stress can be expressed through the shear modulus G. Similarly,
the deformation due to uniform compression is associated with
the bulk modulus K, which is one of the thermodynamic parame-
ters of material. This is because K ¼ � V

ð@V=@PÞT
is associated with

the isothermal compressibility @V
@P

� �
T . Besides these fundamental

material properties, the modulus of elasticity E and the Poisson’s
ratio m are used frequently in practice. The modulus of elasticity
E characterizes the relation between an applied axial load and
ll rights reserved.
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case the following Hooke’s law is hold:

E ¼ F
S

D‘
‘
;

where F is the applied force and S is the cross section of the rod.
‘ and D‘ are the rod length and the elongation, respectively. Pois-
son’s ratio, which is the ratio between the lateral contraction to
the axial elongation, is given as (Landau and Lifschitz, 1986)

m ¼ 1
2

3K � 2G
3K þ G

:

Since K and G are always positive, the Poisson’s ratio varies for dif-
ferent materials from �1 (with K = 0) to 0.5 (with G = 0). Poisson’s
ratio m � 0.5 corresponds to small shear modulus G compared with
the bulk modulus K. The parameters are related to each other as

K ¼ E
2ð1� 2mÞ ; G ¼ E

2ð1þ mÞ :

Hence, it is sufficient to know only two among the four param-
eters to calculate a three-dimensional linear deformation. Also, the
Lame coefficients, which are combinations of K and G, are used
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sometimes. Thus, to determine the elastic properties of a material
it is essential to perform two experiments with two different kinds
of the deformation. In the ideal case they are the pure shear defor-
mations and the normal deformations. The latter, however, is re-
placed frequently by bending, where the resulting deformation is
a superposition of the shear deformations and the normal
deformations.

Under the action of dynamic loading, the deformation of visco-
elastic material from its equilibrium position can occur with a cer-
tain delay due to viscous friction inside the material. Under
harmonic forcing, this delay manifests itself by a phase shift be-
tween the applied load and the deformation. The shift is propor-
tional to the viscous losses in the material. Besides, the modulus
of elasticity and the shear modulus become frequency dependent
complex functions

E� ¼ ReðE�Þ þ iImðE�Þ ¼ Eð1þ ilEÞ
G� ¼ ReðG�Þ þ iImðG�Þ ¼ Gð1þ ilGÞ;

where lE and lG are loss tangents for stress and shear deformations.
If the Poisson’s ratio at dynamic deformations is real, then
lE = lG = l. Nonzero imaginary part of the Poisson’s ratio means
that there is a phase delay or lead of a transverse strain with respect
to the axial strain under dynamic deformation, in which case lE and
lG can be different.

Ferry (1961) and Riande et al. (2000) summarized a number of
studies devoted to the description of these dynamical properties of
materials. Recently there appeared theoretical substantiation of
possibility of complex-number frequency dependent Poisson’s ra-
tios (Tschoegl et al., 2002; Lakes and Wineman, 2006). Literature
survey reveals that the attempts to study Poisson’s ratio behavior
as a function of frequency from direct experiments are as follows.

Kästner and Pohl (1963) found a decrease of the real part of m
from 0.5 at f = 5 � 10�4 to 0.4 at f = 0.1 Hz for a polymethylmethac-
rylate (PMMA) sample. Imaginary part of m appeared to be small.
Koppelmann (1959) measured E and G of PMMA for frequencies
f = 10�5 to 10�1 Hz at temperatures from 20 �C to 100 �C. It was
found that the Poisson’s ratio depends on neither frequency nor
temperature. Giovagnoni (1994) measured axial and lateral defor-
mations in frequency range from 80 to 720 Hz for a series of sam-
ples in glassy state. The Poisson’s ratio appeared to be independent
of frequency. Willis et al. (2001) determined E and G of a polyure-
thane using laser vibrometer and 2D model of sample deformation.
Poisson’s ratio was between 0.4 and 0.5 on the frequency range
from 200 to 2000 Hz.

Besides, indirect measurements of the Poisson’s ratio by means
of deformation measurements at different temperatures by apply-
ing the temperature–frequency analogy of Williams–Landel–Ferry
are also quite sporadic and controversial (see, e.g., Crowson and Ar-
ridge, 1979; Hausler et al., 1987 for review). Direct experimental
determination of the Poisson’s ratio requires high accuracy of the
measurements and must follow the standard protocol, which
includes:

– samples of the same material,
– measurements at the same temperatures and pressures,
– synchronism of the measurements.

Furthermore, the polymer samples should be prepared from a
homogeneous and isotropic material and its deformation should
be small to provide its linearity. Hence, the number of parameters
required to describe dynamic elastic deformation of a homoge-
neous material is essentially doubled compared to the static case.
However, the question whether the Poisson’s ratio becomes really
complex (and if so, than at which conditions) and frequency
dependent function is still open and requires further clarification.
The absence of systematic measurements of the Poisson’s ratio
for viscoelastic polymers in different temperature and frequency
regions can be explained partly by both the lack of reliable exper-
imental techniques and the absence of standard facilities. For fre-
quencies higher than 100 Hz, there exist several methods of
measurement of modulus of elasticity (or shear modulus) and loss
factor. They are described in review of Ferry (1961) and recent
example of Clifton et al. (2006). The method of measurements of
the modulus of elasticity and the loss factor used in Kulik and
Semenov (1986), Kulik et al. (2008) covers the frequency range
from 10 to 10 kHz at relative values of deformation of orders
10�4% to 5%. The method is essentially easy-to-operate and reliable
requiring no mechanical tuning and adjustment, the measurement
results being independent from the vibrator characteristics. In the
present study, this technique is extended allowing one to measure
additionally the dynamic shear modulus. Using raw measurement
results of both axial and shear deformations for the samples pre-
pared simultaneously from the same mixture, three-dimensional
deformations of the samples were calculated and the complex val-
ues of E, G and m have been estimated.
2. Mathematical model

2.1. Governing equations

Fig. 1 describes the samples under considerations in this study.
The cylindrical sample with radius R in Fig. 1(a) undergoes axial
deformations while the annular sample in Fig. 1(b) is associated
with shear deformations. The inner and outer radius of the annular
sample are R0 and R1, respectively. Both samples have the same
mass m and height H. The samples consist of the viscoelastic mate-
rial with the modulus of elasticity E, loss factor l and (assumed
complex-valued) Poisson’s ratio m. The samples are bonded to the
oscillating table on one side and loaded with a mass M on the other
side. The table oscillates harmonically with amplitude A0 and fre-
quency x. The load mass M attached on the other side of the sam-
ple exhibits the same frequency of oscillation with the amplitude
ZA0 and the phase lag h.

Displacement of any point inside the samples in the laboratory
cylindrical coordinate is described by two components

~n ¼ fðr; zÞêz þ gðr; zÞêr ;

where g(r,z) is the radial displacement and f(r,z) is the axial dis-
placement. The stress–strain relations are the form

rrr ¼ Eð1þ ilÞ m
ð1� 2mÞð1þ mÞ

@g
@r
þ g

r
þ @f
@z

� �
þ 1

1þ m
@g
@r

� �

rzz ¼ Eð1þ ilÞ m
ð1� 2mÞð1þ mÞ

@g
@r
þ g

r
þ @f
@z

� �
þ 1

1þ m
@f
@z

� �

rzr ¼
Eð1þ ilÞm
2ð1þ mÞ

@g
@z
þ @f
@r

� �

The governing equation for two-dimensional elastic wave in
isotropic medium (Landau and Lifschitz, 1986) takes the form

@2~n

@t2 ¼ C2
t D~nþ C2

‘ � C2
t

� 	
rðr �~nÞ; ð1Þ

where C2
t ¼

Eð1þilÞ
2qð1þmÞ ; C2

‘ ¼
Eð1þilÞð1�mÞ
qð1þmÞð1�2mÞ ; q ¼ m

pR2H
.

If torsional oscillations are excluded from the considerations
and harmonic loading is assumed, then the Navier equation in
Eq. (1) can be written explicitly as

C2
‘ r @g

@r � gþ r2 @2g
@r2 þ r2 @2f

@r@z

� 	
þ C2

t r2 @2g
@z2 � @2f

@r@z

� 	
þ r2x2g ¼ 0;

C2
‘ r @2g

@r@zþ
@g
@z þ r @2f

@z2

� 	
þ C2

t
@f
@r �

@g
@z þ r @2f

@r2 � r @2g
@r@z

� 	
þ rx2f ¼ 0:

ð2Þ
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Fig. 1. Schematic diagram of samples; (a) cylindrical sample under axial deformation and (b) annular sample under shear deformation.
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One can assume in the beginning that Poisson’s ratio is known
and the unknown values are only E and l. The procedure consists
in repeated determination of E1, E2 and l1, l2 for a pair of the sam-
ples with different load masses and at different assumed values of
Poisson’s ratios as described in the rest of this section. This allows
finding m in further postprocessing as discussed in more detail in
Section 3.3 and illustrated in Fig. 7.

2.2. Boundary conditions for cylindrical sample

The boundary conditions in cylindrical coordinate system can
be categorized as follows (see Fig. 1(a)):

(a) Absence of radial displacements at bonded surfaces

g ¼ 0 at z ¼ 0; ð3Þ
g ¼ 0 at z ¼ H; ð4Þ

(b) Axial harmonic displacements at the lower and upper
surfaces

f ¼ A0eixt at z ¼ 0; ð5Þ
f ¼ ZA0eiðxt�hÞ at z ¼ H; ð6Þ

(c) Absence of stresses at the side surface (at r = R)

rrz ¼ 0! @g
@z
þ @f
@r
¼ 0; ð7Þ

rrr ¼ 0! ð1� mÞ @g
@r
þ m

@f
@z
þ g

r

� �
¼ 0; ð8Þ

This condition to be fulfilled on the mobile sidewall of a sample
greatly complicates the solution procedure. For simplicity and pos-
sibility of solving these equations on personal computer, it is sug-
gested that the boundary conditions of Eqs. (7) and (8) be applied
at r = R. In Section 3.3 the results of this simplification are dis-
cussed and the realization method of correct boundary condition
on the sample sidewall is suggested.

To obtain E and l, after normalization of the displacements g
and f by oscillation amplitude A0 in Eqs. (2)–(8), only Z and h need
to be measured during tests. Then, the procedure to obtain E and l
is to solve an inverse problem defined by Eqs. (2)–(8). Toward this
end, measured data of the oscillation magnitude ratio Zand the
phase delay h are utilized. Unique solution is obtained with the
help of the following compatibility condition

M
@2f

@t2 ¼ �2p
Z R

0
rzzðH; rÞrdr; ð9Þ

which equates internal stress at the upper edge with the pressure
developed by the movement of the finite load mass M. After com-
bining Eq. (6) and rzz ¼ Eð1þilÞð1�mÞ

ð1þmÞð1�2mÞ
@f
@z in Eq. (9), we have finally
MZx2eiðxt�hÞ ¼ 2p Eð1þ ilÞð1� mÞ
ð1þ mÞð1� 2mÞ

Z R

0

@f
@z
ðH; rÞrdr: ð10Þ
2.3. Boundary conditions for annular sample

The boundary conditions in this case can be categorized as fol-
lows (see Fig. 1(b)):

(a) Absence of radial displacements at bonded surfaces

g ¼ 0 at r ¼ R0; ð11Þ
g ¼ 0 at r ¼ R1; ð12Þ

(b) Axial harmonic displacements at the inner and outer
surfaces

f ¼ A0eixt at r ¼ R0; ð13Þ
f ¼ ZA0eiðxt�hÞ at r ¼ R1; ð14Þ

(c) Absence of stresses at the upper and lower surfaces (at
z = ±H/2)

rrz ¼ 0! @g
@z
þ @f
@r
¼ 0; ð15Þ

rzz ¼ 0! ð1� mÞ @f
@z
þ m

@g
@r
þ g

r

� �
¼ 0; ð16Þ

The compatibility condition to obtain unique solution in this
case becomes

M
@2f

@t2 ðz;R1Þ ¼ �4pR1

Z H=2

0
rrrðz;R1Þdz

After combining Eqs. (12), (14) and rrr ¼ Eð1þilÞð1�mÞ
ð1þmÞð1�2mÞ

@g
@r , we have

finally

MZx2eiðxt�hÞ ¼ 4pR1Eð1þ ilÞð1� mÞ
ð1þ mÞð1� 2mÞ

Z H=2

0

@g
@r
ðz;R1Þdz: ð17Þ
2.4. Solution procedure

To solve the governing equations numerically, a pseudospectral
approximation of the wave equations with Nz � Nr mesh points
was employed (Canuto et al., 1988). A grid was set up based on
Chebyshev Gauss–Lobatto knots independently in z and r, produc-
ing tensor product grid. Let the rows and columns of the
(N + 1) � (N + 1) Chebyshev spectral differentiation matrix DN be
indexed from 0 to N. The entries of this matrix are given by the fol-
lowing rules (Canuto et al., 1988; Trefethen, 1990)
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ðDNÞ00 ¼ 2N2þ1
6 ; ðDNÞNN ¼ �ðDNÞ00;

ðDNÞjj ¼
�xj

2ð1�x2
j
Þ ; j ¼ 1; . . . N � 1;

ðDNÞij ¼
ci
cj

ð�1Þiþj

xi�xj
; i – j; i; j ¼ 1; . . . N � 1;

ð18Þ

where xk = cos(kp/N), k = 0,1, . . .,N and

ci ¼
2 i ¼ 0 or N

1 otherwise



: ð19Þ

Due to the incompatibility of the boundary conditions in the
corner points at r = R, z = 0, and r = R, z = H, where the first deriva-
tive of the deformations @f/@zand @ f/@r may become discontinu-
ous, the accuracy of the calculation of the integrals in Eq. (9) is
relatively low (Grinchenko and Meleshko, 1981). However, the cor-
ner singularities in these cases are quite weak and a reduction of
the error to an admissible value in using relatively small matrix
sizes can be achieved, e.g., by an appropriate coordinate transfor-
mation, which condense the knots at the corners (Tang and Trum-
mer, 1996). Toward this end, the following coordinate
transformation was employed:

y ¼ arctanðaxÞ
arctanðaÞ ; ð20Þ

which mapped the polynomial domain [�1;1] � [�1;1] onto itself.
Here, the scaling factor ais nondimensional. The knots concentrate
at the corners and become sparser in the bulk of the sample with
increasing scaling factor a. However, when the number of knots is
too limited in the bulk of the sample, the form of deformation can-
not be resolved anyway, if Nz and Nr are fixed small. In the numer-
ical tests described in the next section a = 2 was used. This value
was chosen on the trial basis to produce an ‘‘optimal” knot distribu-
tion, which is to minimize values of Nz and Nrfor production of the
results accurate enough for our purpose in the whole frequency
range under study and, hence, to accelerate the calculations. It
was found that as the number of knots in each direction is enlarged
from 12 to 20, the approximated values of E and l varied less than
1% in the region of interest.

Then, a linear coordinate transformation mapped the problem
from the polynomial domain [�1;1] � [�1;1] to the domain [0;
H] � [0;R]. Specifically, the mesh ðri; zjÞ; ri ¼ R cosð ipNr

Þ; zj ¼
H
2 ½cosð jpNr

Þ þ 1�; i ¼ 0; . . . ; Nr=2ðNr is even), j = 0, . . .,Nr is considered.
Let us represent the functions of displacements g(ri,zj) and

f(ri,zj) in the mesh points by the matrices (g)i,j and (f)i,j and denote
the first discrete derivative operators in r and zas Dr ¼ DNr=R and
Dz ¼ 2DNz=H, respectively. Due to the axial symmetry of the prob-
lem under consideration, we are interested only in the solution at
r 2 [0;R], in which case the matrix Drcan be reduced to the matrices
Dr for the even function f(ri,zj ) and eDr for the odd function g(ri,zj),
of which elements are given as

ðDrÞij ¼ ðDrÞij þ ðDrÞik; i; j ¼ 0 . . . ðN þ 1Þ=2; k ¼ N þ 1� j

ðeDrÞij ¼ ðDrÞij � ðDrÞik; i; j ¼ 0 . . . ðN þ 1Þ=2; k ¼ N þ 1� j
: ð21Þ

If we reassemble the matrices g and f into the column vectors
built by the columns of g and f written one by one (that is we rep-
resent them in the lexicographic order), the directional derivative
matrices may be expressed as tensorial (Kroneker) products and
become (Trefethen, 1990)

Dr ¼ Dr � Iz; eDr ¼ eDr � Iz; Dz ¼ Ir � Dz;

Drr ¼ D2
r � Iz; eDrr ¼ eD2

r � Iz; Dzz ¼ Ir � D2
z ;

Drz ¼ Dr � Dz; eDrz ¼ eDr � Dz; ð22Þ
where Iz and Ir are the unit (Nz + 1) and (Nr + 1) matrices, respec-
tively. Then, the original system of equations is approximated by
the following matrix equation

C2
‘ ðr2 eDrrþreDr� Ir�IzÞþC2

t r2Dzzþr2x2 C2
‘ �C2

t

� 	
r2Drz

C2
‘ �C2

t

� 	
ðreDrzþDzÞ C2

t ðrDrrþDrÞþC2
‘ rDzzþrx2

2
64

3
75 g

f

� �
¼0:

ð23Þ

Boundary conditions were applied explicitly by changing the
corresponding rows in the left and right-hand sides of the equa-
tions (Trefethen, 1990) to make inhomogeneous problems, which
are then easily solved by the left matrix division for every fre-
quency point and every value of r. Final approximations of E and
l were obtained by Gauss–Newton iterations of the obtained solu-
tions to satisfy the compatibility condition, Eq. (9). The calculations
were performed in MATLAB.
3. Results and discussion

3.1. Material and sample preparation

Silicone RTV rubber Silastic� S2 (manufactured by Dow Corn-
ing) was used as a test material. This material is an addition-cure
type elastomer and is widely used for mold-making purpose. It is
one of the simplest silicon compounds (polydimethylsiloxane
[–O–Si(CH3)2–]n), which is a white fluid with viscosity 90 Poise in
the original state. The standard composition is 90:10 mixture of
polymer and catalyst.

Before mixing with the catalyst, the polymer was put in a
depressurized chamber for several hours to remove air bubbles in-
side. With the catalyst being added, the mixture is polymerized at
a room temperature and pressure. Typical polymerization time is
about 2 h, which is long enough for injection molding to form sam-
ples of desired shape. Photos of the cylindrical and annular sam-
ples are shown in Fig. 2. Two different pairs of samples
(cylindrical + annular) are presented in Fig. 3. After preparation of
the samples, their masses and linear dimensions are thoroughly
measured. Table 1 provides the sizes and the masses of the sam-
ples. In bonding the cylindrical samples to both the vibration table
and the load mass all contact metal parts were degreased and acti-
vated by a high-tack solvent-based cold-drying primer P-11 to im-
prove the adhesion; then the original polymer mixture was used
for the bonding. The thickness of the bonding layer was negligible.

3.2. Measurement setup

The detailed description of the measurement setup can be
found in Kulik et al. (2008). Fig. 4 presents the schematic diagram
of the measurement setup. A miniature accelerometers (Brüel &
Kj�r Type 4518-001) were mounted onto the load mass and the
base plate. Both accelerometers have virtually flat frequency re-
sponse up to 20 kHz. The small mass (1.65 g) of the miniature load
accelerometer enabled measurements with large mass ratios M/m.

The accelerometers were connected to a Brüel & Kj�r NEXUS�

amplifier Type 2963, in which the amplifier gains for both acceler-
ometers were adjusted to provide equal voltage outputs for the
same vibration excitations. A calibration test (shown in Fig. 5) with
both accelerometers mounted on a rigid plate indicated that the
magnitude and phase difference between two accelerometers were
less than 0.6% and 1� over frequencies of 10 	 650 Hz, respectively.
In order to improve accuracy, two sensors Brüel & Kj�r Type 4518-
001 produced in the same lot (with neighboring Serial Nos. 50887
and 50889) were used. The residual tiny differences in their sensi-
tivity (mainly phase shift) were compensated by a specially per-
formed calibration.



Fig. 2. Photos of the specimens; (a) cylindrical specimens and (b) annular specimens.
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This calibration was made several times during experiment –
before, in the middle of and after the experiment. These results
showed that sensitivity of the channels remained stable. Neverthe-
less, we made correction of sensitivity of reference accelerometer
after each calibration. Therefore, the relative vibration magnitude
Z and the phase difference h can be calculated directly from the
voltage signals from each channel of the vibration amplifier.

With the help of connector block BNC-2120 and analog-to-dig-
ital converter (National Instrument PCI-6023E), the signals were
digitized and logged to computer memory and to a hard disk. Each
time series consisted of 100,000 instant measurements obtained
with 50 kHz sampling frequency. Specially developed program
controlled fully automatically the data sampling and processing,
performing in particular

– Digitizing of sensor signals,
– Signal filtration to get rid of noise,
– Determination of the signal magnitude ratio Z and the phase

delay h,
– Frequency polling by a selected algorithm (with predetermined

limits and the number of frequencies as well as a law of their
variation),

– Maintenance of constant level of the reference signal (by either
acceleration or displacement).

The measurements of the stress and shear deformation were
carried out at the same frequencies to exclude the interpolation.
The fixed frequencies given by formula f = 20�2n/6, where n changes
from 0 to 30 correspond to 1/6 octave frequency spectrum. On per-
forming two series (shear and stress) of the tests, a set of the data
{f,Z,h} for different load masses is obtained. The measurements
were carried out at constant temperatures 25 �C. For this purpose
the vibrator with the samples and sensors was placed in a temper-
ature controlled chamber. When a new load mass is installed, the
settling time of at least half an hour was provided before measure-
ment for the temperature stabilization.

Fig. 6 demonstrates long-term aging characteristics of samples
at two different frequencies. As seen, the viscoelastic properties
exhibits relatively fast changes during the first 40 days and conse-
quent very slow changes. Therefore, all measurements were car-
ried out 2 month after preparing of the samples during 1 weak. It
allowed us to avoid the ageing problem.

In order to ensure linear deformation regime, the excitation
level was kept as small as possible, giving rise to the resulting
deformation level in the range of 10�6 to 10�4. It was made to
avoid the nonlinear deformation and stave off heating of a sample
over an internal friction.

3.3. Results

It is notable that in solving governing equations for the cases
under consideration one has to fix the Poisson’s ratio in advance.
The calculated values E and 2G(1 + m) as functions of the Poisson’s
ratio in the range from 0.22 to 0.495 are plotted in Fig. 5(a) at
f = 107 Hz. It is seen that the curves corresponding to the shear
and stress measurements intersect each other in a quite narrow



Fig. 3. Photos of the various pairs of specimens.

Table 1
Parameters of specimens.

No. Number of elements Element shape Height (mm) Outer diameter (mm) Inner diameter (mm) Specimen mass (g)

1 4 Cylinder 10.05 10.0 3.58
2 1 Cylinder 30.0 30.0 23.64
3 1 Cylinder 40.0 40.0 56.0
4 1 Hollow cylinder 16.95 24.0 17.0 4.37
5 1 Hollow cylinder 40.0 60.0 40.0 71.08
6 1 Hollow cylinder 7.97 30.0 22.0 7.20
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region of m. In an ideal case they should intersect at a point, of
which abscissa indicates the Poisson’s ratio of the material. How-
ever, both shear and stress measurements obtained at different
load masses are shifted to each other in a systematic manner.
The intersection point moves to smaller values of m for smaller
mass ratio M/m. The possible reason for this effect is illustrated
in Fig. 8. It consists in the barreling of cylindrical samples under
the effect of static loading (dash lines) which leads to decrease of
the sample height as D H = H0(1�gM/SE). However, it was found
that the height change compensation in calculating the viscoelastic
properties did not provide substantial improvement in the behav-
ior of the curves. Proper direct account for the static barreling re-
quires modification of Eqs. (7) and (8) (respectively, Eqs. (15) and
(16)), which makes the calculations more complicated. Hence, we
decided to perform the measurements with varying load masses
and then linearly extrapolate them to M = 0, as shown in
Fig. 7(b). Solid line in Fig. 8 sketches a curved side surface of a sam-
ple, which is a consequence of addition of the static and dynamic
deformations. Conditions of Eqs. (7) and (8) should be satisfied at
this surface. Since the application of those conditions in such a
way is extremely difficult, we propose a technique of extrapolation
of the results to zero load mass.

It is worthwhile to mention that in all tests for the same mate-
rial the curves E(M) cross about M = 0, indicating the reliability of
the present procedure. The final values of E were taken as mean
values of the extrapolated shear and stress values at M = 0. The lin-
ear extrapolation of the results at M = 0 made it possible to sub-
stantially improve the accuracy of determination of the
viscoelastic parameters. The accuracy of the method is enhanced
also, as the dynamic deformation of the sample is reduced. For
each particular material at a fixed frequency the viscoelastic
parameters are determined by the intersection of effective curves
obtained on calculating the shear and axial deformations at zero
load mass. This corresponds to the leftmost intersection point
(see Fig. 7(a)).

As mentioned above, the viscoelastic properties can be obtained
from the measurement data for one pair of cylindrical and annular
samples. Fig. 9 illustrates an important feature regarding the effect
of geometrical sizes of the samples on the calculated viscoelastic
properties. Results of measuring three pairs of the samples are
shown. The sample #1, which consisted of four cylinders
(D10 � H10) was selected for the axial stress measurement. The
three pairs are formed by combining the sample #1 and each of
three annular samples (#4, #5 and #6), respectively. The first sam-
ple for the shear measurements (sample #4) had radial ‘‘width”
ðDout � DinÞ=2 ¼3.5 mm and height 16.95 mm, giving the height to
width ratio of 4.84. The second sample (sample #5) had approxi-
mately twice larger linear dimensions with the ratio being 4.0.
On the contrary, the radial size of the third sample (sample #6)
was close to the first sample with the height to width ratio being
only 2.0.
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Modules of elasticity (Fig. 9(a)) and loss factors (Fig. 9(b)) of
the first pair (designated as ‘‘Cylinder #1–Anulus #4”) and the
second pair (‘‘Cylinder #1–Anulus #5”) are quite close to each
other. However, the third pair (‘‘Cylinder #1–Anulus #6”) shows
quite a large difference from others. Most notable difference is
the change of the calculated Poisson’s ratio in Fig. 9(c). The same
phenomena were observed in all six other pairs of samples stud-
ied, where Cylinder #2 (D30 � H30) and Cylinder #3 (D40 � H40)
were used for the stress measurements (not shown here for brev-
ity). This can be explained by some edge effects, which manifest
themselves when the height of the samples for shear measure-
ments is shortened.

As mentioned above, the determination of the Poisson’s ratio is
the major goal of the present study. Viscoelastic properties for
three pairs of samples, where a large-size annular sample (#5)
was fixed for shear measurements in Fig. 10. In the frequency
range from 50 to 320 Hz, the calculated modules of elasticity
(Fig. 10(a)), the loss factor (Fig. 10(b)) and the real part of the Pois-
son’s ratio (Fig. 10(c)) are virtually unchanged, as the geometrical
sizes experience 4 times variations. Tests with varying values of
the imaginary part of the Poisson’s ratio from �0.1 to 0.1 did not
cause any significant change in E. Similarly, the variations of real
part of the Poisson’s ratio did not affect the loss factor. Hence, after
the estimation of E and real part of the Poisson’s ratio, the loss fac-
tor was estimated in a similar manner as before with varying the
imaginary part of the Poisson’s ratio.

The imaginary part of the Poisson’s ratio in Fig. 10(d) is of par-
ticular interest. The curves for different sample sizes diverge at
high frequencies. At small frequencies (60–150 Hz), they are on
the contrary almost constant and quite close to each other, being
about 0.04–0.06. Similar result was obtained at small frequencies
for the other three pairs of samples, when sample No. 4 was used
for the shear measurements.
4. Conclusions

The method of determination of the viscoelastic properties of
the materials by means of measuring the forced vibration re-
sponse of the cylindrical and the annular samples is suggested.
A technique to calculate the dynamic modulus of elasticity, loss
factor and dynamic complex-number Poisson’s ratio based on a
two-dimensional model of the sample deformation was proposed.
The viscoelastic properties of silicone RTV rubber Silastic S2 were
determined. The samples for axial strain and shear strain mea-
surements were manufactured simultaneously of the same mix-
ture. The measurements were performed at small amplitudes in
the linear region of the dynamic deformations at temperature
25 �C. With a view to enhancing the calculation accuracy of the
viscoelastic properties, a technique of extrapolation of the results
of the measurements to zero load mass was proposed. As the geo-
metric sizes of the axial stress samples vary four times, the visco-
elastic properties are virtually unchanged. The role of the edge
effects becomes substantial as height to width ratio of a sample
is reduced from 4 to 2. In the frequency range from 50 to
320 Hz the measured real part of the Poisson’s ratio appeared
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to be about 0.48, while the imaginary one being 0.04–0.06 at least
at small frequencies.
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