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Logics* 

We present two (closely-related) propositional probabilistic temporal logics 
based on temporal logics of branching time as introduced by Ben-Aft, Pnueli, and 
Manna (Acta Inform. 20 (1983), 207-226), Emerson and Halpern ("Proceedings, 
14th ACM Sympos. Theory of Comput.," 1982, pp. 169-179, and Emerson and 
Clarke (Sci. Comput. Program. 2 (1982), 241-266). The first logic, PTLs, is inter- 
preted over finite models, while the second logic, PTLb, which is an extension 
of the first one, is interpreted over infinite models with transition probabilities 
bounded away from 0. The logic PTLf allows us to reason about finite-state 
sequential probabilistic programs, and the logic PTL b allows us to reason about 
(finite-state) concurrent probabilistic programs, without any explicit reference to 
the actual values of their state-transition probabilities. A generalization of the 
tableau method yields deterministic single-exponential time decision procedures for 
our logics, and complete axiomatizations of them are given. Several meta-results, 
including the absence of a finite-model property for PTLb, and the connection 
between satisfiable formulae of PTLb and finite state concurrent probabilistic 
programs, are also discussed. © 1986 Academic Press, Inc. 

1. INTRODUCTION 

Recent progress in the theory of probabilistic programs (Sharir, Pnueli, 
and Hart, 1984; Hart, Sharir, and Pnueli, 1983; Hart and Sharir, 1985) has 
yielded relatively simple methods for verification of certain properties of 
such programs. Sequential probabilistic programs have been represented in 
Sharir, Pnueli, and Hart (1984) as discrete Markov chains, whereas con- 
current probabilistic programs have been represented in Hart, Sharir, and 
Pnueli (1983) and Hart and Sharir (1985) as processes involving 
cooperation of several Markov chains (with a common state space) obey- 
ing certain "fairness" constraints. In both cases, if one assumes that the 
state space of the programs in question is finite, then one can obtain simple 
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algorithmic techniques for analyzing and proving termination of such 
programs. For sequential programs these techniques are essentially classical 
results in Markov chain theory, whereas for concurrent programs new 
techniques had to be developed. In both cases, the actual values of the 
state-transition probabilities proved to be irrelevant for the properties in 
question. 

These encouraging results have motivated the study of logics for 
probabilistic programs, as presented in this paper. These logics allow us to 
express various properties of such programs, including invariant and 
liveness properties, without explicit reference to the values of the transition 
probabilities. The first logic, which we call PTL I, is intended for reasoning 
about sequential programs, whereas the second logic, called PTLb, extends 
the first one and is intended for reasoning about concurrent programs. 
Both logics are based (at least syntactically) on existing temporal logics for 
branching time (Ben-Ari, Pnueli, and Manna 1983; Emerson and Halpern, 
1982; Emerson and Clarke, 1982). These logics are interpreted over models 
which can simulate the execution of probabilistic programs; for PTLf these 
are essentially finite Markov chains, whereas for PTLb they are infinite 
stochastic processes whose state-transition probabilities are bounded away 
from 0 (this assumption holds for finite-state concurrent probabilistic 
programs since there are only finitely many different state-transitions). 

It turns out that satisfiability of formulae in both logics is decidable, in 
one-exponential time, by decision procedures based on the tableau techni- 
que which generalize similar procedures for the nonprobabilistic logics of 
Ben-Aft, Pnueli and Manna (1983) and Emerson and Clarke (1982). The 
probabilistic context of our logics makes these procedures more com- 
plicated than their nonprobabilistic counterparts, and introduces into them 
some special techniques which are variants of the techniques used in Hart, 
Sharir, and Pnueli (1983) for analyzing termination of concurrent 
probabilistic programs. 

Together with these decision procedures, we also provide complete 
axiomatizations for both logics, and show that the same decision 
procedures can be used to construct a proof of the negation of any 
unsatisfiable formula. 

Moreover, by inspection of the decision procedure for PTLb, we see that 
for many (satisfiable) formulae of that logic the model constructed by that 
procedure can be replaced by a finite model. This establishes a connection 
between satisfiability of a formula in PTLb and its satisfiability in PTLf, 
when certain conditions hold. Some additional properties of the models of 
formulae in these logics are also discussed. 

Several additional probabilistic logics have been proposed by Lehmann 
and Shelach (1982), Pnueli (1983), Feldman (1983), Feldman and Harel 
(1982), and Kozen (1983), in order to reason about probabilistic programs. 
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Of these logics, the last three logics are extended dynamic logics, rather 
than temporal ones, and moreover make explicit reference to the actual 
values of the transition probabilities involved. The logic in Pnueli (1983) is 
incomplete, and its semantic interpretation leads to a rather complicated 
probabilistic analysis. 

The logics TC s and TCb of Lehman and Shelah (1982), developed about 
the same time as ours, are the closest in spirit to our logics. The semantic 
interpretation of PTL s is very similar to that of TCI, whereas the semantic 
interpretation of PTL b is similar to that of T Q .  The difference between 
these logics is that the logics TC have richer syntax allowing arbitrary 
linear temporal formula to follow the path quantifiers, rather than just a 
single linear temporal operator as in our logics. As a consequence, the 
logics in Lehmann and Shelach (1982), although also decidable, have less 
efficient decision procedures. (This is analogous to the difference between 
the more restricted non-probabilistic branching-time logic CTL of Emerson 
and Halpern (1982) and the more general logic CTL* of Emerson and 
Halpern (1983).) See also related work by Kraus (1985) and by Kraus and 
Lehmenn (1983). 

The paper is organized as follows. In Section 2 we define the syntax and 
semantics of our logics, and make a few basic observations concerning 
these notions. In Section 3 we give axiomatic systems for both logics, and 
prove a few theorems which are needed later on. Section 4 describes the 
decision procedures for our logics, and shows how to construct a model for 
a satisfiable formula in either logic. Section 5 proves the completeness of 
the systems of both logics, in the sense that the proof of any formula p for 
which ~ p  is unsatisfiable, can be mechanically obtained from the tableau 
constructed for ~p.  Section6 discusses some meta-results concerning 
properties of formulae and their models. 

The decision procedures for PTLb and PTLu have been programmed in 
SETL and have been tested on several formulae. Appendix A gives a few 
examples of the output of this procedure. 

2. SYNTAX AND SEMANTICS 

In this section we introduce our two logic systems, denoted PTL s and 
PTLb, which are almost identical syntactically, but differ in the inter- 
pretation of their formulae. Formally, (an austere version of) the syntax of 
our logics is defined as follows. 

DEFINITION. Syntactically valid formulas in the logics PTLf  and PTL b 
are defined recursively as follows: 
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(1) Every formula in the propositional calculus is a formula in these 
logics. 

(2) I f p  and q are formulas in PTLfor  PTL b then so are ~ p , p  v q, 
VXp, VFp, and p gUq. 

As will shortly be seen, the operator VF in PTL I is redundant, and can 
be defined in terms of the other two operators. These logics can be 
augmented by additional operators as will be detailed below. 

PTLy and PTLb are interpreted as follows. A model of PTLb is a 
(discrete) Markov chain, possibly having infinitely many states, for which 
there exists ~ > 0 such that all nonzero transition probabilities of the chain 
are >t e. A specified initial state is associated with the model; in addition, 
there is an assignment of truth values to all propositions appearing in a 
given formula at each state of the chain. Formally, 

DEFINITION. A model M of PTL b is a quadruple (S, P, So, p), where S is 
a set of states, So ~ S is the initial state, P is a transition probability matrix 
(i.e., a nonnegative mapping on S× S with Z,~s  P(s, t ) =  1 for each s~ S) 
each of whose entries is either 0 or >~ c~, where ~ is some positive constant, 
and p is a mapping on S assigning to each s ~ S the set of true propositions 
at that state. For convenience, we abbreviate p ~ p(s) as p ~ s. 

A model of P T L / i s  defined similarly, with the additional requirement 
that the set S be finite (the requirement of the boundedness of the transi- 
tion probabilities clearly holds here). 

Each model M induces in a standard manner a probability measure /~g 
on the space t2 M of all infinite paths co = (sn)~=o in S starting at So. The 
measure/.t g is defined on the a-field generated by the cylindrical sets of the 
form 

£2(so ..... s n ) -  {co ~ £2M[~Oi= S/, i = 0,..., n} 

and the #M-measure of each such set is the product 

P(so, s1) " P(s1 ,  $2)  . . . . .  P(Sn_ l ,  Sn) 

of the transition probabilities along the edges of the common initial prefix 
(So,..., sn) of all paths in this set. 

Truth of a formula p of either logic, in an appropriate model M, denoted 
M P, is defined inductively as follows: 

(i) I f p  is a proposition, then ~gpC>P~So.  

(ii) If q =  ~p ,  then ~gqC:>g=vp.  

(iii) If r = p  V q, then DMrc*" DMP or D v q ,  and similarly for all 
other logical connectives. 
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(iv) If q=VXp, then ~ M q ' C ~ M ~ p  for all s l • S  such that 
P(so, s l ) >  0, where M1 is the model M with initial state s~, instead of So. 

(v) If r = p  VUq, then ~ M r ¢¢, #M(Ap,q) = 1, where 

Ap, q = {co = (Sn) • ~c2 M [inf{nl ~ M.P}  ~ inf{n] ~ Mn q} } 

and Mn is the model M with initial state sn. I.e., Ap,q consists of paths along 
which either p always holds, or else p holds until the first time q holds. 

(vi) If q=VFp,  then ~ M q  iff the set of paths starting at So along 
which p eventually holds is of measure 1. Following standard terminology 
in probability theory, this is equivalent to the existence of a stopping time 
N on £2M which is pM-almost surely finite, such that ~ MoP for each co 
with N(co) < ~ .  (A stopping time is a function N defined on g2 g whose 
values are either nonnegative integers or + m, having the property that 
whenever N(co)= n then N(co')= n for each path co' having the same first n 
states as co.) 

We now discuss some important features of our logics: 

(1) Using negations of the modal operators VX, VU, and VF, we 
define additional operators as follows: 

3Xp - - (VX ~ p )  

p3Uq = ~ (( ~ q) VU(--~p)) 

3Gp = ~ VF ,-~p. 

Note that VU and the 3U operators describe different notions of the "until" 
operator. In p VUq, U denotes the "weak" until (in which p holds either 
indefinitely or until q becomes true, but q need not ever become true), 
whereas in p 3Uq, U denotes (a variant of) the "strong" until (in which p 
holds until q becomes true, including the state at which q is true, and q 
does indeed become true). The reader should keep this difference in mind 
in what follows. 

(2) Intuitively, ~ g VXp means that p holds at all immediate suc- 
cessors (sons) of the initial state of M. Similarly, ~ g 3Xp means that p is 
valid in at least one son of the initial state of M. ~ g P VUq means that 
along all paths co starting at So and consisting only of transitions with non- 
zero probability, p holds at all states of co up to the first state, if any, at 
which q holds. Note that "p until q for all paths" is equivalent to "p until q 
for almost all paths:" Indeed, "p until q" not being satisfied on some path 
means that the first time p is not true q is not true also; this is therefore a 
property of finite paths; if it happens at all, its probability must therefore 
be positive. Similarly, ~ g p3Uq if there exists a finite path co of states 
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reachable from So via transitions having nonzero probabilities, such that p 
holds at all states of co, and q holds at the final state of ~o. These obser- 
vations imply that the VU and 3U operators are actually nonprobabilistic, 
a property that we will use later in discussing PTL/. Also, ~ M VFp if p 
eventually holds on #M-almost every path. In the same manner, ~ M 3Gp if 
the #M-measure of the set of paths along which p always holds (i.e., the set 
Ap,false) , is positive. 

(3) The modal operators VGp and 3Fp of Ben-Ari, Pnueli, and 
Manna (1983) can be defined in both logics PTLy and PTLb in the follow- 
ing usual way: 

3Fp -= true 3Up 

VGp -= p VU false. 

M 3Fp if p holds on at least one state of the model, and ~ M VGp if p 
holds at all states of the model. 

(4) In PTLI, the operator VF and its dual 3G can be defined in 
terms of the other operators, as follows: 

3Gp - p  3U(VGp) = p  ~U(pVU false) 

VFp =- (3Fp) VUp - (true ~Up) VUp. 

These two definitions are quite nonobvious, and are special to the finite 
model interpretation of PTLj. ~ M VFp if on/~M-almost every path p holds 
eventually. However, in the case of finite models (i.e., finite Markov 
chains), this is equivalent to requiring that on every path co and every state 
s~ along co before the first time (if any) p holds on ~o, there exists a path 
from sn on which p eventually holds. This latter property is always implied 
by the interpretation of ~MVFp as defined above (including infinite 
Markov chains); the reverse implication can be proved for finite Markov 
chains using standard "0-1 law" arguments, similar to those in Hart, 
Sharir, and Pnueli (1983) (e.g., see Theorem 2.2 there). (Such a 0-1 law 
states that, in a finite Markov chain, if there is a positive probability of 
eventually reaching a certain set of states from every state in the chain, 
then this probability is 1 for all starting states.) The definition of ~Gp 
follows by negation. However, this will not work for PTLb: as is well 
known, in a denumerable Markov chain, even if every state has an eventual 
successor where p holds, p need not occur eventually almost surely (since 
this successor may be reached only after arbitrarily many steps, its 
probability may be arbitrarily small--even if all positive single-step transi- 
tion probabilities in the chain are bounded away from zero). 

After reducing formulas in PTLf as above, we obtain equivalent formulas 
which are expressed using only the operators VX, 3X, VU, and 3U. Let p be 
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such a reduced formula, and let M be a model of PTL I. It is plain that the 
same model, viewed as a non-deterministic structure M' (i.e., where state 
transitions denote non-deterministic, rather than probabilistic, choices), is 
also a model of, say, CTL, and vice versa, each model of CTL can also be 
regarded as a probabilistic model for PTLF, by assigning appropriate 
probabilities to its state transtitions. Moreover, since each of the operators 
VX, 3X, VU, and 3U is nonprobabilistic, it can be easily shown, by induc- 
tion on the structure of (the reduced) p, that p is satisfiable by a model M 
of PTLf  if and only if p is also satisfiable, as a formula of CTL, by the 
corresponding non-deterministic structure M'. These observations will be 
used in the following section to show that PTLf  is decidable and has com- 
plete axiomatization, using similar properties of CTL. 

(5) Consider a finite-state probabilistic sequential program; its 
execution history can clearly be modelled in PTLf  (such that the model 
states become program states, and the propositions contained in each such 
state are considered as properties holding at that program state). 

(6) In contrast, consider a finite-state probabilistic concurrent 
program, with finitely many processes (we will refer to such a program in 
short as a finite probabilistic concurrent program); it turns out that to 
model its execution requires the use of PTLb. Indeed, as in Hart, Sharir, 
and Pnueli (1983), such a finite concurrent program is specified in terms of 
a finite common state space I and a finite collection K of processes, such 
that at each state i E I, if the next process to execute an atomic step is some 
k ~ K, then the program will reach after execution of that step a state j ~  I 

p k _  with probability P~ (thus, in particular, 52j~ ~ ~ -  1). 
Note that we cannot model such a concurrent probabilistic program in 

PTLb, because at any given program state i, the choice of the next process 
k to execute an atomic step is nondeterministic and cannot be determined 
from the program description as specified above; at different points in the 
execution of the program, different choices may be made. 

However, we can model any specific execution of such a program in 
PTLb. It is specified in terms of a schedule a which determines at each 
execution step the process k e K to execute the next step. We assume (as in 
Hart, Sharir, and Pnueli, 1983) that a's decision is a function of the entire 
execution history, i.e., the sequence of states (io, il,..., ira) reached during 
execution, where im is the present program state. This execution can be 
modeled in PTLb by a model M defined as follows. The states of M are all 
finite execution histories as defined above. For each such history 
h = (io, il,..., im), let k = a(h) be the next process to execute; then M con- 
tains transitions from h to all histories of the form h[l(im+l) such that 
p k. > 0, and the probability of that transition in M is the same p.k 

l m l m  + 1 lm lm  + 1 " 

The starting state ho of M is the singleton history (io), where io ~ I is the 
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initial program state. Finally, each state h in M may contain propositions 
which reflect properties of the last program state in h, or which describe the 
last process scheduled along h, etc. Since our program has only finitely 
many positive transition probabilities, it is clear that all transition 
probabilities in M are bounded away from zero. 

We will say that the program execution as determined by the schedule a 
satisfies a formula p of PTLb  (whose atomic subformulae consist of 
propositions describing properties of individual program states or of the 
processes about to be scheduled), if the corresponding model M as defined 
above satisfies p. Intuitively this is an appropriate definition because M is 
defined so as to model all possible (infinite) execution sequences of the 
program under a. Indeed, these execution sequences are precisely the 
infinite paths in M, and the probability measure /~M as defined above is 
precisely the probability distribution induced on the space of all program 
execution paths by cr and by the individual program transition 
probabilities. (In other words, the/~M-measure of any cylinder t2(i0,..., im) 
is the probability that the first m +  1 program states reached during 
program execution under cr will be i0,..., ira.) 

As an illustration, consider the following type of formula p of PTLb 
which specifies the structure of some (finite-state) concurrent probabilistic 
program and also asserts that during execution of this program a certain 
property t will hold eventually almost surely. 

(at sl A activ k l  ~ 3Xat  s'l) VU false A . . .  

A (at_ s,, A activ _ k m  D 3Xa t_  S'm) VU false (2.1) 

A (VFactiv k l )  VU false A ...  A ( V F a c t i v  kr) VU [alse 

A at_  So ~ VFt; 

here the first group of conjuncts describe the state-transitions of the 
program, the second group of conjuncts specify that the program execution 
must be fair, and the last line asserts that if execution starts at s o then t will 
hold eventually almost surely. Note that any execution of the program 
starting at So for which t holds eventually almost surely corresponds to a 
model of PTLb  which satisfies p. Conversely, the results of Section 4 and 
the subsequent discussion in Section 6 imply that if p is satisfiable by some 
model of PTL~ then it is also satisfiable by a model that corresponds to 
some specific execution of the underlying concurrent probabilistic program. 

Finally, note that the execution of a finite state concurrent program 
(involving more than one process) in general cannot be modeled by a f ini te  
Markov chain (and thus by a model of PTLy).  For example, suppose that 
the program consists of three states s l ,  s2, and s3, and of two processes 
k~, k2, such that under kl the transitions having nonzero probability are 
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(sl, sl), (ss, s2), (s2, sl), (s2, s2), (s3, s3), and under k2 they are (Ss, $3) , 
(S2, S3), (S3, S3). Consider the schedule a starting at sl and defined by the 
rule: Schedule ks repeatedly until the first time at which the number of 
visits at s2 is equal to the number of visits at Sl; in this case schedule k2, 
and thereafter schedule ka and k2 alternately. The execution of this 
program under a cannot be modeled by a finite-state Markov chain; in fact 
this execution is identical to the behavior of a random walk on 0, 1, 2,.., 
with absorption at 0. Moreover, the fairness of a does depend on the transi- 
tion probabilities of ks at sl and s2 (e.g., a is fair if P~s2, pkl ~> s , v, and is s2,s2 
unfair if both these probabilities are < ½.) 

The problem with this ~r is that it is not finitary. Roughly speaking, a 
schedule is finitary if it is a finite automaton acting on the execution 
history, whose scheduling decisions depend on its current state. That is, 
there exists a finite partition A of the set of all finite histories (i.e., each 
finite history belongs to exactly one element of A) such that, if h and h' 
belong to the same element of A, then (i) a(h) = a(h'); and (ii) for any next 
state i, hlli and h'lli belong to the same element of A. It is easily seen that 
for finite-state concurrent programs, their execution under a schedule a can 
be modeled by a finite-state Markov chain if and only if a is finitary. 

Fair schedules need not be finitary. However, it can be shown from 
Theorem2.1 of Hart, Sharir, and Pnueli (1983) that almost-sure ter- 
mination by any fair schedule can be effectively decided by essentially con- 
sidering only finitary (fair) schedules, and therefore is a property that can 
be stated and verified in PTLy. This interplay between PTLb and PTL¢ will 
be studied in more generality in Section 6. We will obtain there the 
property just noted as a special case of a more general rule, which gives 
sufficient conditions for formulae of PTLb to be equivalently represented 
(and checked) in PTL s. In particular, we will show that if formulae such as 
p in (2.1) are satisfiable by a model corresponding to some execution of the 
concurrent program, then p is also satisfied by a similar execution under a 
finitary schedule. 

3. AXIOMATIC SYSTEMS 

We next present sound and complete deductive systems for PTLf and 
PTLb which are similar to the systems for UB of Ben-Ari, Pnueli, and 
Manna (1983) and CTL of Emerson and Halpern (1982). 

Axioms and Rules Common to Both Logics 

AXIOMS. 

(A0) Axioms of the propositional calculus 
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(A1) VX(pz~q)= (VXp=VXq) 

(A2) pVUq ~ q v (p A VX(pVUq)). 

INFERENCE RULES. 

(R0) Modus ponens; propositional reasoning 

(R1) ~--p~---VXp 

(R2) ~---rDq v (p A VXr)=~---r2pVUq 

(R3) ~--p ~ ~--- ~ (VF ~p).  

Additional Axioms for PTL/  

(A3) VFp - (true 3Up) VUp. 

Additional Axioms and Rules for PTL b 

(a4) V F p = p v  VXVFp 

(AS) VF VFp = VFp 

(A6) (pVUq) A V F ( ~ p ) = V F q  

(R4) ~---r~p v (VXVFr A 3Xp)~-- -rDVFp.  

We now justify the soundness of our axioms and rules. Axioms (A1) and 
(A2) and rules (R1) and (R2) are nonprobabilistic and are sound in our 
interpretations, as well as in the interpretations of the nonprobabilistic 
logic CTL. (It has been pointed out by Pnueli that these axioms and rules 
can be used to simplify existing axiomatizations for that logic.) The 
axiom (A1) and the rule (RI) are taken from Ben-Ari, Pnueli, and Manna 
(1983), and their soundness follows from the definition of VX, as in Ben- 
Ari, Pnueli, and Manna (1983). Axiom (&2) states that r = p  VUq satisfies 
the implication r ~ q  v (p A VXr), which again is obvious from the 
definitions of the operators VU and VX; whereas rule (R2) states that 
p VUq is the "largest" solution to that implication, in the sense that it is 
implied by any other solution. The soundness of this rule can be proved by 
a simple inductive argument. 

The soundness of the rule (R3) is also easy to establish from the 
definitions. As noted in (4) in the preceding section, axiom (A3) is sound 
under finite-model interpretations. 

The soundness of axioms (A4)-(A6), in our interpretation of PTLb, 
follows from probabilistic arguments (which apply also in the general 
unbounded case). Moreover, they are also sound for non-probabilistic 
logics, such as CTL or UB (under their standard non-probabilistic inter- 
pretation). Specifically, (A4) states that an event p happens eventually 
almost surely if and only if it either happens now, or else it happens even- 
tually almost surely from any next instance on. Axiom (A5) states that if 
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there exists an almost surely finite stopping time N such that for each path 
09 with N = N ( c o ) <  0% the event p will happen eventually almost surely 
after reaching ~ON, then p will happen eventually almost surely. (In other 
words, the composition of a family of almost-surely finite stopping times on 
an almost-surely finite stopping time yields an almost-surely finite stopping 
time.) Axiom (A6) states that i fp  holds continuously until the first time (if 
any) at which q holds, and  if there exists an almost surely finite stopping 
time N at which p does not hold, then there exists another almost surely 
finite stopping time N' ~< N which q holds. The soundness of this axiom is 
immediate from the definitions. 

Finally, the rule (R4) states that for r to imply that p will eventually hold 
(almost surely), it is sufficient to require that r implies that either p holds 
now, or that at least one succeeding state satisfies p, and at the same time r 
will hold once more eventually a.s. after every succeeding state. To prove 
the soundness of this rule, we argue as follows. Let So denote the set of all 
states s in S at which r holds, and which are reachable from the initial state 
So via paths along which p did not hold yet (except possibly at s itself). 
Assume So e So (for otherwise there is nothing to prove). For each s ~ So let 
fls denote the probability that p will hold eventually, given that we have 
reached s. The premise of (R4) implies that fis >~ a > 0 (the lower bound for 
the positive transition probabilities) for each s~ So. Let 7 = infs~s0 fls >~ ~. 
For every s ~ So we have 

fls~>~' 1 + ( 1 - ~ ) ' 7  

(with probability at least ~, p holds next, and otherwise p will hold even- 
tually with probability at least 7). Thus 7 ~> ~ + (1 - ~ ) 7 ,  implying 7 = l, or 
fls = 1 for all s ~ So. 

Remark. It would be tempting to replace (R4) by the simpler sound 
rule 

(R4') ~---r ~ p  v (VXr/x 3Xp) ~ ~--r ~ VFp. 

However, the resulting axiomatic system will not be complete. In fact, (R4) 
cannot be deduced from the modified axiomatic system. We will show this 
indirectly, by exhibiting an alternative interpretation for the modified 
axiomatic system, with (R4) replaced by (R4'), for which (R4) does not 
hold. 

Consider the interpretation of the modified system under models M 
which are defined as in PTLb, except that their associated transition 
probabilities are not required to be bounded away from 0. Instead we 
require that for each state s at the ith level of M we have P(s, t) >1 1/i, for 
each nonzero transition probability P(s, t). It is easy to see that all axioms 
and rules of the modified system are sound under this interpretation. 
Indeed, everything except (R4') is either nonprobabilistic or holds in 
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general unbounded models. Concerning (R4'), suppose that a model M 
satisfies the premise of (R4'), and that r holds at the initial state of M. 
Then the probability that p still does not hold after n levels of M is at most 
1-[7= 2 (1 - 1/i) ~ 0 as n ~ oo. Nevertheless, it is easy to construct a model 
M of this new kind for which the antecedent of (R4) holds, Whereas its con- 
sequent does not. To obtain M, take a sequence {i,} of levels for which 
I F =  ~ (1 - 1lit) > 0, and define M so that r holds at the root and at each 
node in each of the levels i,. For each node n at the it level, p holds at 
exactly one son m of n, with P(n, m) = 1/i ,  It is then easy to check that M 
satisfies the antecedent of (R4) but not its consequent. 

Hence, the "essence" of the bounded-model interpretation of PTLb is 
captured by the rule (R4). 

Returning to PTL I, the discussion in (4) of the preceding section implies 
that the above axiomatic system is complete for PTL s. This follows from 
the fact that each valid formula p of PTL s can be reduced, using (A3), to 
another valid formula involving only logical connectives and the operators 
VX, 3X, VU, and 3U. This reduced formula, considered as a formula of 
CTL, is also valid, and, since CTL is complete (Emerson and Halpern, 
1982; Emerson and Clarke, 1982), the reduced p is provable from the 
corresponding axiomatic system of CTL, hence also from the remainder of 
the above system for PTL s. Similar arguments show that PTLy is 
decidable, by first reducing a given formula p of PTLf  by (A3) and then by 
applying a decision procedure for CTL (cf. Emerson and Halpern, 1982; 
Emerson and Clarke, 1982) to the reduced formula. These properties of 
PTLf  will also follow as special cases of the completeness and decidability 
of PTLb, which will be established in the two following sections. 

Theorems Common to PTLf  and PTLb 

We next list a few basic theorems provable from the core set of axioms 
and inference rules common to both logics. Some of these will be used in 
the sequel (in particular, see Sect. 5), while others are provided so as to 
illustrate the properties of the various operators of our logics: 

(T1) 

(T2) 

(T3) 

(T4) 

(T5) 

(T6) 

(T7) 

(T8) 

(T9) 

VX(p A q)~ VXp A VXq 

VXp v VXq = VX(p v q) 

pVUq =-q v (p A VX(pVUq)) 

pVUq /x (( ~ q) YUr) ~pYUr 

(p v q)gUr ~pVU(q v r) 

(pVUr)/x (qVUr)--(p/~ q)VUr 

(p ~ VXp) VUq ~ (p D (pVUq)) 

VFp D true 3Up 

VXp 2 VFp. 
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We can also deduce a few additional inference rules: 

(RI') ~ - p ~ q ~ - - V X p ~ V X q  

(R2') F--p~--pVUq for any q 

(R5') ~-p ~ w-VFp 

(R6) ~--p~q~w--VFp~VFq 

(RT) ~---r ~ VF(p v (VX VFr/x 3Xp)) ~ ~---r ~ VFp. 

Here are the proofs of these theorems and rules: 

Proof of (Rl'). By (R1) we have w--VX(p ~ q), so that by (A1) and (R0) 
we have ~--VXp D VXq. Q.E.D. 

Proof of (R2') By (A0) we have F--true, so that by (R1) w-VX true. 
Since ~---p is given, we have also ~--p/x VX true. It follows by (R0) that 

~---true = q v ( p / x  VX true) 

so that by (R2) we have F-- true ~p VUq, or ~--p VUq. 

Proof of (T1). That 
follows from (RI'). To 
tautology 

w--p ~ (q ~ (p ^ q)). 

From it we obtain by (RI') 

~---VXp = VX(q ~ (p/x q)). 

Now (A1 gives 

Q.E.D. 

the left-hand side implies the right-hand side 
prove the other implication, we begin with the 

~--VX(q ~ (p/x q)) ~ (VXq ~ VX(p/x q)). 

Hence, using (R0), 

Proof of (T2). 

~---VXp/x VXq ~ VX(p/x q). Q.E.D. 

From the tautology ~---p ~ p  v q, we deduce, using (RI'), 

~---VXp 2 VX(p v q) 

and symmetrically 

~--VXq = VX(p v q) 

from which two statements the theorem follows immediately. Q.E.D. 
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Proof of (T3). The left-hand side implies the right-hand side by (A2). 
To prove the converse implication, let r denote the right-hand side of (T3). 

Thus we have 

~----pVUq ~ r 

so that, by (RI'),  

o r  

which is to say, 

~-VX(pVUq) ~ VXr 

~--q v (p/x YX(pYUq))2 q v (p/x YXr) 

~--r ~ q v (p/x fXr )  

so that, by (R2), we conclude 

~---r ~ p VUq 

which is what we wanted to show. 

Proof of (T4). Put s=pVUq,  t =  (~q)VUr,  and 
have by (T3) 

~--w = (q v (p a fXs))  a (r v ( ,-~ q A VXt)) 

o r  

Q.E.D. 

w - - s A t .  Then we 

~---w -~ (q/x r) v (p/x VXs/x r) v (p/x ~ q/x VXs/x fXt).  

Hence (recall (T1)), 

~ - w ~ r v r v ( p / ~  ~ q A V X ( s A t ) )  

o r  

~---w ~ r v (p/x VXw) 

so that, by (R2), we deduce the required implication 

~---w ~ pVUr. 

Proof of(T5). Put w = ( p  v q)VUr. Then by (A2) 

w--w ~ r v ((p v q)/x VXw) 

Q.E.D. 
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SO that, by (R0), 

v--wDr v (q A VXw) v (p A VXw) 

or  

,--w ~ (r v q) v (p A VXw) 

so that, by (R2), we conclude 

,---w ~pVU(q v r). 

Proof of (T6). Put  w =  (pVUr) A (qVUr). By (A2) we have 

v--w ~ (r v (p A VX(pVUr)) A (r V (q A VX(qVUr)) 

so that, by (R0)), 

v--w 2 r v (p A q A VX(pVUr) A VX(qVUr)). 

Hence, by (T1) and (R0), 

F--w ~ r v ((p A q) A VXw) 

which implies, using (R2), 

F-w ~ (p A q) fUr .  

For the converse implication, put z = (p A q) fUr .  Then, by (A2), 

P-z ~ r v ((p A q) A VXz) 

so that, by (R0), 

v--Z ~ r V (p  A VXz). 

1ll  

Q.E.D. 

Thus, by (R2), we have ~--z~pVUr, and in a completely symmetric 
fashion, we also have F-z~ qVUr, from which the desired implication 
readily follows by (R0). Q.E.D. 

Proof of (T7). Put w = p  A ((p ~ VXp) VUq). By (A2), we have 

P-w 2 p  A (q V ((p ~ VXp) A VX((p ~ VXp) yUq)))  

so that, by (R0), 

,--w 2 q v (p A VXp A VX((p ~ VXp) VUq))). 

643/70/2-3-2 
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Hence, using (T1), 

HART AND SHARIR 

~--w ~ q v (p A VXw) 

from which we conclude, using (R2), that ~---w ~p  VUq. 

Proof of (r8). 
have 

Q.E.D. 

By (A6), with ~ p  instead ofp and false instead of q, we 

~--((~p) VU false) A VFp ~ VF false, 

~-VXVFp = VFp. 

Applying (RI') t o  the first implication, we obtain 

w--VXp D VXVFp, 

and (RO) completes the proof. 

Proof of (R5). 

Proof of (R6). 

By (T5), we have 

hence (R0) gives 

By (A6), 

Immediate by (A4) and (R0). 

w--p ~ q, or ~---~p v q, implies by (R2') 

~---( ~ p  v q)gU false. 

~--( ~ p  v q) VU false 2 ~pVUq, 

~pVUq. 

~---(~pVUq) A VFp ~ VFq, 

Q.E.D. 

and 

o r  

~---VFp/x ( ,-~ (VF false)) ~ true3Up. 

From w--true we have by (R3) ~---~ (VF false), which completes the proof 
by (R0). Q.E.D. 

Proof of(T9). By (A4), 

~--p D VFp, 
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and (R0) again gives 

F---VFp ~ VFq. Q.E.D. 

Remark. Note that the statement 

VF(p ~ q) = (VFp = VFq) 

is not valid in our logics! 

Proof of (R7). Put s=p v (VXVFr A 3Xp). The premise of (R7) is 
u--r~VFs. Hence, by (R6), ~--VFr=VFVFs, and by (A5) and (R0) we 
obtain ~---VFr ~ VFs. Using (RI')  and (R0), we obtain 

F---s~p v (VXVFs A qxp), 

so that (R4) gives ~--s ~ VFp. Arguing as above, this implies 

~--VFs ~ VFp, 

and together with the premise ~--r ~ VFs of (R7), we obtain 

~---r ~ VFp. Q.E.D. 

4. THE TABLEAU METHOD 

In this section we modify the tableau method of Ben-Ari, Pnueli, and 
Manna (1983) and Emerson and Clarke (1982) to obtain a deterministic, 
exponential time-decision procedure for testing satisfiablity in PTLb. The 
same technique also applies to PTL F, as will be noted at the end of this sec- 
tion. The construction presented below is similar to that of Ben-Ari, 
Pnueli, and Manna (1983) and Emerson and Clarke (1982), but differs in 
certain aspects with reflect the probabilistic context of our interpretation. 

(Note that another competing technique for testing satisfiability is the 
maximal model technique (cf. Emerson and Halpern, 1982). We have not 
checked whether this technique can also be modified to yield a probabilistic 
model of the form required by our interpretation, although we believe that 
this is indeed possible.) 

Given a formula Po of PTLb which we wish to test for satisfiability, we 
construct from it a finite directed graph T called tableau, each of whose 
nodes n is labeled by a set Fn of formulae (intuitively, formulae that are 
true at n), some of which have already been "expanded," while others are 
still "unexpanded." Initially T contains a single node no (the root), and 
Fn0--{Po}, with P0 unexpanded. T is then constructed inductively as 
follows. At each step we pick a node n having no successors, and a formula 
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TABLE I 

or-expansions 

r r 1 r 2 r 3 

p A q  p q 

3Gp p 3Xmp 
(p v q) ~ p  ~ q 
(p gUq)  ( ~ q) 3 U ( ~ p )  
(p 3Up) ( ~ q) V U ( u p )  

(VFp) 3G ~ p  
(3Gp) VF ~ p  
(VXp) ~x - p  

~ (3Xp) vx - p  
VGp p VX VGp 

VX (true v 3Gp) 

p ~ Fn which has not yet been expanded. We then expand p by one of the 
rules stated below, thereby creating outgoing edges from n, some of which 
may lead to newly created nodes of T while others may point back at 
nodes already present in T. 

Let n be a node of T and p an unexpanded formula in Fn; n can be 
expanded by one of the following rules: 

e-expansion. If Fn contains a formula r having one of the forms in the 
first column of Table I, then we create one successor nl of n and put 
F~, = F,  w { q ,  r2,...}, where rl, r 2  . . . .  are the corresponding formulae in the 
other columns of the table. 

fl-expansion. If F,  contains a formula r having one of the forms in the 
first column of Table II, then we create two successors nl and 1/2 of r/, and 
put Fn~=FnW{rl} , and F~2=Fnw{r2}, where r I and r 2 are the 
corresponding formulae in the other two columns of the table. 

TABLE II 

f l -Expans ions  

r r 1 r 2 

p v q  p q 
VFp p VX VFp A 3X VFp 

~ ( p A q )  ~ p  ~ q  
3Fp p 3X3Fp 

p VUq q p ^ VX(pVUq) 
p3Uq p A q p A 3X(p3Uq) 
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X-expansion. If none of the preceding rules apply to n, then n is 
called a state; each unexpanded formula in Fn is either a proposition, the 
negation of a proposition, or a formula preceded by VX or 3X. The follow- 
ing X-expansion rule is then applied to node n. Let VXpl,..., VXpa be all the 
formulae in Fn preceded by VX, and let 3Xql,..., 3Xqb be all the formulae in 
Fn preceded by 3X. Then we create b sons n~ ..... nb of n with 

F,k= {Pl ..... Pa, qk} 

for each k = 1,..., b; the kth son will be identified as the qk-son of n. (If 
b = 0, we create one son no of n and put 

F~0 = {p ..... po}.) 

Each successor of n under this expansion is called a pre-state (since from it 
a new state will be eventually reached). The root no of the tableau is also 
called a pre-state. 

Remarks. (1) Comparing the expansion rules listed in Tables I and II 
with the corresponding expansion rules used in the nonprobabilistic cases, 
we see that the only rules which have changed are those corresponding to 
formulae of the form VFp and 3Gp. The expansion rules that we use for 
these formulae involve clauses which are logically redundant; they are 
needed however to ensure proper development of the tableau, as will 
become apparent from the foregoing analysis and from the examples given 
in Appendix A. Note also that since the connectives of our logic are not 
independent of one another, some of the expansion rules given in Tables I 
and II are redundant, but are given there for exposition sake. 

(2) The//-expansion rules concerning formulae of the forms p3Uq or 
VFp are given special treatment in portions of the sequel. To prepare for 
this treatment we call the edge from n to n~ an essential 3U (resp. VF)-edge, 
and n~ the essential 3U (resp. VF)-son of n. 

The construction of T is terminated by using the following termination 
rules (cf. Ben-Ari, Pnueli, and Manna, 1983): 

(1) We do not expand any further nodes n for which F,  contains 
both a proposition and its negation. Such nodes are called closed meaning 
that they represent an inconsistent set of conjuncts; these nodes will be 
erased from the final form of the tableau by the marking rule (M1) given 
below. 

(2) At an X-expansion of a state n, we do not create new succeeding 
prestates if their set of formulae is identical to the set of formulae of some 
ancestor pre-state m of n; in this case the corresponding outgoing edge 
from n points back to m. 
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These termination rules ensure that the resulting graph T is finite, and as a 
matter of fact, its size is singly exponential in the size of the given formula 

P0.  
Having thus created T we proceed to mark some of its nodes using 

several marking rules (some coincide with similar rules of Ben-Ari, Pnueli, 
and Manna, 1983, while others are special to the probabilistic case). 
Roughly speaking, a node is marked if its set of formulae cannot be 
satisfied by a model that can be obtained from "unwinding" the tableau 
from that node. Such nodes will eventually be deleted from the tableau. 
Before stating these rules, we need certain technical preparations. 

Let S denote the set of states in T and le t /7  denote the set of pre-states 
in T. For every s e S, let X(s) be the set of al successor pre-states of s 
(obtained by the X-expansion rule); for each pre-state ~eH,  let T(~) 
denote the set of all states in S which are reachable from ~ via paths con- 
sisting of e and fl-expansions only. We will also use the inverse relations: 
X 1(~) denotes the set of all predecessor states of ~ (there may be more 
than one such state according to rule (2) for terminating the tableau con- 
struction), and T-l(s) is the (unique) pre-state preceding s. Essentially, all 
intermediate nodes of T which are neither states nor pre-states are ignored 
in the sequel. See Fig. 1 for an example illustrating these notions. 

We now deal with formulae of the form 3Gp, whose treatment require a 
certain structural decomposition of the tableau, which we now proceed to 
describe. Given r=~Gp and neS with r~F~, let S,= {s~S: r~F,}, and 
let Yc  H be the set of all pre-states ~ which are reachable from n along 
paths whose states all belong to St. We will obtain a decomposition of Y 
which is closely related to the decomposition of the state-space of a (finite- 
state) concurrent probabilistic program given in Hart, Sharir, and Pnueli 
(1983). The purpose of this decomposition is to find ergodic sets E of states, 
all of which contain r, and for which there exists an "unwinding" of the 

-']$ 

X(~) = { ~, ¢' } 

r (¢ )  = ( t ,  t '  } 

r - l ( t )  = 

X- I (~ )  = { ~, t } 

FIG. 1. A fragmentary tableau and the X and T relations. 
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tableau starting at any s ~ E and visiting from then on only states of E. 
Such an unwinding will enable us to show that r is satisfied in a model con- 
structed from this unwinding and whose initial state is either in E or from 
which E can be reached via some finite path of states in S. 

More precisely, define 

Io  = {sE T(Y): rq~rs}. 

We will construct inductively a sequence of (disjoint) subsets {Hm}m>~l of 
Y, as follows. We begin by constructing a directed graph G, whose nodes 
are the pre-states of Y, and whose edges are given by the relation v -= Xo T 
restricted to Y (i.e., q~v(¢) if there exists S6Sr such that s~T(~) and 
~/e X(s); it is helpful to label each such edge by the corresponding state s); 
note that G may contain loops (i.e., edges of the form (¢, ~)) and multiple 
edges. Let H1 be a terminal strongly connected component of G, including 
the degenerate case of a singleton H1 = {~}, in which case it is not required 
that (¢, ~) be an edge of G. Thus, for each ~ H 1  and each t~ T(~), either 
X( t )cH1 or t~Io. Next, suppose that Hi,..., Hm_~ have already been 
defined, and put Kin- 1 = U i< m H i .  We first update G by erasing all nodes 

~ Hm-1, together with all edges (q, q') for which there exists s ~ T(t/) such 
that both ~ and q' belong to X(s) (thus, besides edges (q, 4) we also erase 
edges (t/, t/') with the same label s as (t/, ~)). H,, is then defined to be a ter- 
minal strongly connected component of the (updated) graph G (including 
the degenerate case of a singleton, as above). Thus, H m has the following 
property: For each ~ ~ Hm and each t ~ T(~), either 

(1) telo; or 

(2) X(t)C~Km ~ ; o r  

(3) x ( t )  = 14.,. 

(Note that this holds for m = 1 too.) We continue with this process until 
G becomes empty. 

Having obtained this decomposition, we next define, for each m ~> 1, 

I m =~ { S e  S: T -  l(s)  e H m and X(s) c H~}. 

L m - {s~S: T- l (s)~Hm, s(~loandX(s)CkHm}. 

LEI~MA 4.1. I f  ~ , t l ~ H  m and ~lev(~) via the state t (Le., 
t~ T(~)c~X-I(q)) then t~Im. 

Proof The edge (~, r/) has not been erased at the time H m was con- 
structed, and thus we must have X ( t ) c  Hm,  i.e., t~ Im by definition. 

COROLLARY 4.2. Im = ~J if and only if rim is not strongly connected (and 
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thus Hm is a singleton, say H,, = {~}, and each t e  T(~) is either in Io or 
satisfies X(t)  r~ Km _ 1 # ~2~). 

COROLLARY 4.3. I f  Im ¢ ~J then: 

(El) T ( ~ ) c ~ I m ¢ ~ , f o r  each t e l m  and each ~eX( t ) .  

(E2) For each s, t e Im,  svat, there exists a chain S=So, Sl , . . . , s j=t  of  
states in I,,, such that Si+l eN(s~) for i = 0 ,  1, . . . , j -  1, where N = To X. 

Proof (El) 4 ~ H m  which is strongly connected, thus there exists an 
edge (4, t/) with t/~ Hm too; the corresponding state s through which this 
edge materializes then belongs to T(~)r~ ]r m. 

(E2) Let tt = T- l ( t ) ,  and let ~ be an arbitrary pre-state in .g(s). Since 
both 4, t / e l l , ,  and H m is strongly connected, there exists a chain 
4=40,~1 ..... 4 j _ l = t /  of pre-states in H m such that ~i+1 eV(4i) for all 
i =  0, 1 , . . . , j -2 .  Let S~+l be the state corresponding to the edge (~, {~+ 1); 
then s~+l elm by Lemma 4.1, and s=so ,  sl,..., Sj_l,  sj= t is the required 
chain of states. Q.E.D. 

COROLLARY 4.4. I f  I m ¢ ~ then for each 4 e H,~ we have 
X-l(~)nIm¢YJ. 

Proof By Corollary 4.2, Hm is strongly connected, thus ~ is connected 
to itself via a nonempty chain of edges (~1, %), (z2, %),-.., (~,-  1, %), where 
vl = r , =  4. But then it follows from Lemma4.1 that the state through 
which the last edge (~,_ 1, 4) has materialized belongs to X-I(~)c~ Ira. 

Q.E.D. 

Suppose that I m ¢ ~ .  Intuitively, this means that, starting at some s ~ Ira, 
one can "unwind" the tableau into an infinite tree which consists only of 
states in Ira, by choosing at each pre-state ~ • H m a state t e T(4)r~ Ira, and 
by noting that all successor pre-states of t are contained in Hm. Since the 
formula ~Gp is contained in Fs, we could potentially use such an 
unwinding of T as a model for the satisfiability of 3Gp. This, however, 
depends on our ability to satisfy other formulae of F, by that same unwin- 
ding. As will be seen below, it suffices to require from Im that its unwinding 
can satisfy every formula of the form VFq which appears at some of its 
states. 

DEFINITION. A set E of states in S is called an ergodic set if it satisfies 
the following properties (the first two of which are as in Corollary 4.3): 

(El) T ( ~ ) c ~ E ¢ ~ ,  for each t e E  and each 4~X( t ) .  

(E2) For each s, t e E, s ~ t, there exists a chain s = So, sl,..., sj = t of 
states in E, such that Si+l EN(si) for i=0 ,  1 ..... j - -1 ,  where N = ToX. 
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(E3) For each formula of the form VFq which appears in F~ for some 
s • E, there exists t • E such that q • F,. 

Consequently, we distinguish between three subcases: 

(I) I,, = ~ .  

(II) I m#  ~ is not ergodic. That is, there exists s • Im and a formula 
(VFq) • F~ such that q ¢ F~ for all t • Im. (It is easily seen, by the rule of VF- 
expansion, that in this case the formula VFq belongs to Ft for every t • I,,.) 

(III) Im # ~  is ergodic (we will call it an ergodic set for the formula 
r, or an r-ergodic set for short). 

Marking Rules 

We are now in a position to state our marking rules: 

(M1) Mark every closed node (i.e., a node containing both a 
proposition and its negation). 

(M2) If n is a node at which an e-expansion has been applied and its 
son n l has been marked then mark n. 

(M3) If n is a node at which a fl-expansion has been applied and 
both its sons nl and n 2 have been marked then mark n. 

(M4) If n is a state and one of its succeeding pre-states has been 
marked then mark n. 

(M5) Let r=p 3Uq or r=VFp, and let Nr denote the set of all 
unmarked nodes n of T whose set of formulae Fn contains r; assume this set 
is nonempty. A path ~ in T is r-acceptable if it visits only nodes in Nr, and 
at every state s along rc (at which an X-expansion takes place), rc continues 
with that son of s generated by the formula SXr in F~. 

A node n • Nr will be marked if there exists no r-acceptable path from n 
to a node m•Nr  with p, q•Fm i f r = p  3Uq or withpeFm if r=VFp.  (The 
intuitive meaning of this rule is clear for r = p  3Uq; as for r = VFq this rule 
is justified by yet another application of the 0-1 law--see below for 
details.) 

To implement this rule, one may use a straightforward backwards 
propagation technique, starting from those nodes where r is "fulfilled" (i.e., 
contains p, q in the case r = p  3Uq or p in the case r = YFp). 

We come now to the last and most complex marking rule (M6), which 
uses the machinery of ergodic sets developed above: 

(M6) Let r = 3Gp be a formula appearing in the set F, of some 
unmarked state n. Without loss of generality, assume all marked nodes 
have been deleted from T. As above, let S t =  {s•  S: r•F,} ,  and let Y c  H 
be the set of all pre-states ~ which are reachable from n along paths whose 
states all belong to St. Decompose Y into sets {H,,}m~>~ as above, from 
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which the sets {Im}m>~l are obtained. If all non-empty I m are not ergodic 
(i.e., for each m either case (I) or case (II) above holds), then mark n. 
Otherwise, n remains unmarked. 

Remark. For efficiency, we could mark all nodes of Sr simultaneously if 
its decomposition contains no ergodic set. Better still, even if an ergodic set 
exists, we can still mark all nodes m of S,. for which there does not exist a 
path contained in Sr and leading from m to such an ergodic set. 

The marking process proceeds in phases; in each such phase we either 
apply one of the rules (M1)-(M4) to a single node of T or apply rule (M5) 
to a formula VFp or p3Uq at some node of T which may cause several 
nodes of T to be marked simultaneously, or apply rule (M6) to a formula 
3Gp and a node containing it, which again can result in marking more 
than one node. This marking process terminates when no new nodes can be 
marked. 

As to the complexity of the marking procedure just described, note that 
each marking phase marks at least one additional node of the tableau. 
Moreover, each such phase requires time polynomial in the size of the 
tableau. Indeed, phases involving rules(M1)-(M4) are performed by 
straightforward linear-time scanning of T; phases involving (M5) are per- 
formed by a linear-time graph propagation procedure. Finally, phases 
involving (M6) apply the procedure described above for decomposition of 
the tableau into the sets H m. This procedure is based on repeated graph 
decomposition into strongly connected components. Since each such 
decomposition requires linear time, and removes at least one node from the 
tableau, the overall procedure runs in time quadratic in the size of the 
tableau. Overall we conclude that the marking procedure runs in time 
polynomial in the size of the tableau, hence singly exponential in the size of 
the given formula. 

The main result of this paper is 

THEOREM 4.5. Po is satisfiable if  and only if  the root n o o f T  has not been 
marked. Moreover, i f  the root has been marked then ~Po is provable in 
PTLb (i.e., the axiomatization of PTLb given in Sect. 3 is" complete). In this 
latter case the proof of ~ Po can be obtained mechanically off the tableau T. 

Proof The proof of completeness of the axiomatic system of Section 3 
is postponed to the following section. Here we show that if no has not been 
marked, then we can construct a model of P T L  b for P0 from the unmarked 
nodes of T. This is achieved by first constructing from the unmarked nodes 
of T a Hintikka structure (defined below), and then transforming this struc- 
ture into a model for Po. 

DEFINITION. A Hintikka structure H for a formula Po of PTLb is an 
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infinite tree with a root So such that the number of sons of any node in H is 
bounded, and such that with each node s e H there is associated a set Fs of 
formulae of PTLb. Given such a tree H, we can associate with each edge 
(m, n) of H a transition probability equal to l/d, where d is the out-going 
degree of m (note that these probabilities are bounded away from 0). This 
probability assignment allows us to regard H as a stochastic process, and 
induces, for each node s e H, a probability measure #~.H on the set t2s of all 
infinite paths in H starting at s, in the standard manner as in Section 2. In 
addition, H must have the following properties (p e F~ is abbreviated as 
p e s ) :  

(H0) Po eSo. 

(HI)  ~ p e s  implies pegs (i.e., H is consistent). 

(H2) Let r be a formula to which an c~-expansion is applicable (see 
Table I); then r e s  implies rj e s  for all corresponding subconjuncts rj of r 
(appearing in the other columns of the table). 

(H3) Let r be a formula to which a fl-expansion is applicable (see 
Table lI); then r Es implies rl e s or r 2 G s (where r l ,  r2 are the two 
corresponding disjuncts appearing in the other columns of the table). 

(H4a) If VXp e s then p e t for all succeeding nodes t of s in H. 

(H4b) If 3 X p e s  then p e t  for at least one succeeding node t of s 
in H. 

(H4c) I f p 3 U q e s  then there exists a path from s all of whose nodes 
contain p, and its last node also contains q. 

(H4d) IfpVUq e s then every path starting at s either contains p in all 
its nodes, or contains p at all its initial nodes (possibly none) before 
reaching a node which contains q. 

(H4e) If VFpes  then there exists a stopping time N, defined on f2, 
(the subtree of H rooted at s), which is #~./¢-almost-surely finite, and for 
which p e C0N(w), for each e) e g2s with N(e)) < oo. 

(H4f) If 3Gp e s  then 

#s,H{e)ef2s:pe~onfor all n~> 1} >0.  

LEMMA 4.6. I f  po has a Hintikka structure, then it has a model, i.e., it is 
satisfiable. 

Proof Let H be a Hintikka structure for Po. We construct from H a 
model M = ( S , P ,  so, p), where S is the set of nodes of H , P  is the 
probability mapping defined above on the set of edges of H, and p is 
defined as follows: for a proposition a and a node s, a e p(s) if a e F s or 

a ~ F,, whereas a ¢ p(s) if ~ a e Fs. 



122 HART AND SHARIR 

M is clearly a PTLb-model. To show that it is a model for P0, we prove, 
using simultaneous induction on the length of formulae r appearing in Fs, 
that 

r ~ s E S ~  ~M,r; 

~ r ~ s 6 S ~  ~Ms,,~r, 

where Ms is the model M with initial state s. 
The proof of this claim proceeds as in Ben-Ari, Pnueli, and Manna 

(1983), except for the treatment of formulae involving VU, 3U, VF, and 3G, 
which are handled as follows: 

Suppose that p3Uq~s. Then by (H4c) there exists a (simple) path 
co = ((2] 1 = S, CO2, '" ,  COn), such that p e coj for all j = 1 ..... n and q e con- It 
follows by induction that ~M~jP, j=l,.. . ,n, and that ~M~q, thus 

Ms pqUq. 
Similarly, if pVUq ~ s, then every path from s contains p at all its nodes 

until the first occurrence of q, if any. Again, by induction, it follows from 
the definition of VU that ~ M, pVUq. 

Next, suppose that 3Gp es. Then by (H4f) the #s,n measure of paths 
co ~ 12 s for which p e con for each n ~> 1, is positive. By induction hypothesis, 
for each such co, and each n ~> 1, we have ~ M~, P, SO that by definition of 
validity of 3Gp it follows immediately that ~ M, 3Gp. 

Finally, suppose that VFp e s. Then there exists a #,.n-almost surely finite 
stopping time N on f2, such that p E coN(~j) for every co e £2 s, for which 
N(co) < oo. Again, by induction hypothesis, this implies that ~ mmu(o) ) p for 

each such co, so that, by definition of validity of VFp, we conclude that 
VVp. 

These inductive arguments imply in particular that ~ MPo, so that P0 is 
satisfiable. Q.E.D. 

It therefore remains to construct a Hintikka structure H for Po from the 
unmarked nodes of T. For this, we use the following construction, in which 
we assume, for simplicity, that all nodes of T are unmarked. The following 
observations, which have already appeared implicity in the marking 
rule (M6), will be useful in motivating and explaining the construction of 
the required Hintikka structure. As before, we let S (resp./7) denote the set 
of all (unmarked) states (resp. pre-states) of T. The nodes of the Hintikka 
structure H we are about to construct from T will be states in S. The num- 
ber of sons of a node s e H is the same as the number of pre-states in X(s). 
For each such ~ e X(s) there will correspond a son of s in H which will be 
an element of T(~). The decisions as to which state in T(¢) to choose as the 
corresponding son of s can be thought of as being taken by some 
"scheduler," and we will refer to them as a schedule of T. This notation is 
very similar to the modelling of the execution of a concurrent probabilistic 
program, as described, e.g., in Hart, Sharir, and Pnueli (1983). In this 



PROBABILISTIC PROPOSITIONAL TEMPORAL LOGICS 123 

analogy, the "program states" are our pre-states H; at each such ~ e H, the 
schedule assigns a process to execute the next program state, which, in our 
case, corresponds to choosing a state t e T(~), and then "execute" the X- 
transitions from t to new pre-states (i.e., new program states). Thus 
"program execution" corresponds to the construction of H, in which we 
just record the states in S chosen by the scheduler. 

It is instructive to note that, unlike the finite-model interpretation of 
PTLf, in the case of bounded models we can let the schedule be quite 
arbitrary, and depend upon the entire path in H from the root to the 
current node. In contrast, in the case of PTLf, in order to ensure that the 
resulting structure be finite, we have to require that the schedule be 
"finitary," i.e., use only finite memory in determining the next state to be 
chosen at the current pre-state. 

The preceding remarks imply that to construct H it suffices to define the 
corresponding schedule o. a is a function defined on the set of all f in i te  
execut ion histories, each such history being a sequence of the form 

hrt = (~o, s1,  ~1, s2,... ,  Sn, i n )  

with 40 the root o f T  and where for each i =  1,..., n we have si E T(~i 1) and 
~i ~ X(si) .  (Thus, for convenience, we label each node of H also by the pre- 
state ~ of its corresponding state s. Each such hn corresponds to a path co 
of length n in H in which the schedule's decisions at the first n -  1 nodes 
are already recorded; o-(h,) is to be the state sn+l in T(¢,) that the schedule 
will choose at the terminal node of co.) Figure 2 illustrates these notations. 

Before defining o, we first modify T slightly to eliminate any partial 
overlapping between ergodic sets. Let El ..... Ed be the ergodic sets of T (for 
all formulae). Suppose that s e S belongs to more than one ergodic set, say 
s ~ E 1 ~ E2 c~ . . .  c~ E e. We then replace s by e new nodes (s, 1), (s, 2) ..... 
(s, e) such that, for j = 1, 2 , . ,  e we have 

F(sj)=F~.; X ( ( s , j ) ) = X ( s ) ;  T - l ( ( s , j ) ) =  T - a ( s ) .  

$n 

~n+l ~'n+l X($n) = t ~n+l' ~n+l } 

schedule ' s  choice  

"Vn+l Sn+l 
FIG. 2. Tableau unwinding by a schedule. 
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Define 

= (Ej-  {(s,j)}, 

for j-- i, 2,..., e. Since the internal structure of Ej is isomorphic to the struc- 
ture of Ej for j = I, 2,..., e, it follows that all these new sets are ergodic. 
Furthermore, if we apply the marking procedure to the new tableau 
obtained by this splitting, then no new nodes will be marked because the 
duplication of states in the above manner cannot cause any of the marking 
rules (MI)-(M6) to become applicable if it were not applicable before. 

Repeating the splitting procedure just described for each original s e S as 
needed, we obtain an equivalent but larger tableau T' together with 
associated ergodic sets E'I, E~,..., E~, with each state belonging to at most 
one of these ergodic sets. Without loss of generality, we will assume that 
the original ergodic sets E,,..., Ed in T itself already have this property. 
Then each set s e S either belongs to a unique ergodic set Ee, or else is 
"transient," i.e., belongs to E 0 -(U~=,Ee) c. 

For every s ~ S and 4 ~ X(s), we define 

~T(4)c~Ee if s e E e ,  e>O, 

if seEo. 

Note  that  V(s, 4) is always nonempty.  For  each such s and 4 let (t},..., t~) 
be a fixed enumera t ion  of the elements of T(4), and let (v~s,~),..., tv(s,¢)) be a 
fixed enumera t ion  of the elements of V(s, 4) (note that  k=-k(4)  and 
l = - l(s, 4)). Let  

hn= (40, S1, ~1, $2 ..... Sn, in) 

be a finite history in H; we will define a (h , , )=  s~+, as follows. Let  r be the 
number  of occurrences of s - s ~  in h~ (up to and including n) i.e., 
r = I{i: 1 <~i<~ n, s i = s~}l. Two possible cases can arise: 

(a) All the following three condit ions hold: 

(i) r = v  2 fo r  somev~>3.  

(ii) IX(s)l > 1. 

(iii) 4m1 = ~'~2 . . . . .  4m~, where n > m t > m 2 > . . .  > m~ are the 
places in h,  of the last v occurrences of s (before the nth place). 

(b) At least one of these condit ions does not  hold. 

If case (a) occurs, let j ~  v(mod k(~,))  and define a(h~) = t ~ .  If case (b) 
occurs, let j -  (r - [_x/r J) (mod l(s, ~ ) )  and define a(h~) = V}s,.¢o ). 

Let us call a visit at s for which r is a perfect square >/9 a square visit. 
Thus case (a) occurs only at pre-states ¢ following a square visit (of order  
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v 2) at a state s which has more than one succeeding pre-state, and for 
which s is followed in hn by the same pre-state ~ at each of the last v visits 
at s. When this case applies, the schedule iterates through T(~) in a round 
robin fashion (stepping through the elements of T(~) once per each such 
special square visit). Similarly, case (b) occurs when the visit at the last 
state s in h, is either non-square, or is square but not all last v/~ visits at s 
have been followed by the same succeeding pre-state. In these cases the 
schedule iterates through V(s, 4) in a round robin fashion, in which the 
square visits at s are not counted. 

The reason(s) for the peculiar definition of this schedule will become 
apparent below. Intuitively, it is due to the fact that one has to make sure 
that ergodic sets which are entered are also eventually exited when needed. 

We next show that the unwinding of the tableau T by the schedule e just 
defined yields a Hintikka structure H for Po. The proof that H satisfies con- 
ditions (H4c), (H4e), and (H4f) is somewhat involved and technical. We 
have to show the existence of a path (or, in the case of (H4f), a set of paths 
having positive measure) passing only through nodes containing the 
corresponding subformula r = q3Up, YFp or 3Gp and (in the cases of (H4c) 
and (H4e)) ending at a node containing p; in showing this, difficulties can 
arise because as such a path is being constructed, it can enter various 
ergodic sets, some of which may be irrelevant to the "fulfillment" of r, and 
so must be exited in order for r to be fulfilled. We construct a path by 
choosing at each state along the way a corresponding succeeding pre-state; 
the schedule then chooses which state will follow (according to the 
definition above). 

DEFINITION. A function p defined on a subset S p a  S and having non- 
negative integer values, is called an existential ranking function if the 
following conditions hold: 

(i) S°p=p-~(O)¢(3 .  

(ii) For each s ~ S p - S  o there exists q e X(s) such that T(r/)c Sp. 

(iii) For each s ~ S p - S o there exists t s T( X( s ) ) such that p( t ) < p( s ). 

(iii') For each s e S p - S  ° with ]J((s)] = 1 there exists t e  V(s, ~) such 
that p( t )<p(s ) ,  where X(s)= {(}. 

DEFINITION. A function p defined on a subset S p a  S and having a non- 
negative integer values, is called a universal ranking function if the following 
conditions hold: 

(i) S°=-p-l(O)~. 
(iv) For each s s S p -  S O and for each ( ~  X(s) we have V(s, ~ ) a  Sp. 
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(v) For  each s E Sp - S O there exists ( ~ X(s) and t ~ V(s, ~) such that 
p(t) < p(s). 

Note an essential difference between the two definitions: "there exists a 
son in X(s)" in (ii) vs. "for all sons in X(s)" in (iv); this explains our choice 
of names. 

PROPOSITION 4.7. Let p be an ex&tential ranking function, and let h, be a 
history (which we take, here and in the sequel, as h, = (~o, sl ..... 4 , -  1, s,)) 
with s, E Sp. Then there exists a finite path in H from s, to some state in S °, 
which visits only states in Sp. 

Proof Assume the contrary, and construct inductively the following 
infinite path co in H, starting at s,,  which stays forever in Sp. For  each 
m >/n, let Sm be the current state, which we assume to belong to Sp. If there 
exists 4 E X(Sm) such that t = a(hm_ 1, Sm, 4) satisfies p( t )<  p(s), then con- 
tinue the path co with any such ~ as the following ~m" Otherwise choose 
~m m ~], where ~/is one of the pre-states in X(s) as given by condition (ii) for 
s =sm (if there is more than one such t/, fix one and always choose it). In all 
cases, Sm+le Sp. (Note that in order to define the path co, we have to 
choose for each (h,~_l, Sin) the n e x t  ~m ~ ~(Sm), i.e., the outcome of the 
randomization at s~; o- will then define Sm +1.) 

We have thus defined an infinite path co in Sp. Let P0 be the minimal 
value of p appearing along co infinitely often, and let s be a state which 
appears infinitely often along co with p(s )=po .  Note that p o > 0  by 
assumption, so that by condition (iii) there exists some 4 ~ X(s) and some 
t s T ( ~ )  such that p( t )<p(s ) .  Since Po is minimal, t cannot be visited 
infinitely often in co, so that, for some m >i- n, the path never visits t after the 
mth place. 

Let r be the number of visits at s in h m (i.e., up to and including the mth 
place on the path). Let v/> 3 be the smallest integer satisfying v2> r. Sup- 
pose first that IX(s)l > 1, and consider the sequence of visits at s along co 
numbered ( v + l )  2, ( v + 2 )  2, etc. Then at each one of these visits at s, 
case (a) applies to the scheduler, since at all preceding visits the succeeding 
pre-state of s is tl by definition of 09. Therefore, after at most [T(~)l of these 
visits we would have reached a visit at s, with a preceding history h, such 
that ~r(h, s, 4) = t, so that t should follow s after that visit, by definition of 
co--a contradiction. Finally, if IX(s)] = 1, then condition (iii') implies that 
the state t e T(X(s))  with p ( t ) < p ( s )  belongs to the appropriate V(s, ~). 
Here only case (b) applies, and after at most IV(s, ~)l non-square visits at s 
the schedule would have to choose t after the pre-state ~, so that co would 
contain t after the ruth place, again a contradiction, This establishes the 
proposition. Q.E.D. 
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PROPOSITION4.8. There exists ~ > 0  (depending only on IS[), such that 
for every universal ranking function p, and for each finite history h,, with 
sn ~ S o, the probability of reaching S O from sn via states in Sp only, is >>. ~. 

Proof Consider the following path co (which is defined inductively, as 
in the preceding proposition, by specifying the pre-state which follows each 
state along the path): At each state s ~ o9, let r be the total number of visits 
at s, and assume rX(s)l > 1 (otherwise 09 must continue with the sole suc- 
cessor pre-state of s). If r ~ v 2 - 1, for all v ~> 3, then choose the pre-state 4 
given by condition (v) (if there is more than one such 4, fix one and always 
choose it); if r = v 2 -  1, choose any r/~ X(s) which is different from the pre- 
state chosen at visit number r -  1 = v 2 - 2  (this is possible since [X(s)l > 1; 
it guarantees that condition (a)(iii) in the definition of the scheduler will 
not be satisfied at r = v2). Note that by condition (iv), co never leaves Sp. 
Indeed, the only possibility of leaving Sp is at square visits for which 
case (a) applies; but our choice of pre-states along o9 guarantees that this 
never happens (this also holds for states s with IX(s)l = 1, by definition). 
Hence co visits only states in Sp, and at each such state on co, the schedule 
operates according to case (b). For  each s ~ S p -  S O appearing along co, let 
4 ~ X(s) be the chosen pre-state given by (v), and let t ~ V(s, 4) be a state 
for which p(t)<p(s). Since at each visit at s along co case (b) applies, it 
follows that if we disregard square visits at s and also visits numbered 
v 2 - 1, then by definition of a, after every f V(s, 4)1 consecutive visits at s, co 
would contain one visit at t (following one of those visits at s). If we also 
take into account the disregarded visits at s, then a visit at t would be 
guaranteed during every sequence of at least IV(s, ~)1 + 2 x/I V(s, 4)1 <~ 3]S[ 
consecutive visits at s. If t is not yet in S °, we can repeat this argument 
with ¢'~X(t) and t'~ V(s, 4') for which p(t')<p(t). We would then con- 
clude that during every sequence of at least 

31S1'31S1=9[SI 2 

consecutive visits at s, at least one visit at t' is guaranteed along co. 
Continuing in this manner, we conclude that every (31SI) p~sl consecutive 

visits at s along o9 generate at least one visit at some state u e S °. Thus, if 
we terminate co at the first time it reaches S O , it follows that the total length 
of o9 is at most 

(31SI)P(~)~ ~ (31sI)maxp ~(3lsl)m"×P" lSl ~(31S[) maxp+l. 
s~sp s~sp 

It therefore follows that the probability of 09 is at least 

((1/I S[ ) ((3rSI)maxp + 1) 

643/70/2 3-3 
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(here we have used the very crude estimate that the probability of a single 
edge in H is at least 1/ISI). We can even sharpen the bound just obtained, 
by noting that any ranking function p can have at most I S I -  1 different 
nonzero values. We can therefore use the preceding inductive argument at 
most I SI - 1 times, and thus we can replace max p + 1 in the above formula 
by ISI. Thus, if we define 

= ISL I-<31sl>~s~) > O, 

it follows that, for any universal ranking function p, the probability of 
reaching S O from any p-ranked state in H, is at least ~, as asserted. Q.E.D. 

The two preceding propositions 4.7 and 4.8 will next be used to show 
that the tree H generated by our schedule tr is indeed a Hintikka structure 
for the formula P0- This will be a consequence of the following sequence of 
lemmas: 

LEMMA 4.9. Let h, be a finite history in H such that r = p3Uq ~ s, .  Then 
there exists a finite path f rom s, to some state t with q ~ t which visits only 
states s with r ~ s (and thus also p ~ s). 

Proof  Define an existential ranking function p on the set 
Sp = {s ~ S: r ~ s }  as follows. If q E s then put p(s )=  0; otherwise, for each 
s ~ Sp, let p(s) be the length of the shortest path from s to S O which con- 
tains only states in Sp (by the length of such a path we mean the number of 
states lying on it, excluding the last such state). Note that all states s ~ Sp 
will get a finite rank, for otherwise they would have been marked by rule 
(M5). It is easily checked that p is indeed an existential ranking function. 
Indeed, condit ion(i)  is trivial. To satisfy condition(ii),  note that if 
s ~ S p -  S °, then q ~ s, so that s must contain the formula ~Xr and con- 
sequently X(s) will contain a pre-state q inheriting r. It follows that this r/ 
satisfies condition (ii). Condition (iii) is immediate (because all states in Sp 
have finite rank). Concerning (iii'), note that if s ~ S p  and IX(s)l = 1 then 
the only 3X formula in s is ~Xr, hence in particular no formula of the form 
3Gw belongs to s; thus s e E o ,  which implies that for the sole member 

~ X(s) we have V(s, ~)=  T(~), so that (iii') holds. The lemma is then an 
immediate corollary of Proposition 4.7. Q.E.D. 

LEMMA 4.10. Let hn be a finite history in H such that r -  ~Gp ~ sn. Then 
there exists a finite path e9 f rom s,  to some state t ~ E(r) =- U{Ee : Ee an 
r-ergodic set}, which visits only states s with r ~ s  (and thus also p~s ) .  

Proof  As in the preceding lemma, we define an existential ranking 
function p on the set Sp = {sE S: r ~ s } ,  so that, for each such s, p(s) is the 
length of the shortest path which never leaves Sp, from s to some state 
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t~E(r)  (in particular all states in E(r) get rank 0). As in the preceding 
lemma, one easily checks that conditions (i), (ii), and (iii) are satisfied. 
Concerning condition (iii'), note that if s~ Sp is such that X(s) contains a 
single pre-state 4, then either s~Eo,  in which case V(s, 4 ) =  T(~), or s 
belongs to some r-ergodic set, in which case p(s)= 0, or s belongs to some 
Ee which is w-ergodic for some w ~ r but not r-ergodic. But then s contains 
the two 3G formulae r and w, so that it must have at least two succeeding 
pre-states, contrary to assumption. As before, the lemma now follows 
immediately from Proposition 4.7. Q.E.D. 

LEMMA 4.!1. Let hn be a finite history in H such that r =-3Gp 6 sn. Then 
there exists a finite path co from sn to some state t ~ Ee, where E e is some r- 
ergodic set, which visits only states s with r ~ s (and thus also p ~ s), and such 
that the probability of  never leaving Ee after t is positive. 

Proof Consider the set A of all paths co starting at s,  and satisfying 

(1) If co has reached a state t following a case (a) action of the 
schedule, such that t does not belong to an r-ergodic set, apply the 
preceding Lemma 4.10 to obtain a path co' leading from t to some r-ergodic 
set and visiting only states containing r. Then co continues after t as co', 
until such an ergodic set is reached. 

(2) If co has reached some state t EE~, for some r-ergodic set Ee, 
such that the visit at t is the first square visit after s, ,  then co continues 
with the prestate in X(t) corresponding to 3Xr. Call this visit the "special" 
visit at t. 

(3) For  each state t as in (2) which also satisfies IX(t)[ > 1, and at 
each subsequent square visit (of order r 2) at t following the "special" visit, 
the last z preceding visits at t along co are such that they are not all 
followed by the same pre-state. 

Note that A is not empty (in cases (1) and (2), the continuation after t is 
explicitly stated; in case (3) choose, for example, at visit number v at t the 
pre-state number v (mod 2) in X(t)). Moreover, each path co~A never 
leaves the set R = {s ~ S: r ~ s}. Indeed, suppose that for some m t> n, sm ~ co 
belongs to R. Assume first that Sm ~ Ee for some r-ergodic set Ee. If the 
schedule choice of a state at the pre-state following sm along co is of 
type (b), then by definition Sm+l will also belong to Ee, hence to R. If, on 
the other hand, the schedule's choice at ff is of type (a), then condition (2) 
above ensures that Sm + 1 ~ R if the current visit at Sm is the first visit (i.e., 
the special one), and condition (3) above ensures that a case (a) choice 
cannot occur later on along co for the pair s, 4. Finally, if Sm does not 
belong to any r-ergodic set, then it must lie on a subpath co' as in con- 
dition (1) above, and the preceding Lemma4.10 guarantees that Sm+l 
belongs to R too. 
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(The reason for distinguishing the first (special) square visit at a state s 
from subsequent square visits, is that the schedule's choice at the pre-state 
following the special visit may depend on part of the past history h, (i.e., 
before reaching s,), over which we have no control. We therefore choose a 
"safe" pre-state following the special visit, thus ensuring that we remain in 
R. After that special visit we are in full control over the construction of a 
path in A, as reflected in condition (3)). 

The number of special visits as in condition (2) is at most ISI (at most 
one such visit per state), so that there exists c0 ~ A containing the maximal 
number of such special visits. Thus, after advancing some finite number of 
steps along ~o, we reach a state u such that all paths in A which continue 
from u onwards do not contain a special visit beyong that point. Let t be 
the first state along one of these paths which belongs to some r-ergodic set 
Ee (which exists by condition (1)). Then, after reaching that t, we have, for 
each s ~ E e : 

Prob (Ee is left (immediately) following a visit at s) 

~, Prob (Ee is left immediately after visit number v 2 at s) 
v- -vo+l  

(where v 2 >i 9 is the special visit at s after s.) 

(where d =  IX(s)[; note that (l/d) ~ is the probability that the same pre-state 
in X ( s )  has been chosen at the last v preceding visits at s) 

(The last inequality follows since d >i 2, because only at states having more 
than one succeeding pre-state can Ee be left.) The estimate just given is 
valid because the only way to exit E e after t is to choose at some state 
s e Ee the same pre-state for v consecutive visits preceding a square visit of 
order v 2 at s; this is because no special visits of type (2) can occur after t. 

Thus, after reaching t, the probability of never leaving E~ immediately 
after a particular s e E~ is at least ~-. Moreover, the events of leaving Ee 
immediately after visits at different states s ~ Ee are independent, because 
they depend on disjoint sets of randomizations, thus their complementing 
events are also independent, leading to 

Prob (E~ never left after t)>t (3)lEel >~ (3)lSl > 0 

and this proves the lemma. Q.E.D. 
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LEMMA 4.12. Let h, be a finite history in H such that r = VFp ~ s,. Then 
the probability of  reaching after s, a state in R = {s~S:  p e s }  u E~ is >>.~, 
where • is the positive constant given in Proposition 4.8. 

Proof We define a universal ranking function p on the set 
Sp= {sES: r e s } ,  so that, for each s~Sp  we let p(s) be the length of the 
shortest path from s to a state in R which visits only states in S, (such a 
path exists since rule (M5) did not mark s). To see that p is indeed a 
universal ranking function, note that Sp - S O c Eo, hence for all s ~ Sp - S O 
and all ~eX(s )  we have reF¢ and V(s, ~)= T(~)=Sp.  The lemma now 
follows immediately from Proposition 4.8. Q.E.D. 

LEMMA 4.13. Let h, be a finite history in H such that r = VFp ~ s,, and 
suppose that s, ~ E e for some e > O. Then the probability of  reaching after s, 
a state in Ee containing p is >~ ~. 

Proof As in the preceding lemma, we define a universal ranking 
function p on the set Sp = {s~Ee: r~s} ,  so that, for each s~Sp we let p(s) 
be the length of the shortest path from s to a state containing p which only 
visits states in Ee (recall condition (E3) in the definition of ergodic sets). 
The definition of V(s, ~)= T ( ( ) ~  Ee together with the fact that Ee is an 
ergodic set, readily imply that p is indeed a universal ranking function. The 
lemma then follows from Proposition 4.8. Q.E.D. 

LEMMA 4.14. Let h, be a finite history in H such that r=-VFpEs,,. Then 
the probability of  reaching after s, a state in Q = { s t  S: p e s }  is at least ~2. 

Proof Let el be the probability of reaching after s, an ergodic set 
before reaching Q. Now 

Prob (Q reached) 

= Prob (Q reached before an ergodic set) 

+ Prob (Q reached after an ergodic set). 

By Lemma 4.12, the first term is at least ~ - e l ,  and by Lemma4.13, the 
second term is at least e~e. Thus the total probability is 
>~(~-~1)+~1c~>~ 2. Q.E.D. 

COROLLARY 4.15. Let h, be a finite history in H such that t - V F p  e sn. 
Then the probability of reaching after s, a state in Q = {s ~ S: p E s} is 1. 

Proof This is a direct consequence of the zero-one law applied to the 
preceding Lemma 4.14 (see, e.g., Theorem 2.3 in Hart and Sharir, 1985). 
We will sketch the argument here. Let 0 < fl < ct2; Lemma 4.14 implies that 
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there exists an integer m (depending on hn) such that a state in Q is 
reached within no more than m steps from h,, with probability at least/~. 
The current state after these m steps, if Q has not been reached, must con- 
tain our formula r; we can continue from it by applying the same 
argument, and so on. The total probability of reaching Q will thus be no 
less than 

fl + ( 1 -  fl ) [3 + ( 1 -  fl ) 213 + . . .  

which equals 1. Q.E.D. 

As a result of the preceding sequence of lemmas, we finally conclude 

THEOREM 4.16. H is a Hintikka structure for  Po. Thus Po is satisfiable. 

Proof  It is easily seen that H satisfies conditions (H0)-(H3), (H4a), 
(H4b), and (H4d). Lemma 4.9 implies that it satisfies condition (H4c); 
Corollary4.15 implies that it satisfies condition (H4e); and Lemma4.11 
implies that H satisfies condition (H4f). Q.E.D. 

We have thus shown that if the root of T has not been marked then p is 
satisfiable. The converse statement is proven in the following section. 

Remark. The tableau construction and its associated decision 
procedure described in this section is for the more complex logic P T L  b. As 
argued in Sections 2 and 3, we can obtain a decision procedure for for- 
mulae Po of PTLf ,  by first rewriting P0 as a nonprobabilistic formula, 
replacing all terms of p0 of the form VFp and 3Gp by the appropriate right- 
hand side of the axiom (A3) or of its contrapositive form, and continuing 
this process until P0 is reduced to an equivalent formula Pl involving only 
the rnodalities VX, 3X, VU, and 3U. Then, to decide satisfiability of pl, use 
the tableau method described above (which in this case would essentially 
coincide with the tableau techniques for the non-probabilistic logics CTL 
and UB). 

5. COMPLETENESS 

In this section we prove the second part of Theorem 4.5, namely that if 
the root no of the tableau T constructed for a formula Po of PTLb is 
marked by the procedure described in the preceding section, then ~P0 is 
provable from the axioms of P T L  b given in Section 3. This, together with 
the proof of the first part of Theorem 4.5, will establish the completeness of 
our deductive system. In the case of P T L  F, the same arguments to be used 
below still apply (they become simpler, since one does not have to deal 
with VF and 3G). Of course, as noted above, an alternative proof of corn- 
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pleteness will follow from the fact that formulas of PTLu may be re- 
expressed in terms of the non-probabilistic logics CTL, UB, and from the 
corresponding completeness proofs for these logics. 

As in Ben-Ari, Pnueli, and Manna (1983) we define, for each node n ~ T, 
the associated formula af, of n to be v { ~ p: p e Fn }; note that afno = ~Po. 
The proof proceeds by showing, using induction on the phases of the mark- 
ing procedure, that if n is a marked node, then afn is provable. Since we 
assume that no is marked, it follows that ~Po is provable. 

The basis for our induction are phases which mark nodes n using the 
rule (M1). In these cases we obtain, using "dilution" as in Lemma 5.1 of 
Ben-Aft, Pnueli, and Manna (1983), that ~---af,. Similarly, for phases which 
mark nodes n using one of the rules (M2)-(M4), we can show, as in 
Lemma 5.2 of Ben-Ari, Pnueli, and Manna (1983), that ~---af,. For the 
rules (M2) and (M3) (corresponding respectively to ~ and fl expansions) 
this follows from simple propositional reasoning and from the fact that 
each of the expansions listed in Tables I and II of Section 4 is a theorem of 
PTLb. For the rule (M4) (corresponding to X-expansions) the proof 
proceeds exactly as in Ben-Ari, Pnueli, and Manna (1983), using rule (RI') 
and theorem (T1). 

Next consider a marking phase which has applied rule (M5) to a formula 
r =p~Uq. Let t be a state in T which has been marked by (M5). (Note that 
it suffices to consider states only. Indeed, let n be any node which is 
marked by this application of (M5). Suppose first that n is a node where r 
is expanded. Then the non-essential son of n must have already been 
previously marked--otherwise (M5) would not apply to n. It therefore 
follows that every state t reachable from n by ~ and fl expansions only must 
also have been marked by the present application of (M5). But then, 
assuming we have already shown ~---aft for each such state t, then the 
properties of rules (M1)-(M3) stated above make it plain that one also has 
~-afn. This remark also applies to the remaining cases of marking by (M5) 
and by (M6).) 

In what follows we will ignore the marked portion of T (before the 
current application of (M5)), and assume that each node we refer to is 
presently unmarked. Let us introduce the following terminology: For each 
state u~S  such that r~F~, denote the r-son of u by t/X, and put 
R(u)=T(rl~ ) (i.e., the states following t/w). Also put R*=R*( t )= 
02=0 R'( t ) ;  in other words, R*(t) is the set of all states reachable from t 
along an r-acceptable path. Note that each state in R* will be marked by 
the current application of (M5) (otherwise t would not have been marked 
either); the same argument also shows that we have 3Xr e F, for each state 
u in R*, and thus t/u is well defined. For each u e R* define V(u) to be the 
set of (presently unmarked) nodes at which r is expanded, which are 
reachable from t/, by a and fl expansions only (i.e., before a state in R(u)). 
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Note that the essential son vl of any u E V(u) has already been marked, for 
otherwise u, and consequently also u and t, would not have been marked 
by (M5). For each u E V(u), define Q(u) to be the set of unmarked states 
reachable from 27 (or from the nonessential son v2 of u) by CI and /? expan- 
sions only. Note that Q 0 V= R for all u E R*. Also denote, for each state 
UER*, r 

Y,= (k:VXkeF,} 

and 

where we will always write /j Y = A (k: k E Y} for any set of formulas Y. 
These formulae have the following properties, generalizing Lemmas 5.3 and 
5.4 of Ben-Ari, Pnueli, and Manna (1983): 

LEMMA~.~. +-W’x -p v -4. 

ProoJ: Let UE R*. Note that F,,u= {r} u Y,. Let v E V(u). Since none of 
the a or fi expansions performed between yl, and v did involve r, we can 
write F. = (r} u Z,, where Z, is the set of formulae in F,, into which for- 
mulae in Y, have expanded. Moreover, since each of these expansions 
corresponds to a theorem of PTL,, it follows that 

+/\Yu~ v AZ” . “E V(u) ( 1 Wl) 

However, as already noted, for each v E V(u), the essential W-son v1 of v 
must have been marked by a previous marking phase, so that, by our 
induction on the marking steps, it follows that +af,,, or 

H-P)V(-q)V -/j-c 
( ) 

or 

+/jz”~(v)v (“4h 

for each u E V(u). Thus also 

+v AZ, ( > =,(-PI v (“41, 
“E V(u) 
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and by (U1) we obtain that 

~-A r ~ ( ~ p )  v (~q) 

holds for each u E R*, thus 

zt ~ R* 

as asserted. Q.E.D. 

LEMMA 5.21 ~---p A W t ~ VX W t. 

Proo f  Let u E R*. By the implication (U1) given in the preceding proof, 
we have 

that is, 

Let v E V(u). The nonessential ~U-son v2 of v satisfies 

Fv2 = {p, 3Xr} w Z~. 

Since 3Xr is not expanded at any of the nodes connecting v2 to Q(v), it 
follows, as in (U1), that 

because these formulae are part of Fw. Hence 

v~ V(u) w ~ R ( u )  \ k E  Yw / 

so that, by (T1) and (R0), we have 

Combining this with (U2'), we get 
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Since this holds for each y ~ R*, we obtain 

w e R ( u )  

(the final implication being a consequence of (T2)). We have thus shown 

~---p/x W' ~ VX W' 

as asserted. Q.E.D. 

We can now show that ~--af,, as follows. Note that F,, = {r} vo Yr. Thus 
aft ,  = ~ r v ~ ( / x  Y,).  We have, by Lemmas 5.1 and 5.2, 

~---W'~ ,-~p v ~q ,  

~--W'~ ~ p  v (VXW'). 

Hence 

or, using (R2), 

Hence we also have 

~--Wt ~ .~p v ( ~ q  A VXWt), 

F - - W t = ( ~ q ) V U ( ~ p ) .  

A r, ~ (p3Uq) 

or  

Y)v_r 
that is, w - a f t .  Hence aft too, as follows from the inductive step of our 
proof corresponding to the marking rule (M4). 

Next consider a marking phase which has applied rule (M5) to a formula 
r = VFp, and let t be a state which has been marked by this phase. In a 
similar manner to what we did above for formulae involving 3U, we denote 
by R * =  R * ( t )  the set of all (presently unmarked) states reachable from t 
along r-acceptable paths (i.e., by choosing at each state u the r-son of u, 
also to be denoted as ~/,). Again, since t has been marked at this phase, no 
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state in R* has been ranked, so that it must contain both VXr and 3Xr. In 
other words, at each node v where r has been expanded, the essential VF- 
son of v must have been previously marked. We will also use the notations 
R(u), V(U), Q(u) as above, each of which is defined in an obviously 
modified manner. Also put 

Y,= {k:VXkEFUandk#r} 

These formulae have the following properties: 

LEMMA 5.3. I-W’ 3 -p. 

Proof Let u E R*. Note that F,,u = {r} u Y,. As before, for each u E V(U) 
we can write F, = {r > u Z,, where Z, is the set of formulae in F, into which 
formulae in Y, have expanded. Moreover, since each of the expansions per- 
formed along the path from qU to 0 corresponds to a theorem of PTL,, it 
follows that 

W) 

However, at each v E V(u), the formula r was expanded. Since the essential 
VF-son vi of v has been marked by a previous marking phase, it follows 
from our induction on the marking steps that +uf,,, or 

+(-P)V -/j-G 
( 1 

or 

for each u E VU. Thus also 

or, using (Fl), 
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This however implies that 

from which we obtain 

as asserted. 

LEMMA 5.4. w-W t D VX W'. 

HART AND SHARIR 

u E R *  

~--W t D ~p 

Q.E.D. 

Proof Let u e R*. At each v ~ V(u) the formula r is expanded, and the 
essential VF-son Vl of v has been marked in a previous stage, but v is yet 
unmarked. Thus its nonessential son v2 is unmarked, and we have 

F~2 = Z~ w {VXr, 3Xr}. 

Continuing with these expansions until we reach a state w (in Q(v) c R(u)), 
and observing that VXr and 3Xr will not be expanded any more, we obtain, 
using (F1), 

~--A Y~,~ M (A (Fw-{VXr, 3Xr})). 
w e R ( u )  

But 

~ A ( Fw - { VXr, 3Xr } ) ~ A vxk. 
k ~ Y~,,, 

Hence, using (T1), 

~ A (Fw-{VXr, 3 X r } ) ~ v x ( A  Yw). 

Thus 

or, taking disjunction, 

w ~ R ( u )  

vx(AYw) 
w ~ R *  
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and finally, using (T2), we obtain 

as asserted. Q.E.D. 

Lemmas 5.3 and 5.4 together imply 

~---W'~(~p)  A VXW' 

which, using (R2), imply that 

~---W' = ( ~ p )  VU false 

which in turn implies (using the contrapositive form of (T8) and (R0)) 

~---W' ~ 3G ~ p  

that is 

In other words, we have shown that ~--af,,, from which, using the 
argument corresponding to the marking rule (M4), it follows also that 
~--aft, which is what was to be shown. 

Finally, we need to consider nodes at which the marking rule (M6) has 
been applied to some formula r = 3Gp. This portion of the proof is the 
most complex, and is special to PTLb, in the sense that all the other related 
logics (UB, CTL, PTLz) have no similar marking rule for 3Gp. 

Let t E S  be a state that has been marked by (M6) for the formula r. Let 
F(t) denote the set of all pre-states reachable from t along paths each of 
whose states contain r. Let R*( t )= {t} w T[F(t)]. (Recall the notations 
introduced when (M6) was defined at Section 4; for a state s, X(s) is the set 
of its sons (pre-states); for a pre-state 4, T(~) is the set of states reachable 
from ~ by c~ and fl expansions only.) 

Applying rule (M6) for t and r, we decompose F(t) into finitely many 
disjoint sets H l W H 2  W Hm, and obtain a similar decomposition of 
R*(t) into Io u I1 u "" w Im U LI"'" U L,, where Io is the set of all states in 
R*(t) which do not contain r, where each of the sets I1,..., Im is either 
empty or a communicating but nonergodic set of states (i.e., satisfies (El) 
and (E2), but not (E3)), and where LI,..., Lm are "transition sets" of states 
satisfying 

setjc~ T-l(s)enj, S¢Io, and X ( s ) n K j _ l # ~  

(recall that L1 = ~) .  
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As already noted, since t has been marked by (M6), we must have, for 
each j = 1 ..... m either 

(I) I j = ~ ; o r  

(II) Ij 4= ~ and there exists some formula q such that for each s ~Ij, 
VFq~Fs but qCFs. 

Before investigating both these cases, we begin with a few general obser- 
vations and notations. For each ~ ~ F(t) we denote 

&=AF~ 

and for each s ~ R*(t) we denote 

Qs=AF,. 

Let X(s)= {t/i,..., t/k}, and Ys = {y: VXy ~F~}. This means that Q~ is a con- 
junction involving, among others, formulae of the form 3Xfl~l,..., 3Xfl,k, 
and also formulae of the form VXy, where y e Y,, in the sense that for each 
j = 1 ..... k we have 

F,, = Y, u {fl,,}. 

Note also that we must have one j for which fl,j = 3Gp; we may assume 
j = 1. We have 

~ - -Qs~VX(A Ys) A 3Xfl~,A "- -A 3Xfl,~k (G1) 

which leads to (using (A1)) 

But ~ f l . l -  ~3Gp,  so that we can write (G2) as 

~--Qs~VX(Z~ v Z . 2 ' "  v Z~k v 3Gp) A 3XZ,~"" A 3XZ~. (G3) 

Let us define, for each j = 1,..., m, 

A,= V 8j=VA . 
{eHj i<~j 
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Let us fix somej  = 1,..., m, and consider both cases (I) and (II) listed above: 

(I) I j=  ~ .  In this case Hj must contain a single element ~, and 
T(~)clow Li. 

LEMMA 5.5. If Ij satisfies condition (I) then 

~----Aj=Z¢~ V Q s v [  V (Q~A ~3Gp) ] .  (G4) 
sE T(~)c~ Lj s~ T(~)c~l 0 

Proof. Consider any node n lying between ~ and T(¢). If Fn contains 
3Gp, then all nodes following n up to T(¢) must contain 3Gp, so that all 
states in T(¢) following n must belong to Lj. By construction of F(t), F¢ 
must contain either 3Gp itself, or else the disjunction true v 3Gp. In the 
first case, T(~)c~ Io is empty, so that (G4) follows from the fact that each 
or fl expansion done between ~ and T(~) corresponds to a theorem of 
PTLb. In the second case, for each node n between ~ and T(¢) at which 
(true v 3Gp) has been expanded, let nl be the son of n which "inherits" 
3Gp and let n2 be the other son of n. It follows that A F,I = ( A Fn) A qGp, 
and A F,2 = ( A Fn) A true = A Fn, thus 

these implications are then easily seen to imply (G4). Q.E.D. 

Remark. The above proof is the main place in which the redundant 
expansion rule for 3Gp is used. The intuitive reason for this redundancy is 
to make sure that for each pre-state ~ in the tableau which contains 3Gp, 
this subformula is propagated to all its succeeding pre-states, so that each 
of them "gets a chance" to fulfill 3Gp. Without this provision, we could run 
into situations in which the unwinding of the tableau from ~ may not 
generate a set of paths having positive probability on which p is always 
satisfied (although this set will not be empty). This case is illustrated in 
Example 3 given in Appendix A below. 

For each s e T(~) c~ Lj there exists r/e X(s) c~ Kj_ 1, and moreover, by 
definition of F(t) we have X(s)c F(t). Thus, using (G3), we can write 

~ - - Q s ~ V X ( B m  v ~3Gp)  A 3XBj  1. ( G 5 )  

It therefore follows from (G4) and (G5) that for Ij's satisfying (I) we have 

~'---Aj~ [ - V X ( B  m v ~ 3Gp) A 3 x n j _  1]  v ,-~ qGp. (G6) 

(II) I j ¢  ~ and there exists a formula q for which VFq~F~ and q¢Fs 
for each s ~ L. 
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Let ¢ ~ Hj be any pre-state. As in case (I) we claim 

LEMMA 5.6. I f  Ij satisfies condition (II) then 

F--Z¢~ V (Q~A ~q)  v (  V Q,)  
sE T ( ~ ) n  Ij s e  T(¢)c~ Lj 

sE T(~)C~I 0 

This is shown as in the proof of (G4). The appearance of ~ q  in con- 
junction with Q, for s ~ Ij follows from the fact that at the node n along the 
path from ~ to s at which the VF-expansion of VFq has taken place, q was 
inherited by the other son of n. Since one has VFq D q v ( ~ q  A VXVFq), it 
follows that it is logically consistent to add ~ q  to the nonessential F-son 
of n, and hence eventually also to s (by a similar argument to that used for 
~ 3Gp in the proof of Lemma 5.5). 

It follows from (G7) that 

~--Aj~ V (Qs A ~ q ) v  ( V  Qs) v (~3Gp) .  (G8) 
s~I )  \ s e L j  / 

Using (G5), we can write this as 

where 

~---A;D V (Q~/x ,,,q) v w (G9) 
s~  lj 

w =  EVX(Bm ,, ~ 3 G p )  A ~XBj 1] v ~ 3 G p .  

(Note that the term in square brackets drops out for j  = 1, since L1 = ~ by 
definition.) Moreover, for each s e Ij we have X(s) c Hj, so that by (G3) we 
have for each such s 

~--Qs = VX(Aj v ~ SGp). (G10) 

By the definition of w, we have ~ 3Gp ~ w; from (G10), 

W-Qs = VX(A s v w) 

for all s ~ 1 i. Substituting in (G9), we get 

~---As=w v (VX(A; v w)/~ ~q)  (Gl l )  

from which, using (R2), it is easy to obtain 

~---Aj v w ~ ( ~ q) VUw 
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so that, in particular, 

~--Aj ~ ( "~ q) VUw. 

143 

(G12) 

However, since VXVFq ~ F~ for each s e Ij, and since each ~ e Hj satisfies 
X-  1(4) r~ Ij # ~ (cf. Corollary 4.4), it follows that VFq ~ F¢ for each ¢ ~ Hi, 
hence 

~--Aj ~ VFq (G13) 

which, together with (G12), implies by (A6) 

w--AjDVF(,,~3Gp v [VX(Bm v ~3Gp)/x  3 X B j _ I ]  ). (G14) 

Finally, since (G6) is a special case of (G14) by (A4), we conclude that 
(G14) holds for each j = 1,..., m. This implies 

J 
~--Bj~ V {VF(,...3Gp v [VX(Bm v ~3Gp) /x  3XB,_, ] ) } .  (G15) 

i=1 

But for each i <~j we have ~--B i_ 1 D Bj_ 1. It follows from the contrapositive 
form of rule (RI') and from rule (R6) that 

w--Bj=VF(,,~ 3Gp v [VX(Bm v ~ G p ) / x  3XBj_I]) (G16) 

for each l < j < , m .  For j =  1, the term in square brackets disappears, 
because L1 is empty; in this case (G16) reduces to 

~----B 1 = VF( ~ 3Gp) = VFVF(,-~p) = VF(,-~p) (G17) 

by (A5). 

LEMMA 5.7. 

~---Bm = VF(~p).  (G18) 

Put v = ~ 3Gp and for each j =  1,..., m put Cj= Bj v v. Since Proof 
Bj D Cj it follows from (G16) that 

~---CjDVF(Cj , v [VXCm/x 3XCj_,]). (G19) 

We will show, using induction on j, that 

F--Cj = VFCj 1 (G20) 

from which, by repeated applications of (A5) and finally (G17), we easily 
obtain (G18). We begin to prove (G20) for j - -m.  From (G19) we obtain 

~CmnVF(C , ,_ I  v [VXC,, ^ 3XCm 1]) 

643/70/2-3-4 
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which, by (R7), yields (G20) for j = m .  Suppose next that (G20) has 
already been established for all k > j ;  then it follows from (A5) that 
Cm ~ VFCj, so that (G19) becomes 

 Cj=VF(Cj_  , ,  [VXVFCj ̂  3XCj_,]) 

from which we obtain, using (R7) again, that Cj=VFCj_~,  as required. 
This proves our lemma. Q.E.D. 

Having established (G18), let us next choose any pre-state ~ e T(t) such 
that 3GpeF~ (there are many such pre-states: for example, for each 
s E R'(t)  = R(t)  - Io, the son ~/, of s corresponding to 3X3Gp e Fs is such a 
pre-state). For each such ~ we have 

~- -Z~  ~ B m ~ V F ( ~ p )  

and also 

~ Z ~  ~ 3Gp 

both of which formulae imply that 

~---~ Z~ 

so that, by dilution, 

~--af~. 

Thus, by the portion of the completeness proof corresponding to the mark- 
ing rule (M4), it follows that ~--af~ for each s ~ R'(t), and in particular 

, . Q.E.D. 

This concludes our proof of completeness, for we have shown that the 
associated formula of each marked node is provable, and in particular 
af, o -  ~Po is provable, which is what we wanted to show. Q.E.D. 

6. DISCUSSION 

We have presented a probabilistic temporal logic for bounded models 
which, syntactically, is quite similar to nonprobabilistic temporal logics for 
branching time (UB, CTL). We have also given a deterministic single- 
exponential decision procedure for satisfiability in PTLb, and have presen- 
ted a complete axiomatization of this logic. Several additional consequen- 
ces of our results deserve comment: 

First, the arguments of Section 4 actually imply that PTLb has the 
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FINITE PRE-MODEL PROPERTY: If a formula p of P T L  b is satisfiable, then 
there exists a finite set of states I (actually pre-states of the associated 
tableau), and for each s e I  there is a finite collection K(s) of probability 
distributions over I (one for each tableau state in T(s)) such that a model 
for p can be obtained by some "strategy" of choosing at each model state s, 
one of the distributions in K(s); this adds all states (in I) in the support of 
that distribution as successors of s in the model. 

This observation implies 

PROPOSITION 6.1. Let p be a formula of  P T L  b. I f  p is satisfiable, then 
there exists an execution o f  a finite probabilistic concurrent program (i.e., 
having a finite state space and finitely many processes) which serves as a 
model for p (in the sense described in remark (6) of  Sect. 2). 

Proof. Consider the tableau for p: For  each pre-state 4, let l(~) be the 
number of states in T(();  put l =  max¢ l(¢), and K =  (1, 2 ..... l}. For  each 4, 
let ~¢: K ~  T(¢) be an arbitrary map onto T(~) (thus, with each 1 <~k<<.l 
we associate one transition from ff to a state t~ T(~)). The program is now 
defined as follows. The program states are the pre-states of the tableau; and 
there are l processes; for each process k ~ K and each program state 4, 
execution of k at ¢ results in the randomization (i.e., X-transitions) at the 
tableau state ~ (k). The specific execution of this program which satisfies p 
is obtained in a manner similar to the unwinding of the tableau into a Hin- 
tikka structure for p in Section 4 whenever the tableau scheduler in Sec- 
tion 4 chooses a state s in T(~) for some pre-state 4, the corresponding 
program scheduler chooses a process k ~ K for which q~¢(k)= s. It is clear 
that the resulting finite concurrent probabilistic program and its schedule 
yield an execution of the program which serves as a model for p. Q.E.D. 

Together with the remarks made in Section 2 (see (6) there), this result 
implies that P T L  b serves as a proper tool to argue about executions of 
finite concurrent probabilistic programs. Indeed, it p is a formula of P T L  b 
which asserts some property about concurrent probabilistic programs, then 
either p is indeed provable in PTLb, or else, by Proposition 6.1 applied to 
~p ,  we can construct a finite concurrent probabilistic program and 
produce a certain scheduling of its processes for which execution p does not 
hold. This observation also implies the following 

COROLLARY. Consider the class of  concurrent probabilistic programs with 
(possibly) infinitely many states, finitely many processes and positive transi- 
tion probabilities bounded away from zero. Let p be a property of  an 
execution o f  such a program. I f  p is expressible in PTLb and is satisfied by 
an execution of  such a program, then p must also be satisfied by an execution 
of  a finite (i.e., finite-state) program in this class. 
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A second observation is that PTL b does not have the finite model 
property. By this we mean that there exist satisfiable formulas of PTLb, 
which however are not satisfied by any model of PTL F. An example of such 
a formula is 

r3 =VG3Fp A 3 G ~ p ,  

which is analyzed in the Appendix (see Example 3 there for the tableau 
construction and a proof of satisfiability of rz in PTLb). In contrast, if one 
expands r 3 in PTLf (using axiom (A3)), then it is easily checked that r 3 
becomes unsatisfiable (in PTLf, or, equivalently, in the corresponding non- 
probabilistic logics CTL and UB). 

A third observation on the results developed so far concerns the struc- 
ture of the "schedule" used in Section 4 to construct a model from the 
tableau of a satisfiable formula p of PTLb. As noted there, that schedule is 
generally not finitary. However, a close inspection of its definition shows 
that it needs to be nonfinitary only in cases where it enters some ergodic set 
E corresponding to some formula 3Gr, and it has to ensure that it gets out 
of E at every possible "exit" from E with positive probability. However, the 
schedule really needs to exit E only if some states in E contain formulae of 
the form SGq (resp. p3Uq) which are not fulfilled inside E. In these cases 
the schedule must make sure that for each occurrence of such a node in the 
model there exists a path from that occurrence which reaches an ergodic 
set for 3Gq (resp. a state fulfilling q). In all other cases, there is no need for 
the schedule to leave E once it had been entered, and the schedule can then 
be replaced by a finitary schedule. When this is the case, the model that 
results from unwinding the tableau of p in this finitary fashion is equivalent 
to a finite Markov chain, so that although p is a formula of PTLb, it is also 
satisfiable by a model of PTLf. 

The precise condition that p has to satisfy for this property to hold is 
somewhat complicated to state, since it depends on properties of the 
tableau of p. Nevertheless, a simple sufficient condition can be given: 

DEFINITION. (a) A formula of PTL b is said to be written in canonical 
form if it is either a proposition, the negation of a proposition, or has one 
of the forms q v r, q A r, 3Xq, VXq, q3Ur, q VUr, VFq, 3Gq, where q and r 
themselves are written in canonical form (in other words, negations are 
"pushed" inside arguments of logical operators as much as possible). 

(b) A formula p of PTL b is said to be finitary, if, when written in 
canonical form, it contains at most one subformula of the form 3Gq, and, if 
it contains such a subformula, then it contains no subformulae of the form 
r 3Us. 

Note that any formula p of PTLb can be written in equivalent canonical 



PROBABILISTIC PROPOSITIONAL TEMPORAL LOGICS 147 

form, using some of the expansion rules given in Tables I and II of Sec- 
tion 4. 

TUEOREM 6.2. 
are equivalent: 

(a) 
(b) 
(c) 
(d) 

Proof 

Let p be a finitary formula of PTLb. Then the following 

p is satisfiable by a model of PTLb; 

p is satisfiable by a model of PTLf; 

~ p  is not provable in PTLb; 

,,~p is not provable in PTLf. 

From the completeness of PTLb and of PTLf  it follows that 
(a) ,**, (c), and (b)¢*, (d). It is also always the case that ( d ) ~  (a). If p is 
finitary, then it is easily seen that only subformulae of the form 3Gq or 
q 3Ur which appear in the canonical form of p, can appear in nodes of the 
tableau. It then follows from the preceding remarks that if p is PTLb- 
satisfiable, then one can construct a PTLi-model for p from its tableau, 
which shows that (a) =~ (b). Q.E.D. 

As an application of this theorem, consider an assertion p about the ter- 
mination of a finite probabilistic concurrent program. It will generally have 
the form (2.1) given in Section 2. It is easy to check that the negation o fp  
contains in canonical form only one occurrence of an 3G subformula, and 
no 3U subformulae. Hence, Theorem 6.2 applies to ,-~ p, and implies that p 
is provable in PTL b iff it is provable in PTL r. This in turn implies that the 
program terminates almost surely under any fair schedule iff it terminates 
almost surely under any fair and finitary schedule. Although this property 
could be deduced directly from the results of Hart, Sharir, and Pnueli 
(1983), it is interesting to obtain it as a special case of a purely syntactic 
condition on formulae of our logics. 

APPENDIX A: EXAMPLES 

In this Appendix we present four examples of the application of our 
decision procedures to formulae of PTLb. To display the corresponding 
tableaux in more compact and readable form, we use the following conven- 
tions and shortcuts: Only unexpanded formulae are shown at each node of 
the tableau; several successive ~ expansions are combined into a single 
expansion; closing of nodes is marked by X; pre-states are given numerical 
labels enclosed in circles, and states are given alphabetical labels enclosed 
in boxes; ~ and fl expansions are denoted by dashed edges, while X expan- 
sions are denoted by solid edges (we use the convention that an essential 
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son is drawn as the left son). Several intermediate nodes are also given 
labels, when their associated set of formulae coincides with a set of a 
previously constructed node. In this case further expansion of the tableau 
past such a node is not shown, since it completely parellels the expansion 
of the preceding node. A node whose set of formulae coincides with that of 
a preceeding node is given a label of the form a', where a is the label given 

O 1  : p vUq, YF~p, ~G~q 

# 
q, VF~p, ~G~q p, vX(p vIA q), 3G~q, VF-p 

q , ~ q ,  . .  • p , ~ p ,  . . .  p ,  V X ( p  Vl.J q ) ,  " ¢ X V F ~ p ,  ~ X ' V F ~ p ,  ~ G ~ q  

X >( ,," 
f 

f 

~ ~ X ' e F  p ~q, ~X~G~q, VX(trueV3G~q) 

: p VUq, VF~p, ~G~q, ,~1,.~2 : p VUq, VF~p, (trueV3G~q) 
[true 3 G ~ q ]  t X 

, VF~p b l  

q, YF~p VX(p vIA q), VF~p 

t 2 
17d : q, ~p c : q, VXVF~p, 3XN'F~p p~, ~p, - • • "~Ob : p, VX(p VIA q), 

t X vX'~--- p, ~XVF~p 

: VF~p p VU q, YF~p 

f 

~ ' f  : ~ p  ~ 4  e : VXYF~p, ~X~F~p 

FIG. A.1. Construction of T 1. 
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to that preceeding node. Finally each tableau is displayed in two figures, 
the first of which gives the full construction, whereas the second figure gives 
a condensed form of the tableau, involving only pre-states and states and 
their X and T-relationships. (For convenience, we will label states s in this 
second compact representation of the tableau by propositions and their 
negations appearing in Fs, and also by VF and 3G subformulae appearing 
in Fs.) 

EXAMPLE 1. r I = (p VUq) A VF ~ p  A 3G ~ q. This is the negation of the 
axiom (A6), and will be shown indeed to be unsatisfiable. The construction 
of the tableau T1 for r I is shown in Fig. A.1, and the condensed form of T1 
is shown in Fig. A.2. Applying the marking rule (M5) to VF ~p ,  we note 
that this formula is "fulfilled" at states d, d', and f, and that from any other 
node of T1 one of these states can be reached. Hence, no node is marked by 
this rule. Next we apply rule (M6) to k =  3 G ~  q. The relevant nodes are 
Sk = { a, a' } and Y = { 1, 2 }. The decomposition yields 

Io = {b, c, d}; H1 = {i, 2}; I1 = {a, a'}. 

However, 11 is not ergodic, because gF ,,~p is contained in Fa=Fa,, but 
~ p  is not contained in these sets. Hence, (M6) will mark the nodes a, a', 
1, 2. Since the root of T 1 has been marked, we conclude that rl is 
unsatisfiable. 

EXAMPLE2. r2=VFVp A 3 G ~ p .  This is the negation of axiom (A5), 
and will be shown to be unsatisfiable. The construction of the 

1 
! 
! 
i 

a :p ,  --q, C~G-q) (VF~p) 

D d : ~ p , ~ c : q , ( V F - - p ) ? b : p , ( V F ~ p ~ : p , - - q , ~ G ~ q ) ( v F ~ p )  

~ ) 3  ~ ~ ~ Q) I  Q)2 

i t x x s " .  ~ ~ 

l~ f  ; ~ p  

FIG. A.2. Compact form of T1. 
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,Q)I : vFvFp, ~ G - p  

@5 : vFp, 3 G - p  

p, ~b - -p  • b  :vX-CFp, 3Xv_Fp., - p  ,~_ ~]~a :vXvF'eFp, B Xv.F~/Fp, ~/?,  . 
/ ~ X J O ~ p ,  vX(t rueV~U~p)  \ =X~tJ~p,  vX(trueV~U--p) 

t 5 : vFp, 3G--  1 : VFVFp, 
/ ~"x ," t rueV3G~ " ~G--p 

0 4  : qFp ~C)5 : VFp, ~G~p . "  .(~3 : vFVFp "O1 

,~74~ : vFp ~x 

~e : p I i  : vXVFp, ~XVFp lc : vXvFVFp, 3XvFVFp 

FIG. A.3. Construction of T2. 

corresponding tableau T 2 is shown in Fig. A.3, and its condensed form is 
shown in Fig. A.4. The subformula VFp is contained in nodes 

4, 5, 6, b, b 1 , b', b' 1, d, d t ,  d2, d', e, e 1 , e2, e' 

and is fulfilled at states e, e~, e2, e'. It easily follows that rule (M5) applied 
to VFp does not result in any marking. Similarly, the subformula ¥FVFp is 
fulfilled at all the states of the b, d, or e "type." Again, no node is marked 
from application of (M5) to this subformula. 

Finally, consider rule (M6) applied to k = 3G ~p .  It is contained in the 
nodes 

1 , 2 , 5 ,  6, a, a l , b ,  b l , b ' , b ' l .  

/03 

s½ 

 :f4 
Compact form of T a. FIG. A.4. 
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(~) (b) 

FIG. A.5. The transitions graphs used in (M6). 

We first have 
Io={c,d,d',e,e'}. 

The initial value of the transition graph used by the decomposition 
algorithm of (M6) is shown in Fig. A.5(a). It follows that 

H1 = {5, 6}; 11 = {b', b'l}. 

The reduced transition graph used in the second decomposition step is 
shown in Fig. A.5(b), from which it follows that 

H2= {1,2}; I2= {a, al}; Lz= {b, bl}. 

But neither of I1, I2 is ergodic, the first because of the nonfulfillment of 
VFp, and the second because of the nonfulfillment of VFVFp. Hence, (M6) 
causes the root 1 to be marked, so that r2 is unsatisfiable. 

EXAMPLE3. r3=VG3F p ^ 3 G ~ p  (for simplicity we shall use the 
auxiliary operators VG, 3F explicitly, instead of their implicit represen- 

O1 : vG-~Fp,3G~p 
0 1 '  : 3Fp, vXvG-2~Fp, --p, 3X3G--p, vX(truev3G--p) 

P ° l  I 

• I 

p, ~ • • - ~3a _ ~p, ~X~Fp, ~X3G~p, vXvCr3Fp, vX(truev~G~p) 
/ x (  / 

02 : 3Fp, v C r 3 ~ l  : vC~Fp, 3G~p, [true 3G~p] 

~ ' ~  3Fp, vXvCr3Fp " " 'C)I '  

: p, vXvG-ZFp : ~X3Fp, vXvG-3Fp 

: vG-~ Fp 
! 
I 
i 

63' 
FIG. A.6. Construction of T3. 
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Q1 
B 
! 

c,_)l (..)2. 

/ \ 

tx; t~c 

FIG. A.7. Compact form of T 3. 

tations by means of the operators VU, 3U). The construction of the 
corresponding tableau T 3 is given in Fig. A.6, and the condensed form of 
T 3 is given in Fig. A.7. Since the subformula 3Fp is "fulfilled" at state c, and 
since c is reachable from any other node of T 3 ,  application of the marking 
rule (M5) results in no marking. Application of the rule (M6) to the sub- 
formula q = 3 G ~ p  proceeds as follows: The set of relevant nodes is 
{1, 2, a, a'}. The decomposition as specified in (M6) gives 

I0 = {b, c}; O 1 = {1, 2}; I 1 = {a, a'}. 

Since no subformulae of the form VF appear in r3, the set 1, is ergodic, and 
so no node needs to be marked by this rule. Hence r3 is satisfiable. To 
obtain a model for r3 from T3 we can use the following "scheduling" 
strategy for the unwinding of T3 (this scheduling is simpler than that given 
in Sect. 4, but has the disadvantage that it requires assignment of unequal 
probabilities to edges emerging from a common state): 

At the pre-state 1, schedule the (only possible) state a. 

•/f• la :~p 

( . . ) l a  : - - p  ~ ) 2 c  : p  

~11a'.~p -. 2a':~p ~la'.~p 2c:p "" 

~ 3 c  : p 

FIG. A.8. Unwinding T 3 into a model for r 3. 
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O1 : p, vC~Xp, VF-p 

i 

p, 3xXp, vXvG-3Xp, vF~p 

. 

3~4~, vXvG-3Xp, VF~p 

f: p' ~Xp, vXvC~Xp 

F1G. A.9. Construction of T 4. 

At the pre-state 2, schedule the state a' until the first time in which the 
number of visits at the pre-state 2 equals the number of visits at the pre- 
state 1, in which case schedule the state c. 

At the pre-state 3 always schedule the state c. 

The resulting model is shown in Fig. A.8. It essentially coincides with the 
behavior of a random walk on the non-negative integers with absorption at 
0. This model will satisfy r3 provided that we assign a probability > ½ to 
the edges from a to 1 and from a' to 1. The reader is invited to check that if 
one expands subformulae of the form 3Gq as in the nonprobabilistic case 
(Ben-Ari, Pnueli, and Manna, 1983) as q A 3X3Gq, then the modified 
tableau for r3 would be such that no model for r3 could be obtained by its 
unwinding. 

91 
I 
I 

I 

Fl~. A.10. Compact  form of T 4. 
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, ~ a  : p  

W...ta : p q.A.2c . ~ p  "X.J3d : p "Q3d 
.. . . . : ", : P  

FIG. A.11. Unwinding T 4 into a model for r4. 

Remark. The formula r 3 is also satisfiable in the nonprobabilistic logic 
UB of Ben-Ari, Pnueli, and Manna (1983) (with the standard non- 
probabilistic interpretation of the operator 3G) by a smaller and simpler 
tableau. However, as noted in Section 6, r 3 is unsatisfiable in PTL r. Thus, 
rewriting it using axiom (A3), we obtain a formula which is unsatisfiable in 
any of the logics PTLf, CTL, UB. 

EXAMPLE4. r4= p /x VG3Xp/, VF~p.  This formula is chosen to 
demonstrate the different treatment of VF formulae in our logic PTLb and 
in the nonprobabilistic logics UB, CTL. In fact r 4 is shown below to be 
satisfiable as a formula of PTLb, but is unsatisfiable as a formula of UB. 
The construction of the corresponding tableau T4 is shown in Fig. A.9, and 
the condensed form of T4 is shown in Fig. A.10. The formula VF ~ p  is 
fulfilled at state c, and every node containing VF ~ p  can reach c. Hence, 
the rule (M5) does not cause any node to be marked, and r 4 is con- 
sequently satisfiable. To obtain a model for r4 from T 4 simply choose at the 
pre-state 2 always the state c (again, this is a simpler schedule than the 
general one given in Sect. 4). The resulting model is shown in Fig. A.11 
(note that it certainly does not satisfy r 4 as a model of UB). 
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