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The total chromatic number X=(G) of a graph G is the least number of colours 
needed to colour the edges and vertices of G so that no two adjacent vertices receive 
the same colour, no two edges incident with the same vertex receive the same 
colour, and no edge receives the same colour as either of the vertices it is incident 
with. Let n > 1, let J be a subgraph of K,,,, let e = 1 E(J)I, and let j(J) be the maxi- 
mum size (i.e., number of edges) of a matching in J. Then 

x~~&,\E(JN =n+2 

if and only if e+j<n- 1. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

A vertex-colouring of a graph G is a map $: V(G) + %, where % is a set 
of colours, such that no two adjacent vertices receive the same colour. The 
chromatic number x(G) of G is the least value of ) % 1 for which G has a 
vertex colouring. It is well-known, and easy to show, that x(G) < d(G) + 1, 
where d(G) is the maximum degree of G. 

An edge-colouring of a graph G is a map q5 : E(G) + S’, where S+? is a set 
of colours, such that no two adjacent edges receive the same colour. The 
chromatic index (or edge-chromatic number) x’(G) of G is the least value 
of 1%’ 1 for which G has an edge-colouring. A famous theorem of Vizing [9] 
states that d(G) ,< x’(G) < d(G) + 1, where d(G) is the maximum degree of 
G, G being a simple graph. 

A total-colouring of G is a map 0: E(G) u V(G) + Q? such that no incident 
or adjacent pair of elements of E(G) u V(G) receive the same colour. Thus 
a total-colouring of G incorporates both a vertex-colouring and an edge- 
colouring of G, and satisfies the additional condition that no vertex receives 
the same colour as an edge incident with the vertex. The total-chromatic 
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number xT(G) is the least value of 1% 1 for which G has a total-colouring. 
A long-standing conjecture of Behzad [ 1 ] is that d(G) + 1 < xT( G) < 
d(G) + 2 if G is a simple graph. The lower bound here is trivial, but 
whether the upper bound is true is today still unknown. The only upper 
bounds of this type to date, xT(G) < (11/6)ld(G)I + O(d(G)) and X=(G) < 
(g/5)1 d (G)I , both under some additional restriction on G, are due to 
Bollobas and Harris [2], and Chetwynd and Haggkvist [3], respectively. 
Hind [7] showed that xT(G) < x’(G) + 2 JX(G). Chetwynd and 
Hilton [4] showed that if G is regular and satisfies d(G) >/ (6/7)( V(G)1 , 
then xT( G) < d(G) + 2, and obtained a number of other similar results for 
regular graphs of high degree. 

It is well-known that x~(K~,~) = n + 2. Our object is to prove the 
following theorem. 

THEOREM 1. Let n 2 1, let J be a subgraph of K,,., let e = I E(J)I, and let 
j(J) be the maximum size (i.e., number of edges) of a matching in J. Then 

XTWn,n\E(J)) = n + 2 

ifand only ife+j<n- 1. 

A similar result, with K2,, instead of K,,., was proved in [6]. The result 
here seems to be somewhat harder to prove. 

2. PROOF OF THEOREM 1 

We first prove the necessity. 

Proof of Necessity. It is easy to see that ~~(lC~,~)=n +2, and so 
it follows that x=(K,,,\E(J)) 6 n + 2. We show that, if e + j< n - 1 
then XTK,,\E(J)) = n + 2. We do this by assuming instead that 
xT(K,,,\E(J)) = n + 1 and showing that then e + j>, n. So suppose that 
K,,.\E(J) is totally coloured with n + 1 colours cl, . . . . c,, i. 

Let the two sets of independent vertices of K,,. be L and R. For 
1 < i < n + 1, let ci be used to colour pi vertices of L and qi vertices of R. 
Let 

.A = min( Pi, qi} 

fi=max{Pi, qi) -min{p,, qi} =max{pi, qi} -ji. 

Then 

Pi + qi = fi + 2ji, 
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(f1+ *-* +fn+1)+2(j1+ *a. +j,+,)=2n. 

There are clearly ji independent edges of J joining vertices coloured ci, and 
so, as each vertex receives exactly one colour, J has at least 
(j,+ --- + j, + 1) independent edges. Thus j 2 j, + . . . + j, + I, and so 

fi + ..a +fn+l 22n-2j. 

Call a pair (c, II), where c is a colour, II is a vertex, and c is used on v 
itself or on an edge incident with v, a colour-vertex pair. There are at most 
2n -J;: colour-vertex pairs where the colour is ci, and so there are at most 

2n(n+ I)-(fi + a*. +fn+1) 

colour-vertex pairs altogether. But the number of colour-vertex pairs equals 
the number of vertices plus twice the number of edges, and so is 
2n2 + 2n - 2e. Thus 

2n2+2n-2e<2n(n+ l)-(fi + es- +fn+l) 

<2n(n+ 1)-2n+2j 

= 2n2 -I- 2j. 

Therefore 
nGe+j 

as required. 

We defer the proof of the sufficiency of Theorem 1 until we have proved 
a number of lemmas. But we do observe that, in order to prove the suf- 
ficiency, by adding in edges if necessary, we may without loss of generality 
suppose that either e + j = n or n is odd and J consists of (1/2)(n + 1) inde- 
pendent edges (so that e + j = n + l), and then show that K,,,\E(J) can be 
totally coloured with n + 1 colours. 

We first consider the case when e + j = n and prove the following seven 
lemmas. 

LEMMA 1. Let e + j = n and let H = K,,,\E(J). Let H be totally coloured 
with n -I- 1 colours, cI, . . . . c,, 1. Then there are non-negative integers 
jl ’ 7 -,Jn+ 1 such that H has exactly n + ji elements coloured ci, in one of L, R 
exactly ji vertices are coloured ci, in the other of L, R at least ji vertices are 
coloured ci, j, + *. . + j, + 1 = j, and, for some matching M of J with 1 M 1 = j, 
there are ji edges of M such that ci is used to colour the vertices at each end 
of these edges. 
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Proof. Suppose that, for each i E { 1, . . . . n + 1 }, colour ci occurs on ji 
vertices of one of L and R, and on at least ji vertices of the other of L and 
R. Then Ci occurs on at most n + ji elements (edges and vertices) of H. Thus 
H contains at most (n + 1) n + j, + e. a + jn+ 1 elements altogether. Since we 
know that the number of elements that H contains is n* -e + 2n = 
(n+ l)n+(n -e)=(n+l)n+j, it follows thatjdji+ .a. +jn+l. 

For each i E ( 1, . . . . n + 11, a set of ji vertices of L and a set of ji vertices 
of R are at each end of a set of ji independent edges of J. Moreover, if 
iI # iz, then the set of jil edges of J corresponding to the colour ci, is inde- 
pendent from the set of j, edges of J corresponding to the colour Ci2. Thus 
J contains a matching A4 consisting of j, + . . . + jn+ I edges. Since the 
maximum size of a matching of J is j, it follows that j > j, + . . a + jn+ 1. 
Therefore j = j, + . . . + jn+ r. It follows now that, for each iE { 1, . . . . n + 11, 
Ci occurs on exactly n + ji elements of H. 

This proves Lemma 1. 

Whenever we have a vertex-colouring with colours cl, . . . . c,, r of a 
bipartite graph H = K,,.\E(J), with vertex sets denoted by L and R, for 
1 < i < n + 1 we let pi denote the number of vertices coloured ci in L, we let 
qi denote the number of vertices coloured ci in R, and we let 
ji=min{p,, qi}. 

We first consider a bipartite multigraph H* constructed from H by 
introducing two further vertices I* and Y*, joining I* to each vertex u of R 
by dJ(v) edges, and joining r * to each vertex u of L by dJ(u) edges. Then 
H* is regular of degree n except that I* and r* have degree e. Let S* be 
a submultigraph of H *. We say that S* is almost totally coloured if all 
edges of S* and all vertices of S*\ {I*, r* } are coloured, and the colouring 
is such that no two adjacent vertices are assigned the same colour, and, for 
v E v(s*)\{z*, Y* >, no two edges incident with v have the same colour, and 
no edge incident with v has the same colour as v. Thus it is possible for a 
colour to be used on more than one edge incident with I* or r*, but the 
edges of a multiple edge all have different colours. 

A reason why it might be helpful to consider H* instead of H is given 
succinctly in the following lemma. 

LEMMA 2. Let e + j = n and let H = K,,,\E(J). H can be totally coloured 
with n -I- 1 colours if and only if H* can be almost totally coloured with n + 1 
colours. 

Proof of Lemma 2. If H* is almost totally coloured with n + 1 colours, 
then this incorporates a total-colouring of H. 

To prove the converse, suppose that H is totally coloured with 
Cl 7 ---3 c, + 1 - Then, by Lemma 1, J has a matching A4 with 1 Ml = j, there 
are integers jl, ...,jn+l such that j=jl + ... +jn+l, and, for l<i<n+ 1, 
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there are ji edges of M whose end vertices are both coloured ci* Therefore, 
for 16 i 6 n + 1, R has qi - ji further vertices coloured ci, and thus L has 
qi- ji vertices at which colour ci is not used. Colour an edge joining Y* to 
each such vertex with Ci. Then altogether C?L: (qi- ji) = n -j= e such 
edges are coloured. There are therefore no further edges from Y* to vertices 
of L. Similarly, for 1 d i < n + 1, colour an edge joining, I* to vertices of R 
at which ci is absent with ci. This is the required almost total-colouring 
of H*. 

This proves Lemma 2. 

LEMMA 3. Let e + j= n and let H= K,,,\E(J). Let H have a vertex- 
colouring with colours cl, . . . . c, + 1. Let S* be an induced subgraph of H* 
such that I*, r*, and each end-vertex of each edge of J is in S*. Let the ver- 
tex sets of S* be (I*, I,, . . . . IA> and (r*, rl, . . . . r,]. Let the vertex-colouring 
of S* be part of an almost total-colouring of S* with cl, . . . . c,, 1, and, for 
1 < i 6 n + 1, let Ni be the number of elements (vertices and edges) of S* 
which are coloured ci. Then the almost total-colouring of S* v L v R can be 
extended to an almost total-colouring of H* with cl, . . . . c,, 1 tf and only tf 

(i) Nia1+p-n+max{pi, qi> (V’~E (1, . . . . n+ l>>, 

and 

(ii) for 1 < i 6 n + 1, in S* there are qi- ji edges coloured ci incident 
with r*, and there are pi - ji edges coloured ci incident with I*. 

Proof Necessity (of Lemma 3). Suppose that an almost total- 
colouring of S* u L u R with cl, . . . . c, + 1 is extended to an almost total- 
colouring of H* with cl, . . . . c,, 1. Then, by Lemma 1, for 1 <i<n+ 1, Ci 
occurs on n + ji elements of H. There are qi vertices of R coloured Ci, and 
so it follows from Lemma 1 that there are qi-ji vertices of L which, in H, 
have no edge coloured ci incident with them, and are not themselves 
coloured ci. Therefore in H* there are qi- ji edges coloured Ci incident 
with r*, and there are similarly pi- ji edges coloured ci incident with I*. 
This proves (ii). 

Altogether there are n+ji+max{pi-ji, qi-ji)=n+maX{pi, qi} 
elements of H* coloured ci . There are n - 2 elements of H* coloured Ci 
incident with, or equal to, elements of L\V(S*) and there are at most a 
further n-p elements coloured Ci incident with, or equal to, elements of 
R\ V(S*). Therefore Ni 3 n + max(p,, qi) - (n - A) - (n - p) = p + 2 - n + 
maxIpi, qi}. This proves (i). 

Sufficiency (of Lemma 3). Suppose that we have an almost total- 
colouring with cl, . . . . c, + 1 of S* u L u R, and that this incorporates a 
vertex-colouring of H. Suppose moreover that (i) and (ii) are satisfied. 

If 3, < n then we shall extend the almost total-colouring of S* u L u R to 
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an almost total-colouring of T* u L u R, where T* is the subgraph of H* 
induced by (I*, I,, . . . . I,, r*, yl, . . . . r,}, in such a way that 

N:>p+max{pi, Si}, 

where Ni denotes the number of elements of T* coloured ci [this is what 
(i) becomes when n = A]. 

As an aid to doing this, we construct an auxilliary bipartite graph B. The 
vertex sets of B are {ci, . . . . CL+ 1} and (r*‘, r;, . . . . rb}. In B, cl is joined to 
r; by an edge if in S* colour ci is neither on the vertex Ye nor on any edge 
incident with rk; cl is joined to Y*’ by hi edges (1 fi<n+ 1, 1 fk<p), 
where hi is the number of vertices coloured Ci in (In+ 1, . . . . 1,). 

For 1 < k < p, in S* the vertex rk has 3, + 1 colours used either on it, or 
on an edge incident with it. There are therefore (n + 1) - (A + 1) = n - ;1 
colours not used on it or at it, so the degree in B of rk is n - ;1. The degree 
in B Of r”’ is cl.?,’ hi=n-~. 

For 1 d i < n + 1, the colour ci is used on Ni elements of S*, including, 
by (ii), qi- ji edges incident with Y*, and pi-hi vertices in (II, . . . . IL>, and 
so it is not used on or at 

P - Ni + t4i-ji) + (Pi- hi) 

of the vertices yl, . . . . rP. Therefore in B the degree of cl is 

p-Ni+(qi-ji)+(pi-hi)+hi 

=p-Ni+pi+qi-ji 

dp-(If/l-n+maX(pi, qi))+pi+qi-ji 

=n-A--max{p,, qi} +(pi+qi-ji) 

=n-A. 

By Konig’s theorem [S] we may now edge-colour B with n - il colours, 
1’ L + 1, . . . . I;. The edges incident with Y*’ will all get different colours, so we 
may suppose without loss of generality that the edge Y*‘c: of B is coloured 
with a colour IL, where in S* u L u R ci is the colour used on the vertex 
1,(1 <i<n+ 1). 

We use the edge-colouring of B to extend the almost total-colouring of 
S*uLuRtoT*uLuRasfollows.Forl<i<n+l,l<k<p,II+l< 
m < n, if edge cir; of B is coloured EL, then we colour edge lmrk of H* with 
colour Ci. 

It is easy to check that this is an almost total-colouring of T* u L u R. 
The colouring of L u R is a vertex-colouring of H. For 2. + 1 < m < n, 
1<kk,<k2<p, two edges lmrkl and 1, rkz of H* receive different colours 
because in B the edges coloured I:, incident with the vertices rhl and r;, do 
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not have a common vertex. Similarly for A+ 1~ m, < m2 6 n, 1 < k 6 p, the 
edges I,, rk and Zm2rk of H* have different colours because in B different 
edges incident with r; were coloured IL, and I&. For 1 < k 6 p, 2 + 1 
< m 6 n, the edge Zmrk and the vertex I,,, in H* have different colours 
because the edges on r*’ and r; in B coloured Z& do not have a common 
vertex. Finally for 1 < k < p, 16 m, < A < m2 < n, the edges rk I,, and rkZmz 
of H* have different colours because of the definition of the graph B. 

If p = n the argument is complete as we now have an almost total- 
colouring of H*. If p <n then T* u L u R has an almost total-colouring, 
and condition (ii) is satisfied. Moreover, for 1 < i < n + 1, since the degree 
in B of C[ was p - Ni +pi + 4i - ji, it follows that Ci occurs on 

edges and vertices of T*. In other words, Ni 2 p + maxi pi, qi)T as required. 
We then repeat the earlier argument with A, I,, . . . . IA, p, rl, . . . . rp replaced 
by p, rl, . . . . rp, n, II, . . . . I,, respectively. 

This concludes the proof of Lemma 3. 

For any bipartite simple graph J with vertex set L u R, where each edge 
joins a vertex of L to a vertex of R, let A,(J) and A.(J) denote the 
maximum degree in J of the vertices of L and of R, respectively. The 
next two lemmas are needed for the proof of Lemma 6. 

LEMMA 4. Let J be a bipartite simpZe graph with vertex set L u R, where 
each edge joins a vertex of L to a vertex of R. Let the maximum size of a 
matching in J be j, and let the number of edges of J be e. Then 

A,(J)+A,(J)<e+3-j. 

ProoJ The j edges of a maximum sized matching in J contribute at 
most two to dL( J) + dR( J). The remaining e -j edges of J contribute at 
most e -j + 1 to d,(J) + dR( J), since at most one can contribute twice. 
Thus 

&(J)+d.(J)d(e-j+ 1)+2=e-j+3. 

LEMMA 5. Let e + j = n and let H = K,,,\E(J). Then 

A,+A,<n+l-j. 

ProoJ: If j > 2 then, by Lemma 4. 

A.+A.<e+3-j=n+3-2j<n+l-j. 

582b/52/1-2 
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If j = 1, then clearly 

A.+AR<e+l=n=n+l-j. 

This proves Lemma 5. 

For the next lemma we need the following notation. For 1 < i < n + 1, let 
Si be the number of vertices of J which are in L and have degree in J i or 
more; similarly let ti be the number of vertices of J which are in R and have 
degree in Jior more. Clearly s,>.r2> ... >S~+~ and tl>tt2> Se* >tt,+l. 

LEMMA 6. Let e +j= n and H = K,,.\E(J). Then H* has an almost 
total-colouring with n + 1 colours. 

Proof. First we describe a particular vertex-colouring of H which, as we 
shall show, can be extended to an almost total-colouring of H*. Let M be 
a matching of J with 1 MI = j. For 1 < i <j, let ci be placed on the vertices 
at each end of one of the edges of J. Then, for 1 < i < n + 1 -j, let ti further 
vertices of L have colour Ci+i. By Lemma 5, A, <n + 1 -j, so 

n+l--j 

( > 1 ti +j=e+j=n, 
i= 1 

and so all vertices of L receive a colour. We may suppose that y is such 
that t,>O, ty+l= ... = tn+l=O (y=A.(J)). 

Now for 1 6 i < n + 1 -y -j, let si further vertices of R (apart from 
the vertices incident with edges of M) be colored c~+~+ i. By Lemma 5, 
Sn+l-y-j= *** - -s n+l =0 and 

Thus all vertices of R receive a colour. 
Now let S* be the subgraph of H* induced by I*, r*, and the vertices 

at the ends of J. This graph has at most 2 + j + e = n + 2 vertices. Let nL 
and nR be the number of vertices of L and I?, respectively, which are 
incident with edges of J. Then nL + nR < e + j = n. 

We now have a vertex-colouring of H, and we let pi, qi, and ji have their 
standard meanings. Note that pl= *se =pj=ql= ... =qi=jI= ... = 
ji= 1 and that pi+j= ti and qi+j = Sj for 1~ if n + 1 -j. We colour the 
edges incident with I* and Y* as follows. For 1 < i 6 n + 1 - y -j, we colour 
an edge joining r * to each of si vertices of V(J) n L with colour c~+~+ i. 
Similarly, for 1 < i < n + 1 -j we colour an edge joining I * to each of ti ver- 
tices of V(J) r\ R with colour ci+j. These colourings are done in accordance 
with the almost total-colouring rules, and, for 1 < i < n + 1, qi - ji edges 
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coloured ci are incident with r*, and pi - ji edges coloured ci are incident 
with I*, so that (ii) of Lemma 3 is satisfied. Moreover notice that, for 
16 i < n + 1, colour ci is used on V(J) or on an edge incident with I * or 
r* at least max(p,, qi} times altogether. 

We now colour all the remaining edges of S* in accordance with the 
almost total-colouring rules. We colour these edges one by one. If a par- 
ticular edge e* is not coloured so far, then the number of colours used on 
or at the vertex of e* in L is at most (nR - 1) + 1 = nR, and the number of 
colours used on or at the vertex of e* in R is at most nL. Thus the number 
of colours available to colour e* with is at least 

n-II--n,-n,>1, 

so e* can in fact be coloured. When this colouring of S* is completed, then, 
of course, for 1 < i 6 n + 1, colour ci is still used on at least max { pi, qi} 
elements. 

In the notation of Lemma 3 we have A =nL, p =nR, so that, for 
l<i<n+l, 

A+p--n+max{p,, qi} dmax(pi, qi) <Ni* 

Thus, by Lemma 3, the almost total-colouring of S* u Lu R with 
Cl, ***9 c, + 1 can be extended to an almost total-colouring of H* with 
Cl 9 “‘9 c, + 1 * 

This proves Lemma 6. 

LEMMA 7. Let e + j = n and H = K,,.\E(J). Then H can be totally 
coloured with n + 1 colours. 

ProojI This now follows from Lemmas 2 and 6. 

The other main case we have to consider in order to prove the sufficiency 
in Theorem 1 is the case e + j = (n + 1) when n is odd and J consists of 
(1/2)(n + 1) independent edges. 

LEMMA 8. Let n > 3 be odd and let J consist of (1/2)(n + 1) independent 
edges. Let H = K,,,\E( J). Then H can be totally coloured with n + 1 colours. 

ProoJ: If n = 3 the lemma may easily be verified, so suppose that n > 5. 
Let J consist of edges II rl, . . . . ~~1~2~~n + 1)r(1/2)(n + 1), where 4, . . . . lt1,2)(,, + 1) E L 
and r19 .“T Ql/2)(n + 1) E R. Let J+ be obtained from J by removing the edge 
1 (1/2)(n+l)r(1/2)(n+l) and replacing it bY ~(1,2)(4)q1/2)(n+l). 

By Lemma 7, the graph H+ = K,,,\J+ can be totally coloured with n + 1 
colours, cl, . . . . c, + 1. Moreover, if we follow the procedure described in the 
proof of Lemma 6, then, for 1~ i < (1/2)(n - l), we will have Zi and r, 
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coloured ci. For (1/2)(n + 1) < i< n, Zi will be coloured c(~/~)(~+ 1J, one of 
Y(1/2)(n + I), **a9 r, will be coloured c(~/~)(~+ 5), the rest will be coloured 
~(1/2)(~+3). We may assume that Y(~/~)(~ + I) is coloured c(~/~)(~+ 5), and that, 
for (1/2)(n + 3) < i < n, ri is coloured c(~/~)(~+ 3). Notice that one of the two 
edges joining Y* to ZC1,2)(n- 1J will be coloured c(,~,)(,+,). 

When, in the proof of Lemma 6, the edges of S* are coloured, after the 
edges incident with I* and r* are coloured we can colour the edges incident 
with Y (1/2)(n + 1) without using c, + 1. Then, in the resulting total-colouring of 
H+, the colour c,, 1 
ie { (1/2)(n + l), . . . . 

will be used on an edge Zi~t1,2)(n + 1J for some 
n + 1). We may without loss of generality, suppose that 

the 43 41,2)(n + 1) Y(1/2)(n+ 1) is coloured c, + , . 
Finally from H+ we remove the edge Z(1i2)(n+ 1J r(1/2)Cn+ IJ, we restore the 

edge Z(l/Z)(n- 1) q/2)(??+ 1) coloured q1/2)(n + 5)y and we recolour the vertices 
Z (lPHn+ 11, ql/2)(n + 1) with cn + 1. It is easy to check that this is a total- 
colouring of H (the “before” and “after” colourings are shown in Fig. 1). 

This proves Lemma 8. 

Proof of the Sufficiency in Theorem 1. As remarked earlier, by adding 
in edges if necessary, we can without loss of generality assume that either 
e + j = n, or n is odd, e + j = (n + 1 ), and J consists of (1/2)(n + 1) inde- 
pendent edges. In the first case the sufficiency follows from Lemma 7, and 
in the second it follows from Lemma 8. 

3. CONCLUDING REMARKS 

We have the following corollary to Theorem 1. 

THEOREM 2. Let n > 1, let J be a subgraph of K,,., let e = 1 E(J)(, and let 
j(J) be the maximum size of a matching in J. Let H = K,,,\J. Then 

XT(H) = 
d(H) + 2 if e+j<n-l 

d(H) + 1 if 2n-1 >e+j>n. 

Cl cc 1/2Nn - 1) C n+l ‘(U2)@+3) C(l/2)(n + 3) 

FIG. 1. (I!?+)*, then H. 



THE TOTAL CHROMATIC NUMBER OF GRAPHS 19 

ProoJ: If e + j< 2n - 1, then J has at most 2n - 1 vertices, and so 
d(H) = n. 

We also remark that in [S] the author and A. G. Chetwynd have 
formulated a conjecture which could place Theorem 1 in a much wider 
context. 
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