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The lack of a generally accepted animal model for human psoriasis has hindered progress with respect to
understanding the pathogenesis of the disease. Here we present a model in which transgenic IL-17A expression is
targeted to the skin in mice, achievable after crossing our IL-17Aind allele to the K14-Cre strain. K14-IL-17Aind/þ

mice invariably develop an overt skin inflammation bearing many hallmark characteristics of human psoriasis
including dermal infiltration of effector T cells, formation of neutrophil microabscesses, and hyperkeratosis.
IL-17A expression in the skin results in upregulated granulopoiesis and migration of IL-6R-expressing neutrophils
into the skin. Neutralization of IL-6 signaling efficiently reduces the observed pathogenesis in skin of IL-17A-
overexpressing mice, with marked reductions in epidermal neutrophil abscess formation and epidermal
thickening. Thus, IL-6 functions downstream of IL-17A to exacerbate neutrophil microabscess development in
psoriasiform lesions.
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INTRODUCTION
Psoriasis is a disease characterized by increased epidermal
thickness (acanthosis), rapid proliferation of keratinocytes,
altered keratinocyte differentiation, an abnormal collection of
polymorphonuclear leukocytes in the epidermis, and an
activated mononuclear cell infiltrate in the underlying dermis
(Nograles et al., 2009). It is a chronic, inflammatory, immune-
mediated skin disease, affecting approximately 1–3% of the
population worldwide associated with extensive psychological

and physical burdens (Greaves and Weinstein, 1995). To
explain the molecular pathology of this disease, one needs to
consider potential roles for cytokines that both influence
epidermal growth and regulate cellular immune activation
and inflammation. A significant amount of both clinical and
experimental data have established T helper type 17 (Th17)
cells as key players in chronic inflammatory conditions
such as psoriasis (Waisman, 2012), providing a significant
advancement of our understanding of the immunopatho-
genesis of psoriasis and potential targets for therapeutic
agents (Di Cesare et al., 2009). This is also supported by the
observation that mice deficient in crucial IL-17 signaling
components show reduced psoriasiform plaque formation
compared with control mice following topical application of
Aldara, an imiquimod-containing cream also used to mimic
features of psoriasis in mice (van der Fits et al., 2009;
Pantelyushin et al., 2012; El Malki et al., 2013).

Pro-inflammatory Th17 cells have been shown to be present
in lesions from both psoriatic patients and chemically induced
models of psoriasiform dermatitis in mice (Harper et al., 2009;
van der Fits et al., 2009). IL-17A-producing cells have also
been isolated from the dermis of psoriatic lesions (Lowes et al.,
2008). Teunissen et al. (1998) first described IL-17A as a
potential mediator in psoriasis after identifying upregulated IL-
17A mRNA expression in lesional psoriatic skin. CD4 and
CD8 clones derived from psoriasis lesions were also able to
produce IL-17A after TCR stimulation.

The Th17-supporting cytokine IL-23 was demonstrated to
promote the production of IL-17F and tumor necrosis factor-a
from primed T lymphocytes (Aggarwal et al., 2003), and
psoriasis-like phenotypes can be artificially induced in mouse
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skin using intradermal injections of IL-23 (Hedrick et al.,
2009). The results of the clinical studies on the efficacy of anti-
IL-12p40 antibodies observed so far have yielded good results.
Both ustekinumab and ABT-874, two human IgG1
monoclonal antibodies directed against the p40 subunit of
IL-23 and IL-12, provided effective treatment for patients with
moderate-to-severe psoriasis (Di Cesare et al., 2009; Nestle
and Conrad, 2004). Thus, the important role of the IL-23/IL-
17A axis in the pathogenesis of the disease is becoming well
established. In addition to IL-17A signaling molecules being
genetically associated with psoriasiform pathology (Ellinghaus
et al., 2010; Hoeve et al., 2006), associations of other pro-
inflammatory regulators such as IL-6 have also been shown
(Toruniowa et al., 1995; Arican et al., 2005).

In order to further analyze the correlation between IL-17A
and the development of psoriasis, we generated a mouse strain
in which IL-17A and enhanced green fluorescent protein are
co-expressed in keratinocytes using a Cre-LoxP approach
resulting in a psoriasis-like lesion formation. The ensuing
pathogenesis bore many hallmark features of human psoriasis
including hyperkeratosis, parakeratosis, epidermal neutrophil
accumulation and formation of microabscesses, scaling,
erythema and thickening of the skin. Here we characterize
the skin disease, systemic effects, and comorbidities of this
mouse strain. We could observe that both Ly6Ghi neutrophils
and Ly6Chi monocytes strongly express the IL-6Ra in bone
marrow and blood and before their subsequent migration into
the inflamed skin. Blockade of IL-6 signaling using an mAb
efficiently reduced the skin pathology of K14-IL-17Aind/þ

mice, with strongly reduced formation of neutrophil micro-
abscesses in the epidermis and a marked reduction in
myeloperoxidaseþ cells in skin sections. Therefore, despite
a role for IL-6 in neutrophil clearance to resolve inflammation
(McLoughlin et al., 2003), IL-6 signaling is an essential
pathway by which neutrophils mediate pathogenicity in the
inflamed skin tissue.

RESULTS
Skin-specific IL-17A expression induces severe psoriasis-like skin
inflammation in mice

To allow for in-depth analysis of psoriatic inflammation in a
mouse model, we generated a previously unreported strain
that closely mimics hallmark features of human psoriasis
acknowledging the role of IL-17 in the disease pathogenesis.
The IL-17Aind allele allows for conditional overexpression of
IL-17A and enhanced green fluorescent protein following Cre-
mediated recombination (Figure 1a; Haak et al., 2009).
Crossed to the keratinocyte-specific K14-Cre (Hafner et al.,
2004; hereafter termed K14-IL-17Aind/þ ), these mice
display dry and flaking skin shortly after birth (data not
shown). After reaching maturity, K14-IL-17Aind/þ mice deve-
lop a remarkably consistent skin inflammation comparable to
severe human psoriasis (Figure 1b). Histological examination
of skin samples obtained from the back skin of K14-IL-17Aind/þ

mice and littermate controls revealed an acanthotically thick-
ened epidermis, loss of the stratum granulosum, and an
elongation of the papillary dermis as well as areas of hyper-
and parakeratosis and multiple neutrophilic abscesses in the

horny layer (Figure 1c). We were also able to observe clinical
signs of uveitis and arthritis, which represent typical comor-
bidities of psoriasis (Lambert and Wright, 1976; Farley and
Menter, 2011; Supplementary Figure 1a and b online). No
signs of colitis were observed when compared with RAG1-
deficient mice receiving naive T cells (Supplementary
Figure 1c online).

Skin disease progression was monitored using the psoriasis
area and severity index adapted to mice over 10 weeks after
onset showing a strong impairment of the skin compared with
control mice (Figure 1d). Although no skin inflammation was
detectable in IL-17Aind/þ littermates, all K14-IL-17Aind/þ mice
develop a spontaneous inflammation reminiscent of human
psoriasis. Given the well-known link between signaling of IL-
17A in infected tissue and granulopoiesis (Kolls and Linden,
2004), we reasoned that K14-IL-17Aind/þ mice would also
show a phenotype here. We detected a significant increase in
the population of granulocytes in the bone marrow, as seen by
staining with the surface markers CD11b and Gr-1 (Figure 1e).
In the blood of K14-IL-17Aind/þ mice, an overt mobilization of
Ly6GhiCXCR2hi cells was observed, as was an increase
in CD115þLy6Chi monocytes (Figure 1f). Further analysis
confirmed that this increase was significant for both neutro-
phils and monocytes (Figure 1g), suggesting that IL-17A
expression in the skin led to mobilization of these cells from
the bone marrow to the skin via the blood stream. We found
no difference in the percentage of eosinophils in the blood, but
we did detect a small reduction in the percentage of lympho-
cytes in the blood of K14-IL-17Aind/þ mice, reflecting the rela-
tive increase in that of monocytes and neutrophils (Figure 1g).

Granulocytes, macrophages, and effector T cells invade the skin
of K14-IL-17Aind/þ mice

Skin from K14-IL-17Aind/þ mice showed clustering of myelo-
peroxidase-expressing cells in the inflamed epidermis, indica-
tive of neutrophil microabscess formation (Figure 2a), as well
as F4/80þ cells accumulating in the dermis of inflamed skin
(Figure 2b). Significantly elevated levels of IL-17A, macro-
phage inflammatory protein-1b, monocyte chemotactic
protein-3 (MCP-3), GM-CSF, RANTES, and IL-6 were detect-
able in supernatants collected from whole skin cultures of K14-
IL-17Aind/þ , but not of control mice (Figure 2c). Functional IL-
17A signaling was further substantiated by highly elevated
levels of CCL2/monocyte chemotactic protein-1 protein in
skin, accounting for the influx of innate cells types (Figure 2d).

Significantly upregulated expression of genes encoding the
lineage-defining transcription factors T-bet, RORgT and Foxp3
were detected in K14-IL-17Aind/þ skin, highlighting the pre-
sence of both effector T cells of Th1 and Th17 phenotype in
addition to regulatory T cells (Figure 2e). We wanted to further
determine if these transcription factors belonged to the ab or
gd T cells lineage. Interestingly, inflamed epidermis and
dermis from K14-IL-17Aind/þ skin was almost completely
devoid of gd T cells compared with IL-17 Aind/þ control skin,
where the CD11b– gd TCRþ cell type represents skin-resident
dendritic epidermal gamma/delta T cells (Figure 2f). Instead,
an elevated proportion of TCRbþ cells can be seen in the
epidermis of K14-IL-17Aind/þ skin. Both dermis and epidermis
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showed a clear increase in CD11bhiLy6Gþ cells, indicative of
a robust neutrophil migration into the IL-17A-expressing skin
tissue. The thickening of the epidermis of the ear is also clearly
visible by histology (Figure 2g).

Anti-IL-6 treatment reduces IL-17A-induced neutrophil
microabscess formation

Anti-IL-6 treatment has been shown to be effective in reducing
clinical symptoms in diseases such as rheumatoid arthritis
(Maini et al., 2006). In addition, neutrophil counts were
reduced in a dose-dependent manner after tocilizumab
administration, an mAb designed to neutralize human IL-6
(Maini et al., 2006). We therefore reasoned that IL-6 may be
important downstream of IL-17A to increase the severity of
inflammation in K14-IL-17Aind/þ mice. We detected
increased inducible nitric oxide synthase in the skin of the

K14-IL-17Aind/þ mice, which indicates an active innate
immune compartment (Figure 3a). However, no difference
was observed in total expression of IL-23p19 (Figure 3a). This
further supports the idea that IL-23 acts upstream of IL-17A
production and indicates that the severity of the inflammation
observed is not influenced by a secondary infection in lesional
skin. This increased level of IL-6 expression was not confined
to the inflamed skin, as highly elevated levels of IL-6 accom-
panied the elevated levels of IL17A also in the serum of K14-IL-
17Aind/þ mice (Figure 3b). Interestingly, in addition to elevated
serum levels of IL-6, neutrophils, and monocytes in the blood
express IL-6Ra in both IL-17Aind/þ and K14-IL-17Aind/þ mice,
detectable by presence of CD126 on both Ly6Ghi and Ly6Chi

cells in both blood and bone marrow (Figure 3c).
To test the importance of IL-6 signaling in IL-17A-induced

psoriasis, we treated K14-IL-17Aind/þ mice with either
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neutralizing antibody against IL-6, or a sham treatment (Hoge
et al., 2013). Despite a strong inflammation remaining in
untreated K14-IL-17Aind/þ skin, anti-IL-6 treatment efficiently
reduced the severity of leukocyte infiltration with a dramatic
reduction in neutrophil microabscess formation and scaling in
the epidermis of K14-IL-17Aind/þ skin (Figure 3d). Anti-IL-6
treatment also significantly reduced the epidermal thickness
compared with K14-IL-17Aind/þ mice receiving only a sham
treatment (Figure 3e). We were also able to observe a reduced
accumulation of myeloperoxidaseþ cells in skin sections
of K14-IL-17Aind/þ mice after a prolonged treatment with
anti-IL-6 (Figure 3f). This could be also reconfirmed by
showing a significant reduction of the CD11bþ cells in
lesional skin after anti-IL-6 treatment (Figure 3g). Interestingly,
innate inflammatory infiltrates in the inflamed skin maintain
expression of the IL-6Ra (Figure 3h). Thus, neutralization of

IL-6 significantly reduced the severity of inflammation caused
by transgenic overexpression of IL-17A in the skin. Given the
reduced severity of inflammation and its correlation with
reduced numbers of myeloperoxidaseþ cells in the K14-IL-
17Aind/þ skin, we conclude that neutralization of IL-6 reduces
innate-driven inflammation induced by aberrant IL-17A
expression in the skin.

DISCUSSION
In this report, we have introduced a previously unreported
mouse model well suited to effectively study the immuno-
pathogenesis of psoriasis. The finding that IL-17A neutraliza-
tion in the clinic has been efficacious certainly implies that an
IL-17A-mediated animal model of psoriasis should accurately
recapitulate the characteristics of human psoriasis (Girolomoni
et al., 2012; Patel et al., 2013). Effector T-cell infiltration,
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neutrophil microabscesses, hyperkeratosis, and scaling are all
present in K14-IL-17Aind/þ skin. These features collectively
distinguish the K14-IL-17Aind/þ model from other attempts
to transgenically express cytokines under the control of
skin-specific promoters (Gudjonsson et al., 2007).

High levels of IL-17A in organs expressing the IL-17R
essentially mimics a bacterial or fungal infection, which
in itself would result in generation of Th17 cells and the
downstream inflammatory response, which includes a neutro-
phil influx (Kelly et al., 2005; Aujla et al., 2007; Zhou et al.,
2009; Cho et al., 2010). As the IL-23/IL-17A axis was identified
as a key facet in the pathogenesis of psoriasis (Shear et al.,
2008; Di Cesare et al., 2009), much focus has been placed on
IL-23, which is secreted by skin-resident dendritic cells and
induces production of pro-inflammatory mediators by Th17
cells such as IL-17A, IL-17F, and IL-22. These cytokines

signal to keratinocytes, causing activation, chemokine and
antimicrobial peptide expression, and hyperproliferation. This
chain of events ultimately results in an immune amplification,
leading to the clinical features of the psoriasis. In the case of
the K14-IL-17Aind/þ strain, the inflammatory cascade begins
with transgenic IL-17A expression in the skin, negating the
requirement of IL-23. It also implies that IL-23 is required
mainly for induction of Th17 cells and IL-17A expression, as
the inflammation presented in this study continues even in the
absence of upregulated IL-23 expression.

An important strength of this model is the T-cell infiltrates
observed in skin of K14-IL-17Aind/þ mice. The absence of
T-cell infiltrates has been a concern in a number of previous
mouse models for psoriasis-like skin disease (Gudjonsson
et al., 2007). This is an important difference to the TLR-7-
dependent (or independent) Aldara/Imiquimod model (Walter
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of MPOþ cells is visible after treatment with anti-IL-6 (n¼ 5). (g) Frequencies of CD11bþ cells isolated from lesional back skin are shown after treatment of

K14-IL-17Aind/þ mice with anti-IL-6 over 7–10 weeks (n¼ 4). (h) Skin infiltrating granulocytes in K14-IL-17Aind/þ skin were stained for CD126 or an isotype

control (n¼ 2). In each panel, experiments have been repeated at least twice with similar results obtained. Statistical significance was calculated using

Student’s t-test and error bars represent the SEM. *Po0.05; **Po0.01; ***Po0.001. Significance was calculated using Student’s t-test.

AL Croxford et al.
IL-6 Regulates Neutrophil Microabscess Formation

732 Journal of Investigative Dermatology (2014), Volume 134



et al., 2013), where gd T cells and IL-17 family cytokines are
critical, but independent of effector ab T-cell infiltrates seen in
human psoriasis (Becher and Pantelyushin, 2012;
Pantelyushin et al., 2012). The observation of elevated T-bet
and RORgT levels in the skin and an almost complete lack of
infiltrating gd T cells combined with increased TCRbþ cells in
the epidermis shows that some degree of effector T-cell
migration to the skin is taking place. IL-17A has been shown
to upregulate expression of CCL20 in keratinocytes (Harper
et al., 2009). Th17 cells express CCR6 (Hirota et al., 2007;
Harrison et al., 2008; Wang et al., 2009; Turner et al., 2010),
the receptor for CCL20 and by this mechanism could
migrate into the inflamed skin of K14-IL-17Aind/þ mice.
Furthermore, macrophage inflammatory protein-1a and
macrophage inflammatory protein-1b, both upregulated in
K14-IL-17Aind/þ skin (Figure 2a), are known to be potent
chemo-attractants for effector T cells (Schall et al., 1993; Taub
et al., 1993; Lillard et al., 2003).

Given the important role of IL-6 in a number of inflamma-
tory disease models including experimental autoimmune
encephalomyelitis, collagen-induced arthritis and transfer
colitis, we are not surprised to see a beneficial effect after
neutralizing such a major player in inflammation (Neurath and
Finotto, 2011; Rincon, 2012). IL-6 is secreted by a variety of
cell types other than effector T cells, including fibroblasts,
endothelial cells, hepatocytes, keratinocytes, and astrocytes,
primarily in response to tissue injury or infection. IL-17A was
shown to promote the production of IL-6, IL-8, GM-CSF, and
ICAM-1 in keratinocytes (Albanesi et al., 2000; Koga et al.,
2008). IL-6 has long been associated with lesional psoriatic
skin (Castells-Rodellas et al., 1992) and its role was suggested
to be the enhancement of keratinocyte proliferation
(Grossman et al., 1989) and stimulation of the growth of
keratinocytes (Kishimoto et al., 1992). These results were
recently supported by another publication claiming that IL-6
expression from human keratinocytes was induced by IL-17F,
a Th17 cytokine (Fujishima et al., 2010). IL-6 signaling on
keratinocytes was previously shown to induce chemo-
attractant proteins via AP-1, a downstream target gene
following IL-6 signaling (Sano et al., 2005; Zenz et al.,
2005). The IL-6 pathway has been shown to have a direct
role in psoriatic lesion formation in another mouse model of
psoriasis-like skin disease relying on constitutive activation of
Stat3 in keratinocytes (Sano et al., 2005; Zenz et al., 2005).
Besides the significant correlation between the serum IL-17
level and the disease severity in human psoriasis shown in a
clinical study fitting to the elevated IL-17A levels, we detected
in the K14-IL-17Aind/þ mice (Arican et al., 2005), psoriasis
patients show increased levels of IL-6 in their serum as is also
the case in the K14-IL-17Aind/þ strain (Toruniowa et al.,
1995). IL-6 can also command monocyte differentiation into
macrophages, increase oxidative burst and MCP-1, tumor
necrosis factor-a, and IL-12 production (Kaplanski et al.,
2003). Bartoccioni et al. (2003) proposed that many cell
types could use IL-6 secretion and trans-signaling to target
monocyte chemotaxis and maintain sustained chronic
inflammation. The immunopathogenesis that we see in the
K14-IL-17Aind/þ strain strongly supports this proposed

mechanism, given a sustained presence of IL-6Ra-expressing
monocytes and neutrophils in the inflamed skin. Indeed, IL-6
has been proposed to propagate IL-17A-induced inflammation
in experimental autoimmune encephalomyelitis (Ogura et al.,
2008).

The chronic nature of this inflammation, given the relentless
expression of IL-17A under the control of the CAG promoter,
stimulates the target cell to produce and secrete IL-6, which
can then bind to soluble IL-6 receptor a. The IL-6–soluble IL-6
receptor a heterodimer then can bind to glycoprotein 130 on
the target cell membrane (Romano et al., 1997), which
induces the production and secretion of MCP-1 and MCP-3
in K14-IL-17Aind/þ skin, further propagating the inflammation.
Apoptosis of neutrophils within K14-IL-17Aind/þ skin is also
likely to be a major contributor to soluble IL-6 receptor
concentration in the skin (Chalaris et al., 2007), but further
experiments would be needed to confirm this. IL-6 has also
been postulated to preside over a shift in inflammatory cell
attraction by acting as a switch factor between neutrophil and
monocyte recruitment (Kaplanski et al., 2003). Although this is
a possibility in the case of a bacterial infection, where the
original insult will ultimately be cleared by the concerted
efforts of the immune response, our model represents a
chronic inflammatory state, where the otherwise T-cell–
derived IL-17A is constitutively expressed by keratinocytes.
The switch to monocyte recruitment will indeed take place,
but the neutrophil chemotaxis will also continue because of
the relentless release of IL-17A.

Taken together, our system recapitulates many hallmark
features of human psoriasis and offers potential to examine
the link between IL-17A-driven inflammation and the sub-
sequent role of IL-6 aspects of neutrophil microabscess and
psoriasiform lesion formation. Furthermore, given that IL-17A
neutralization has already proven effective in the clinic, the
K14-IL-17Aind/þ system offers previously unreported perspec-
tives on studying IL-17A-mediated skin inflammation in the
mouse.

MATERIALS AND METHODS
Mice and scoring of psoriatic lesions

K14-IL-17Aind/þ mice were generated by crossing the IL-17Aind allele

(previously described in Haak et al., 2009) to the K14-Cre allele

(Hafner et al., 2004). Skin lesions were scored using a modified score

based on the human psoriasis area and severity index score describing

the degree of erythema, scaling of skin and skin thickness (0¼ no

affection, 1¼mild, 2¼ intermediate, 3¼ severe, 4¼ very severe; El

Malki et al., 2013) and the percentage of affected skin referred to the

total body surface. For the cumulative score, we multiplied the sum of

the first three parameters with the percentage of the affected skin. Skin

and epidermal thickness were measured in duplicates by using a

micrometer (Mitutoyo, Aurora, IL). All animals were housed and used

in experiments in accordance with institutional guidelines of the

Central Animal Facility of the University of Mainz, Mainz, Germany.

In vitro assays and cytokine detection

Samples of skin of either IL-17Aind/þ or K14-IL-17Aind/þ mice were

collected. Mononuclear cells were isolated from skin using liberase

(Roche, Basel, Switzerland) and mechanical disruption. Skin-isolated

AL Croxford et al.
IL-6 Regulates Neutrophil Microabscess Formation

www.jidonline.org 733

http://www.jidonline.org


cells were cultured in RPMI-1640 containing 10% fetal calf serum,

sodium pyruvate, non-essential amino acids and L-glutamine (all from

Gibco, Deisenhofen, Germany). Cytokine release was measured in

isolated supernatants using either a by either flow cytomix multiplex

(BenderMedsystems, Salzburg, Austria) or ELISA (BD, Franklin Lake,

NJ) after the common protocols.

Antibodies and flow cytometry

Lymph node cells, splenocytes, and skin-isolated cells were surface

stained with anti-CD4, CD8, B220, GR1, CD11b, Ly6G, and IL-6Ra
from BD. Further antibodies used include CD62L (Immunotools,

Friesoythe, Germany). All antibodies were coupled to FITC, phycoer-

ythrin, phycoerythrin-Cy5.5, phycoerythrin-Cy7, or antigen-present-

ing cell. Flow cytometric acquisition was performed on a FACScalibur

(BD), Facs Canto II (BD) or LSR-Fortessa (BD) and analyzed with

FlowJo software (Ashland, OR).

Real-time expression analysis and measurement

Total RNA from skin of K14-IL-17 Aind/þ mice was isolated using the

Trizol (Invitrogen, Karlsruhe, Germany). The expression of mRNA

coding for T-bet, RORgt, IL-23-p19, Foxp3, and IL-6 were analyzed

with specific primers from Qiagen as described on their homepage

(https://www1.qiagen.com/GeneGlobe/Default.aspx) using the Quan-

tiTect SYBR Green RT-PCR Kit. All changes in gene expression were

calculated relative to that of glyceraldehyde-3-phosphate dehydro-

genase or hypoxanthine-guanine phosphoribosyltransferase.

Histology

Skin samples were isolated from the back of experimental mice.

Samples were fixed in 4% paraformaldehyde in phosphate-buffered

saline, paraffin embedded, cut and stained with hematoxylin and

eosin according to standard protocols.

Statistical analysis

Statistical significance was determined using the unpaired Student’s

t-test. Results are expressed as mean±SEM.
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