Reconsideration of Echocardiographic Standards for Mitral Valve Prolapse: Lack of Association Between Leaflet Displacement Isolated to the Apical Four Chamber View and Independent Echocardiographic Evidence of Abnormality

ROBERT A. LEVINE, MD, FACC, EVAGELOS STATHOGIANNIS, MD, JOHN B. NEWELL, PAMELA HARRIGAN, RDMS, ARTHUR E. WEYMAN, MD, FACC
Boston, Massachuscts

Abstract

Mitral valve prolapse by current echocardiographic criteria can be diagnosed with surprising frequency in the general population, even when preselected normal subjects are examined. In most of these individuals, however, prolapse is present in the apical finar chamher view and absent in mughly perpendicular long-axis views. Previous studies have shown that systulic annular nomplanarity can cause apparent prolapse in the four chamber view without actual leaffet displacement above the most superior points of the anulus, and there is evidence for such nomplanarity in vivo. It is then reasonable to ask whether superior leaflet displacement limited to the [our chaniber view has any pathotogic signticancr, or complications. The purpose of this study, therefore, was to address the following hypothess: that patients with superior leaflet displacement confined to the four chamber view have no higher frequency of associated echocardiographic abnemmalities than do patients without displacement in any view. Such abnormalities, which would provide independent evidence of mitral valve pathology or dysfunction, include leaflet thickening, left atrial enlargement and mitral regurgitation.

Prolapse is defined as the displacement of a body part from its usual or normal position or relations (1). Mitral valve prolapse, therefore, insolves mitral leaflet displacement beyond the normal range of leafiet motion relative to some reference structure, usually taken to be the mitral anulus.

From the Cardiac Nen-Invasive Laboralory, Cardiac Unit, Massachusetts General Hospiala and the Deparment of Medicine, Haryard Medical School, Boston. Massachuseths. This sludy was conducted during the tenure of a Clinician-Scientist Award of the American Heart Association. Dallas, Texas and with funds contributed in part by the American Heart Association, Massachusetts Affiliate, Inc.. Boston. Massachusetts. During this wark, Dr. Levine was also a Kesearch Fellow of the Medied Foundation, Inc., Boston, This study was supported in part by grant R29 HL 38176 of the National Inslitutes of Health, Bethesda, Maryland and by a gram of the American Heart Association, Dailas.

Leaflet displacement was measured in the parasternal long-axis and apical four chamber views in 312 patients who were studied retrospectively and selected for the absence of forms of heart disease other than mitral valve prolapse. I .affet thekness and left atrial size were measured and mitral regurgitation was gradeal Patients with leaflet displacement limited to the four chamber view were no more likely to have associated abnormalilitis than were patients witheut displacement in any view (0 to 2% prevalence, $\mathrm{p}>\mathbf{0 . 5}$). In contrast, patients with leaflet displacement in the long-axis view were significantly more likely to have associated abrormalities (12 to 24%, $\mathrm{p}<0.005$), the frequency of which increased wilh the extent of leaflet displacement in that view ($\mathbf{p}<0,0001$). These results suggest that displacement limiled to the apical four chamber view is, in generil, a normal geometric finding unassociated with echocardiographic evidence of pathologic signiticance.
(J Am Coll Cardiol 1988;11:1010-9)

Because two-dimensional echocardiography is ideally suited to define the leaffets and anulus, it has been widely applied to assess their relation in evaluating patients for possible prolapse. Recently, however, concern has arisen that, in the absence of a well defined normal range of leaflet motion, current ethocardiugraphic standards are creating considerable iatrogenic disease in otherwise normal patients (2-4).

Initial two-dimensional echocardiographic siudies $(5,6)$ showed that the normal mitril leaflets coapted on the ven-

[^0]tricular side of (below) a line connecting the annular hinge points in the parasternal long-axis view; leaflet displacement above this line correlated with angiographic protapse (6). Subsequently, superior leafle: displacement in the apical four chamber view rapidly became accepted as the diagnostic standard $(7,8)$, in part because of its greater yield of positive findings ($7-10$). The diagnostic equivalence of these two roughly perpendicular views, however, implicitly assumed that the milra! anulus must be planar so that leafletannular relations would be comparable in the two veres.

Two observations challenge the validity of this assumption. First, by these criteria, mitral valve protapse has been found in ≥ 11 to 13% of the general population, including preselected normal subjects, thus suggesting that these criteria may be too sensitive for abnormality ($2-4$). Second. prolapse is frequently diagnosed in the four chamber view and absent in roughly orthogonal long-axis views, a finding that is unexpected if the mitral anulus is a plane ($3,8.9$).

Evidence has been previously reported (1) of systolic mitral annular nomplanarity, which ean explain the discrepancy of leaflet-annular relations in orthogonal views. Specifically, if the leaffets and anulus lie along a saddle surface. which is concave downward in one plane and upward in a perpendicular plane, then the leaflets will appear to lie above the edges of the structure in a section through the first plane and below them in a section through the perpendicular plane (Fig. 1). In a long-axis or anteroposterior view containing the highest points of the anulus (11-13), the leaflets lie below the annular hinge points. but in a four chamber or mediolateral view, the leaflets appear to rise above the low points of the anulus. Thus, the appearance of prolapse can occur without localized leaflet distortion or displacement above the most superior points of the anulus.

These resalts raise the possibility that superior leaflet displacement limited to the four chamber view nay constilute a normal geometric finding widhous pathologic significumes. Recent studies (2-4) have shown such displacement to be wilhin the normal range in a statisticul sense, by its frequent occurrence in preselected non unal subjects (${ }^{(3)}$ and healthy individuals on routine examination 2,41. However, a study limited to normal subjects cannot deternine whether this finding is normal in a medical sense, by lack of association with independent evidence of valvular disease or dysfunction. The purpose of this study. therefore, was to address the following fypothesis: that superior leaflet displacement confined to the four chamber view is not associated with other, independent echocardiographic evidence of intrinsic mitral valve pathology or dysfunction - specifically, leaflet thickening, mitral regurgitation and ten arrial enlargement without other cause.

Methods

Patient selection, Pittients with no apparent structural hearl disease other than mitsal valve prolapse by existing

Figure 1. Diserepancy of leafiet-annular felations in wo-dimensional echocardiographic views (long-axis and four chamber) of an in vitro model (feft) with a seddle-shaped anulus and leaflets that arer concave loward the left ventricte (LV). reflecting its distending pressure. The highest points of the radde (farthest from the apex) are considered to be located anteriorly (Ans;) and posterionly (Post.), with medial and lateral low poinds consistent wilh in vivo observations (1I-13). The heary interrapted lines on the left indicate the plane of vew. On the right, echocardiographic images of the model are shown along with diagrams of surnounding structures. The dotted lines in the echocardiographic images demarcate an apparent annular plane in each view; they were mantally placed with the aid of the echocardiographic instrument. Ao = aorta; LA = left atrium; $\mathrm{RA}=$ right atrium; RV = sight ventricle. (Reprinted with permission from the American Heart Association. Inc. [II.I
two-dimensional ectocardiographic criteria were collected by retrospective review of the \log of patients referred for echocardiographic examination, beginning with the most recent patient and proceeding in reverse order. An initial consecutive collection of 222 patients, covering 6 weeks, contained 135 patients with a structurally mormal heart and no systolic leaflet displacement above the anmular hinge points in either the apical four chamber or the parasternal long-axis view (Group 1), 53 patients with leaflet displaceatent confined to the four chamber view (Gronp 2) and 30 patients with displacement in the long-axis view, vith or without associated four chamber view displacement (Gromp 3). Because of the small number of palients in Group 3. an additional set of 90 consecutive patients with long-axis view displacement was added to that group from patients studied

Figure 2. Measumement of leaftet Ilacement above a line connecting the annular hinge points in the parasternal long-axis view (left) and line drawing (right). Hinge points were determined by review of the videotaped images and displacement measured as shown in the video frame in which it was maximal. Abbreviations as in Figure 1.
during the preceding 18 weeks. during which equipment, personn.।. scanning lechniques and interpretive criteria remained unchanged. Although the main hypothesis related primarily to the similarity of Groups I and 2 , these additional Group 3 patients allowed us to explere more fully the relation between long-axis view displacement and prevalence of abnormalitics.

In total, 312 patients were studied who had no primary cardiac disease by echocardiography other than the diagnosis of mitral valve prolapse by existing eriteria. In particular. associated conditions that could cause leaflet thickening, regurgitation or arial enlargement, such as rheumatic valve disease or ischemic hearl disease with papillary muscle dysfunction. had been excluded. Age of the patients ranged from 2 to 78 yeirs (mean 35). Ninety-three were male and 209 femalc. Reasons for referral included evaluation of suspected prolapse, heart murmur, palpitation or other symptoms and routine evaluation. Patients had normal sinus rhythm when scanned.

Echocardiography. All patients had been studied with a commercially available phased-array sector scanner operating at 2.5 to 3.5 MHz . Studjes included the apical four chamber view, defined to include the apex of the heart and to maximize its long axis and the mitral and lricuspid excur:ions (14.15), and the parasternal long-axis view, defined to include the left ventricular long axis and aortic root and to masimize ventricular shoit-axis dianeler and milral leallet excursion (14.15). Doppler studies had been performed in 208 patients. The decision to perform a Doppler study was based primarily on the availability of personnel and equipment: in particular. Doppler studies were performed on 90 167%) of the 135 patients with no leaflet displacement (Group I) - the same proportion as in the entire study group. Mitral regurgitation was searched for with the Doppler sample volume on the atrial side of the valve. The sample volume 13 io 5 ram in axial length) was scanned in an expanding radial are in the apical four chamber, apical long-axis and parasternal long-axis views.

To evplore ther relation hetween patterns of tenflet displacemen and assoctated abornatity, the following measurements were made from videotaped images with a Mierosonics Easy-View II ull-line analysis system:

1. The displacement of each leaflet in the parasternal long-axis and apical four chamber views was measured above a line connecting the midportions of the annular hinge points as determined by real time review of the images. This measurement was made to the ventricular border of each leaflet in the video frame demonstrating maximal superior systolic displacement (Fig. 2 and 3).
2. The thickness of both milrad leaflets was determined in the long-axis view with the leaflet perpendicular to the beam (Fig. 4); maximal thickness of the midportion of the leaflet was measured and isolated focal thickenings ignored.
3. Three maximal systolic leff atrial dimensions were measured (Fig. 5). An expression of left atrial volume was abtained by multiplying the product of these three orthogonal dimensions by $\pi / 6$ that is, $(4 \pi / 3)(1 / 2)^{3}$, to give the volume of an ellipsoid with these diameters [16]).
4. The superior extent of mitral regurgitant flow was graded by pulsed Doppler ultrasound on a scale of $1+$ to $4+$ by dividing the left atrium into fourths with I+ regurgitation. for example, being limited to the region just above the mitral valve (17-19). Regurgitation was not diagnosed if flow was limited to the time of mitral valve closure at the onset of systole (20).

Normal ranges for the measured dimensions have been determined in this laboratory in 77 normal adults and 193 children ($3,21,22$).

Analysis of data, Patients were classified into the three groups described on the basis of their leaflet-annular relations (superior systolic leaflet displacement in no view, in the four chamber view only or in the parastemal long-axis view). The vast majority (113 of 120) of patients in Group 3 had displacement in both the parasternal long-axis and apical four chamber views.

Evidence of associated echocordiographic abnormalitic's included increased leaflet thickness ($\geq 5 \mathrm{~mm}$) and increases in any left atrial dimension (21) or their volumetric product ($>43 \mathrm{ml}$). Mitral regurgitation was analyzed as any regurgifation ($1+$ to $4+$) and separately as $2+$ to $4+$ regurgitation, given the findings in a review of 7,000 patients in this laboratory that up to $1+$ regurgitation can be observed in 19% of patients with in otherwise normal heart in the

Figure 3. Measurement of kafet dingiduement in the apical four chamber yiew (lefth. A line conmecting the annular hinge points has been overtaid on the video image (right) to facilitate the maxarement.
echocardiographic referral population, and similar findings by other groups (23-26).

The proportion of patients with a given abnormality, such as left atrial enlargement, was caleulated for each group. These propertions were compared by Fisher's exact test. To afford protection from multiple comparisons, significance was assessed at $\mathbf{p}<0.005$ for these tests (27).

Muliple linear regression analysis was used to determine the correlation between the presence or absence of associated abnormalities on the onc hand, and the measured leaflet displacements, age, gender and body surface area on the other (RS1 package; Boll, Beranek and Newman. Inc.). The regression model also included two factors reflecting the leaflet-annular relations under investigation. These factors were the product of leaflet displacement in the two views studied for each ieaflet. Each factor became zero if there was no leaflet displacement or displacement occurred in only one view. For the purpose of this analysis, the presence or absence of associated abnormality was expressed as a variable equal to 0 in the absence of associated abnormality and equal to 1 if any abnormality was present. To compare the contributions of various factors with the presence of abnormality, the regression coefficient of each factor was multiplied by the standard deviation of that factor in the populativi to give dimensionless regression coefficients that could then be compared.

Tho independent observers measured the teafet displacements and other linear dimensions in 10 patients to determine interobserver variability. For each type of dimension (leaflet displacement, leafiet thickness and left atrial dimension) the measurements of the two observers were subtracted from one another, and the standard deviation of
the differences calculated to express interobserver variability. Similarly, one observer repeated the measurements 1 month later 10 determine intraobserver variability.

Results

Patient characteristics. By definition, nations in Group had no leaflet displacement. In Group 2, leaflet displacement in the four chamber view ranged from 2 to 5 mm . In Group 3. displacement in the long-axis view ranged from 2 in 12 mm , and in the four chamber view, from 0 to 15 mm . Body surface area and gender were not significantly different among the groups by analysis of variance ($p>0.2$). Age was not significantly different between Groups 1 and $2(31 \pm 16$ versus $29=14$ years, $\mathbf{p}>0.05$), but was higher in Group 3 ($41 \pm 18 . p<0.01$ compared with the other two groups).

Associated abnormalities (Table 1). There were no differences between patients in Groups 1 and 2 with respect to any of the associated abnormalities ($p>0.5$). In each of these two groups, the proportion of patients with abnormalities (including mitral regurgitation $>1+$ in severity) was equal to or close to zero. The praportion of patients with $1+$ mitral regurgitation is consistent with the experience of this and other laboratories in otherwise nomal individuals referred for echucardiography (23-25).

Fatients in Group 3 were significantly more likely to have the associated abnormalities studied ($\mathrm{p}<0.005$). Further, the frequency of abnormality progressively increased with the degree of leaflet displacement in that view (Fig. 6). These trends were significant at $\mathrm{p}<0.0001$ by Fisher's exact test. Only seven patients had leaflet displacement (3 to 5 mm) in the parasternal long axis view only (too few to be compared

Figure 4. Measurement of leaflet thickening in the parasternal tong-axis view (k ff) and line drawing (right). Arrow denotes the measured width of the anterior mitral leaflet. Abbreviations as in Figure 1.

Figure 5. Me: xurement of lefl atrial dimensions. The anteroposterior dimension is measured in the parasternal long axis view (upper panels) as ind cuted hy the arrow in the lire drawing (upper right). In the apical four chamber view (lower panels), the mediolateral (thorizontal ar row) and inferosuperior (vertical arrow) dimensions are measured as shown in the line drawing (lower right). Abbreviations as in Figure 1.
as a separate group). Of these, one had leaflet thickening, none had left atrial enlargement and three of five studied by Doppler ultrasound had I+ mitral regurgitation.

Effect of age. To assure that the higher proportion of palients with associated abnormality in Group 3 was not solely due to the older age of that group, patients were classified into those above and below the age 40 years or. alternatively- athove and helow age 60 years. Patients in Group 3 continued to have the preponderance of associated abnormality in each age range. This was confirmed quantitativeiy by log-linear analysis of the proportion of patients with cach abnormality as a function oi displacement group

Figure 6. Frequency of associated abnormalities as a function of the degree of leaftet displacement in the parasternal long-axis (PLA) view. The 312 patients are grouped according to the sum of leaflet displacements (anterior plus posterior leaflets) in the long-axis view. The height of the bars expresses the percent of each group having a given abnormality, $L A=$ left alrium; $M R=$ raitral regurgitation.
and age range (BMDP4F package, University of California. Las Angeles, 1981), which showed that none of the differences in proportions of patients with abnormalities are related to age (age interactions not significant, $\mathrm{p}>0.1$).

Multiple regression analysis. The factors correlating most strongly with the presence of any associated abnormality were posterior leaftet displacement in the long-axis view, the posterior leaflet displacement product defined previously, age and gender. The relative cortributions of these factors, normalized so that the lowest was 1 , were 1.9 for posterior leaflet displacement, 1.6 for the posterior leaflet disphacement product, 1.1 for age and 1.0 for male gender. The regression model predicted the presence of associated abnormality with a correlation coefficient of $0.62(p<0.0001)$. (After the stronget contribution of the posterior leaflet had

Table 1. Echocardiographe Findings in the Three Leaflet Displacement Groups

	Grisup 1 (no displacement)	Group ? (AiC only)	Group 3 (PLA at least)
Na, of patients	135	37	120
Increasted leaflet thickness	1 (0.7\%)	0	29 (24\%1
licreased l.a dimension	30%)	0	19 (16\%)
Increased [.A volume	0	1	14 (138)
Mitral regurgiationino. of Doppler studies	$7 / 9018 \% 1$	2/31 (6\%)	35/87 4098)
SR > $1+$ Doppler studies			$1487116 \% 1$

$A A C=$ apical four chamber viow: $L A=$ lefl alrium; $M R=$ mitral regurgilation: $P L A=$ parasternal longraxis vien
been accounted for, the contribution of the anterior leaflet no longer appeared because the wo were correlated $[\mathrm{r}=0.8 \mid$.

Mitral regurgitation. Ihe comparsion of regurgitation was performed only in patients studied by Boppler ultrasound (Table 1). Within each group, the patients who were or were not studied by Doppler ultrasound were not signilicantly different with respect to any of the other characteristics measured: leaflet displacement. leatlet thickness and left atrial dimensions ($p>0.05$ by analysis of variance). Because the two sets of patients were otherwise compars:he. it is unlikely that any important change in the frequencies of regurgitation would nave occurred had Doppler studies been performed in all patients; in particular. the prominent disparity in the frequency of regurgitation between Group 3 and the other two groups, and the similarity between Groups 1 and 2 , would not be likely to change.

Observer variability. Interobserver variability was 0.5 mm for leaflet disblacement, 0.3 mm for leafet thickness and 1.5 mm for left atrial dimensions. The corresponding intraobserver variabilities were 0.5 mm .0 .4 mm and 1.7 mm .

Discussion

Mitral valve prolapse, originally believed to be uncommon (28.29), has evolved into a pervasive clinical problem $(2,3,30)$. By current criterfa. individuals who are apparently in good health are diagnosed as having disease (2-4.30-37) and ascribed an uncertain prognosis, including endocarditis. stroke and sudden death $(28,29,38-41$)

Basic problems of definition and diagnostic standard underlie the clinical perplexity (42,43). Mitral valve prolapse is a displacement of the mitral leaflets from their usual or normal relation to sumounding structures (1). generally taken to be the mitial anulus. Therefore, its proper diagnosis requires both a technique that can display the fundamental anatomic leaflet-annular relations and a knowledge of the normal range of leaflet motion.

Present criteria for diagnosing mitral prolapse. Twodimensional echocardiography has provided a noninvasive technique capable of simultaneously visualizing the mitral leaftets and anulus and determining their relation $(5,6)$; however, the range of normal has not been defined by this technique. Instead, it has been assumed that any leaflet displacement to the atrial side of the annular plane is abnormal and that prolapse can be diagnosed with equal validity in all comographic views of the valve. with the diagnostic standard being laken as the view showing displacement most often-namely, the apical four chamber view $(7,8)$.

By these criteria, prolapse can be diagnosed with surprising frequency in apparently healthy individuals (2-4), although results are not uniform (44). For example. prolapse could be diagnosed by existing criteria in 13% of 193 childion preselected by their physicians to be normal, and in 34% of
those aged it to I8 years (3). Moreover, 24 children had findings of prolapse in the four chamber view whereas anly 3 hat them in a long-axis view (3). This discrepancy in leaflet-annular relations is unexpected if the anulus is a plane. as has been implicitly assumad.

Role of annular shape in echocardiographic diagnesis. Previous work has shown that systolic annular nonplanarity can produce apparent prolapse in the four chamber view without actual leaflet displacement ifiove the urost suptrion points of the three-dimensional anulis (Fig. 1). This relates to the stiddle-like systolic shape of the anulus, as suggested by animal experiments $(12,13)$ and demonstrated in a series of patients 11%. Annular nomplanarity is also reasonable because the circumferente of the base of the ventricle decreases in systole (12,45) whereas the lensth of leaffet attached to the ventricle remains cunstant the leaffer does not contract. To accommodate this constan length within a smaller circumference requires deforming it out of a piane. These annular studies can explain the clinically observed discrepancy of leaflet-annular relations in orthogonal views withott the need to postulate localized leaffet distortion.

The current study. This study is a logical sequel to the annular work. Its purpose was to determine whether superior systolic leaflet displacement limited to the four chamber view may constitute at normal geometric finding without pathelogic significance. The study of preselected normal children described previously (3) suggests that such displacement is normal in the statistical sense. However, those conclusions cannot be generalized to the echocardiographic referral population, which has not been so selected. Thereforc, we auduressed the question of whether superior displacement limited to the four chamber view could be considered normal by virtue of its lack of association with other independent cvidence of mitral valve disease or dysfunction.

This retruipective study demonstrates that patients with displacement limited to the apic:l four chamber view are no more likely to have associated abnormalities connoting mitral vaive pathology or dysfunction than are patients with no displacement in any view and no other echocardiographic evidence of heart disease. In both grolps. the proportion of patients having leaflet thickening, left atrial enlargement or mitral regurgitation $>1+$ in severity ranged from 0102%. On the other hand, patients with leaflet displacement in the parasternal long-axis view, with or without associated displacement in the four chamber view, are more likely to have these abnormalities, the frequency of which increases with greater degrees of displacement.

These results suggest that leaflet displacement limised to the apical four chamber view is a normal geometric finding without associated evidence of pathologic significance. Because prolapse is an abnormality by definition, these findings suggest that it cannot be diagnosed in the four chamber jew alone.

Muhiple regression analysis showed that the most inapor-

Iam factor predicting the presence of associated whormadifies was postcrior leafiet displavemem. This is consistent with the angiographic-pathologic studics of Kanganathan et al. (46) and the autopsy series of Davies et al. (47), which showed predominant distortion of the posterior leaflet and posteromedial scallop in patients with moderate to severe degrees of prolapse. (This does not innly that anterior leaflet displacement is unimportant. bul simply reflects its lower numerical contribution to the regression model and its correlation with pusterior leaflet displacement in the long axis view.) The increase in associated abnormalities with age and male gender is consistent with observations thal compications. such as ruptured chordae tendineae and severe mitral regurgitation. occur most often in older men (42-55). This reinforces the concepl that such complications relate to valvilar "wear and tear" $(53,56)$ because the magnitude and duration of hemodynamic stresses are likely to be greater in older men, whose systemic blood pressure may have been relatively high for many years ($53,57,58$).

Eliminating the diagnosis of prolapse confined to the four chamber view dramatically reduces its prevalence in the prospective study of normat children cited previously (3). In the current study. no serial prospective s. adies were performed to exclude the possibility that abnormalities may subsequently develop in patients with displacement in the four chamber view. The absence of abnormalitios in the Group 2 patients regardless of age, which ranged up to 87 years, suggests that the development of associated abnormalities is unlikely; however, these coltisiderations emphasize the need for prospective study.

Lang-axis view leaflet displacement. Although the conclusions regarding the four chamber view are clearly evident from these data, it is not obvious at what point leaflet displacement determines abnormality in the long-axis view. As Figure 6 shows, the relation between displacement and abnormality appeas to be a continuous one. In the individual patient. the presence of associated abnormalities may depend on a variety of other factors, such as leaflet morphology and hemodynamic siress. These relations are best established by prospective study of a larger population; such a study can further refine diagnostic criteria within the group with long-axis view displacement as the range of normal leaflet motion is more sharply defined.

A small number of patients were found to have displacement limited to the long-axis view, only one of whom had leaflet thickening. It would seem reasonable to speculate that such patients would have a net three-dimensional leaflet displacement less than that of patients with displacement in two pernenuicular views, and would be less likely to have associated abnormalities; however, it must be emphasized that the group is too small to warrant such conclusions, which are also best istablished by a large population study. ©Of note is that Panidis et al. [55], for example, found
significant mitral regurgitation only in patients with displacement in two views.)

Athough a full appreciation of three-dimensional structural relations requires reconstruction of the: tomographic images, it is unlikely that such an approach will reveal that annular nonplanarity masks subtle degrees of polapse in the long-axis vicw: if that were the case, such patients should have displacement above the low points of the anulus in the four chamber view, which is not associated with abmomalities, as this study has shown.

Standards for protapse. Any study of mitral prolapse is made more difficult by the multiplicity of diagnostic techniques and often discordant criteria (59), many derived from patients coming to surgery or angiography and extrapolated to the general population with loss of specificity (60). No definitive standard has achieved universal acceptance, partly because most patients diagnosed as having prolapse follow a benign course that precludes tissue diagnosis (30,51). As Lucas and Edwards (61) have emphasized, "when a palient has a systolic click, a systolic click-murmur, and/or a mitral value prolapse demonstrated by an imaging technique, a precise anatomical state cannot be presumed." Auscultatory criteria. for example, have a sensitivity and specificity that appear to depend on the population and examiners (59). Of particular note in contemplating an auscultator y standard are the following: 1) the frequency with which auscultatory findings accur in otherwise healthy individuals when closely examined (31,62); 2) the frequent discordance between auscultatory and echocardiographic findings (31,37), although results aice variable $(59,63)$; and 3) the considerable variation in such findings over time, as documented by Devereux et al. (56.59). Symptoms previously linked to prolapse, on the other hand, have been shown to occur as frequently in its absence (37.63-65).

The lack of a universally accepted, nonechocardiographic standard highlights the need to search for independent evidence of abnormality to separate normal variants from findings with pathologic significance. This study has tried to identify associations between leaflet geometry and evidence of valvular disease or dysfunction - in particular, leaflet thickening and significant regurgitation - factors that are clinically important in determiaing prognosis (51), the need for surgery and, as some studies suggest, antibiotic prophylaxis ($53,66-68$). In this retrospective stedy, auscultatory and phonocardiographic data were not available and, even if they had been, the approach would have been the same. The case can be put more strongly: even if patients in Group 1 or 2 had a click or a systolic murmur, there would be no solid basis for ascribing to them an abnormality of the mitral valve (prolapse) in the presence of normally thin leaflets, competent valve closure and either no displacement or a geometry described frequently in normal subjects and consistent with annular nonplanarity.

Stady patients. Becauce of the celection criteria used, the results are applicable mone properly in patients without echocardiogiaphan evidence of heart thease other than mitral valve prolapse. It may therefore be fossible that prominent, localized prolapie of a leatet seallop maty he evident only in the four chamber view in patients with other forms of heart disease. This is consistent with clinical observations, particularly of the posierior leafet. in occasional patients with evidence of chordal rupture. infective endocarditis or papillary muscle disruption related to ischemic heart disease, although this possibility can be minimized by mediolateral scanning in the long-axis orientation (69).

As previoesty noted, an initial consecutive collection of 22 patients in Groups I, 2 and 3 led to a diaproportion among groups, with only 30 patients in Group 3. This collection was sufficient to address the primary hypothesis that abnormalities occur with comparable frequency in Groups 1 and 2. However, we extended the consecutive collection of Group 3 patients to strengthen the intergroup comparison and to explore the relation between long-axis view displacement and prevalence of abnormatities. This should not interfere with the conclusions derived for the following reasons: 1) Within each group, patients are consecutive: Group 2 patients, for example, have not been selected for the absence of regurgitation. nor Group 3 patients for its presence, so that each group is a representative cunsecutive sample of patients with a particular geometry. 2) The major null hypothesis being tested. as stated earlier, relates specifically to Groups I and 2, which were truly consecutive. Group 3 simply proves what is already known: that there are patients with mitral valve prolapse who have associaled pathologic consequences. 3) The 90 patients added to Group 3 do not pose a problem because equipment, personnel. scanning techniques and interpretive criteria did not change during the 6 months of the entire collection. There were no sign'ficant differences between the initial 30 and subsequent 90 patients in Group 3 with respect to any of the abnormalities studied ($p>0.6$ by Fisher's test), gender distribution ($\mathrm{p}>0.05$ by Fisher's (est). age or body surface area ($\mathrm{n}>0.15$ by Student's t test). Indeed, all the differences between Group 3 and the other two groups listed in Table 1 persist at least at the $p<0.05$ level if only the initial 30 patients are used. with the exception of regurgitation $>1+$ in severity in Group 3 versus Group 2 f 3 of 23 versus 0 of 31 , $p \sim 0.07$ because of the low number of positive end points and consequent low power of the test, suggesting the need for more patients).

In the initial group of 222 patients, the percent having long-axis view displacement (30 of 222 , or 13.5%) may appear high; however, it is not surprising because of the high frequency of referral tor suspected prolapse and the exclusion of patients with all other cardiac disease.

Conclusions. Patients with superior systolic mitral leafel displacement on echocardiography confined to the four
chamber view are no more likely to have associated abnormatities connoting mitral valve pathology or dysfunction than are patients with no displacement in any view and no other form of heart disease. These restilts suggest that, as a rule. bisplacement in this view is a normal genmetric finding withoul pathologic significance. Because mitral prolape is by definition an abnormality, our findings challenge its diagnossc based solely in the four chamber view in many wher wive nen mal individuats.

References

1. Wember' Ninit New Collegiate Dictionary. Springeld, MA: Mermam-

2. Sawki S. Opawa S. Handa S. Natmara Y. Yamad: R. Two-Umemiomal echosardographic diagnosis of mitral valve prolapse syadrome in pre-

3. Warth DC, King ME. Cohen JM, Tesoniero VL, Marcus E, Weyman AE Prevalence of mitral valve prolapse in mormal thildrea. J Am Coll Carcifol 19世5:5:177-7.
4. Kriwisky M. Fromm P. Gross M. Ribak J. Lewis BS. Usefulness of cthocatdographscally determined mitral leatlet monion for diagrosis of micral valve prolape an 17 - and 18 -year old men. Am J Cardiol 1987:59:1144-51
5. Silan DJ. Alien HD. Goldberg SJ. Friadman WF. Miral valive prolapie in children: a problem defined by reat-time cross-sectional achocardiography Circulation 1976:53:651-7.
6. Gilbert BW. Schalz RA. Vontamm OT. Behar VS, Kissio JA. Witral valve prolapue: two-dimensinnal echocardiographic and angiographic correlation. Cireulation 1976: $94: 716$. 23
 dingriphy in mitral, wortic and tricurpid walve prolapes: the clinical problem. cardiac nuclear imageine consideralions and it proposited il andarad for diagnosis, Am J Cardiol 9980;46:1164-77.
7. Morganmh J. Mardeli TJ. Naito M. Chen CC. Apatal cross-secthand echocardiogaplyy: slandard for the diagnocic of diepathic miaral vatve molapse syndrome. Chest 1981:79:31-8.
9 Abbasi iS. DeCristofaro D, Abihtawi I. Irwin I. Mirfit valve prokipse: somparative value of M-mada. two-dimencional and Dappler echoeritdingraphy. J Am Coll Cardiol 1883:h:1219-33.
to Cohen IS. Two dimensional echocardingraphic miaral valve polapse: cevidence tor a rebabonshsp of echocarthegraphic morphotogy to clinical frdages and on mitral annular size. Am Heart J 1987:113:850-k8,
8. I svine RA. Triulzi MO. Hartigan P. Weyman AE. The relationship of matral annular shape to the diagnosis of mitral valve prolapse. Circulation 1947:75:756-67.
9. Thakiris AG, vor Bernuth G. Ravtelli GC, Bourgenis MI. Titus IL., Woad EH, Site and molion of the mitral annuids in anesthetized intact dags. J Appl Physiol 1971;30:611-8.
10. Pomar JI., Vaga IL. Cucchiara G. Durin CMG. Trammiento quirurgito conservador de las valvulopatias auriculoventriculares. I. Anuloplastias mitrales. Cirugia Espanola 1988:32:1-10.
11. Thak AJ. Seward JB, Hagler DI, Mair DP. Lie JT. Two-dimensional reat-lime nttrasonic imaging of the henr and great vessels: technique. umage oreabaion, structure identification. and validation. Mayo Clin Proc 1978:53:271-3013.
12. Weyman AE Cross-4ectionat Fchocardingraphy. Phdadelpha: Lea \& Febiger. 1984,93, 382.
13. Kowaruchi A. Jinde L.M. Imachi T. Mieund H. Akusu H. Two dimenainas echucardiogranhic estimation oll Icti alrial velume and volume load batienk with eangental heatit discase. I Cardingr 148:3:18:1003-19
14. Quinones MA. Young JB, Waggoner A. Ostojic MC, Ribeiru LGT. Miler RR. Assesoment of pulsed Doppler echocardiography in detection and quantification of aotic and mitral regurgiation. Br Hearl J 19ta: 44:6に-20.
15. Abbasi AS, Aflen W, DeCristofaro D. Ungar I. Devection and cstimation of the degree of mitral regurgitation by range-gated pulsed Doppler echeraldrugaphy. Circulation 9980 ;ol:143-7.
16. Patel AK, Rowe GG. Thomsen IH. Dhamani SP. Kosolcharoen P. Lyle LEW. Detection and estimation of rheumatic mitral regurgitation in the praseace of milral stenosis by pulsed Doppler echocardiography. Am J Cardiol 1983:51:986-91.
17. Nagoshi H. Miyair M. Asatn T, Naie M, Honda M. Backward flew sigual in the left alrium studied by puked Doppler echocardiugraphy: differentiation from mitral regurgitation. I Cardiogr Iy83:12:23-12.
2I. Triulzi MO, Gillam LD. Gentile F. Newell JB. Weyman AE. Nomal adult cooss-sectional echecardiographic values: linear dimensions and chamber areas. Echocardiggraphy 198:0:1:403-26.
18. Triuzi MO. Wilkins GT, Gillam LD. Gentile F. Weyman AE. Normal atult croso-sectionsl echocardiographic values: left vemricular valumes. Echocardiography 1985:2:153-69.
19. Koolucki W. Vandenbossche JI. Friart A. Englert M. Pulsed Doppler rege:"gitana flou paterms of normall valves. Am. J Cardiol 19a6:58;309-13.
20. Yock: PG. Nawr C. Schnitger I. Pupp RL. Is continuous wave Doppler too sensitive in dagnosing pathologic valvular regurgitalion? tabsir). Circulation 1984:70(suppl It : $11-381$.
21. Dans TY. Gardin JM. Clark S, Alfic A. Henry WL. Refining the criteria for pulsed Doppler diagnasis of mitral regurgitation by comparison with

2f. Akasaka T. Yoshikawa J. Yoshida K. et al. Age-related valvolar regurgitation: a sludy by pulsed Dopfler echocardiography. Circulation 1587:76:262-5.
22. Morison DF. Muldivariate Statislical Methots. New York: MeGraw-'fill, 19765:
23. Barlow JB, BosmanCK. Aneurysmal protrusion of the posterior leafer of the mitritl valve. Am Heart J 1966:71:166-78.
24. Barkw JB. Bosman CK. Pocock WA. Marchand F. Late systoic murmurs and non-ejection ("mid-late") systolic chicks: an analysis of 90 pratiens. Br Iear J 1968;30:203-18.
25. Leathan A. Brigdert W. Mild mitral regurgitation and the mitral prolapse fiasco. An Heart J 1980:99:659-64.
26. Markiewicz W. Stoner J. London E, Hunt SA. Popp RL. Mitral prolipse in one hundred presumathy healthy voung females. Circulation 1976.53 .45473.
27. Pracacci PM. Savran SV, Schreite: SL. Bryson AL. Prevalence of clinical mitral vaive prolapse in 169 young women. N Engl J Med 1976:994: 1086-8.
28. Bloch A. Vignola I. Walker H. el al. Echocardiographic spectrum of posterior systolic motion of the mitral valve in the general population. J Clin Ulirasound 1977:5:343-7.
29. Chondraratia PAN. Vahovich G. Kong Y, Wil son D. Incidence of milral valve proiapse in one hundred clinically slable newhorn baby girls. Am Heart J 1979:98:312-4.
30. Hiekey Al. Wollers J, Wileken DEL. Mitral valve prolitpse: prevalence in an Austratian popubution. Med 」 Aust 1981;1:31-3.
31. Sbarbaru لA. Michlmin DJ. Wu I., Brooks HL. A prospective study of milral walvotar prolapse in young men. Chest 1979;75:555-9.
32. Savage DD. Devereux RB, Garrison RI, et al. Mitral valve prolapse in the general poputation. 2. Clinical Fealures: The Framingham Study. Am Heart J 1983:106:577-81.
33. Hancock EW, Cahn K. The syndrome asonciated with midsystnic click and late systole murmur. Am I Mcd 1968;41:187-96,
34. Clemenx JD, Harwitz Rt, Jaffe CC, Feinsein AR. Stunon BF. A combrolled evaluation of the risk of bacterial endocarditis in persims with mitral-valve prolapse. N Engl 3 Med 1982;307:776-81.
35. Barnett HIM. Boughner DR. Taylor DW. Cooper PE. Kosluk WJ. Nichol PM Funther evidence telating mitral-valve prolanse to cerebral ischemic events. N Engl J Med 1980:302:139-44.
36. Jeresaly RM. Sudden death in the mittal valve prolapse-click syndrome Am J Cardiol 1976:37:117-R
37. Levine RA. Weyman AE. Mitral valve prolapse: a disease in search of, or created by, its definition. Echocardiography 1984:1:3-14.
38. Perloft JK. Chijd JS. Edwards JE. New guidelines for the clinical diagnosis of mirral valve prolapse. Am J Cardiol 1986:57:1124-9.
39. Wann LS. Grove JR, Hess TR, el al. Pievalenee of mitral pralapse by iwo-dimensional echocardigraphy in healthy young women. Br Heart J 1983:49:334-40
40. Ormiston JA. Shah PM. Tei C. Wong M. Size and motion of the mitra] annulus in man. I. A twodimense, mal echocardiographic method and findings in normal subjects. Circulation 1981:64:113-20.
41. Ranganathun N. Silver MD. Robinson TI. et al. Angiographicrrorphologic correlation in palients with severe mitral regurgilation due to prolapse of the posicrior midral leafiet. Circulation 1973:48:514-8.
42. Davies AJ. Moore BP. Bramoridge MV. The floppy mitral valve. Study of incidence, pathology. and complications in surgical, necrensy and forcrisic material. Br tieart J 1978:40:468-81.
43. Kolibash AJ, Busi CA, Fontana ME. Ryan JM, Kilman J, Wooley CF. Mitrat valve prolapse syndrome: analysis of 62 patients aged 60 years and older. Am ! Cardiol 1983;53:534-9.
44. Hickey AJ. Wikcken DEL. Wright JS. Warren BA. Primary Ispontaneous chnodal rupture: relation to myxomatous valve disease and mitral valve prolapse. J An Coll Cardiol 1985;5:1341-6.
St. Jeresaty RM. Edwards JE. Chiwla SK. Milral qalve prolapse and ruptured churdae tendineae. Am J Cardiol 1985 :55:138-42.
5I. Nishimura RA. MeGioon MD. Shub C. Miller FA. Ilstrup DM, Tajik AJ. Echocardiographically documenked milral-valve prolapse. Long term follow-op of 237 pratients. N Engl J Med 1985;313:1305-9,
45. Tresch DD. Doyle TP. Bencheck LL. ei al. Mitral valve prolapse requiring surgery: climical ond pathologic stiady. Am J Med 1985;78:245-50.
46. Devereax RB, Hawkins I, Krumer rox R, 4 ol. Complications of nitrul value prolapse: disproportionate occurrence in hisis and older patients. Am J Med 1986:81:751-R.
47. Kolibash AJ. Kilman JW. Bush CA. Ryan JM. Fontana ME. Wooley CF. Evidence for progression from mild to severe mitral regurgitation in mitral valve prolapse. Am J Cardiol 1986:58:762-7.
48. Paniais IP. McAllister M. Ross J. Miniz GS. Prevalence and severity of milral regurgitation in the mitral valve prolapse syndrome: a Doppler echocardiographie study of 80 patients. J Am Cotl Cardlol 1986;7:973-81,
49. Devereux RB. Perloff JK, Reichek N, Josephson ME. Mitral valve prolapse. Circulation 1976:54:3-14.
50. Cardiovascular Primer for the Workplace. Washington DC; Public Health Service. 1981:60); National Instilutes of Healih pablication no. 81.2210.
51. Rowland ML, Fulwool R. Coronary heart disease risk factor tnends in blacks belween the first and second National Heallh and Nutritional Examination Surveys, Uniled States, 1971-1980. Am Hear I 1984; 108:771-9.
52. Devereax RE, Kramer-Fox R, Shear K. Kligield P, Pini R, Savage DD. Diagnosis and classification of severity of mitral vatva prolapse: methodologic. biulogic. and prognostic considerations. Am Hearl J 1987: 113:1265-80).
53. Molulsky AB. Hiased ascertainment and the natural history of diseases. N Engl J Me:l Is $\mathrm{F}: 298: 1196-7$.
6I. Lucas RV, Edwards JE. The floppy milral valve. Curr Prebl Cardiol 1982:7:1-48.
54. Cohen M. Pocock WA. Lakier SB. Mclaren M. Lachman AS. Barfox SB. Four year follow-up of black schoolehidren with nom-cyecinom whotic

55. Deverenx RR. Kramer-Fox R. Hrown WT, at at. Relation Imelween clinical features of the miteal profapee syndwome and echncardiographically documented mitral valve prolapse. J Am Coll Cindiof 1984: \$: 76.3-7.
56. Uretsky DF. Does mirril valve prolapse couse noniprecific symptoms? Int 1 Cardiol 1982;1:135-42.
57. Retchin SM, Fletcher RH, Earp I, Eamson N. Waugh RA. Mitral valv: prolapse. Disease or illness" Arch Intem Mct 1985:146 1081-4.
58. Hickey AJ, MacMahon SW. Wilcken DEL. Mitral valve proliphe and

 HiEkey 1 The :ask of infective endocarditis in persons with mitrat valve prolapere wh mal without precordial syotolic murmuro. Am I Cardol 1487.54:105-3
59. Shulman ST, Amen DF, Bisno AL. et al. Prevention of Baterial endocrditis. Carculation 1904:70:1123A-7A
 identificanion of prolapse of individeal scalleps of poiterior minal leaflet. taithri Am J (ardiol 1981:77:412.

[^0]: Manuscript received Seplember 2.1, 1987; revised manuscript received December 9, 1987, accepted December 28, 1987.

 Address for repnints: Robert A. Levine, MD, Cardiac Non-lnvasive Laboratory, Phillips House 8, Massachusetts General Hospital, Bosion, Massachuselts 02114.

