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Abstract

In this article we prove existence of positive radially symmetric solutions for the nonlinear
elliptic equation

A} 4 (DH) k() =
u

where . ; denotes the Pucci’s extremal operator with parameters 0 <4< and Bg is the ball

of radius R in RV, N>3. The result applies to a wide class of nonlinear functions f, including
the important model cases: (i) y =1 and f(s) =5, 1<p<pf. (i) y=0, f(s) = as+ s,
1<p<pf and 0<a<p;. Here p] is critical exponent for .47} , and p is the first eigenvalue of
A}, in Bg. Analogous results are obtained for the operator .4 ;.
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1. Introduction

The theory of viscosity solutions provides a very general and flexible theory for the
study of a large class of partial differential equations. While originally developed to
understand first-order equations, it was successfully extended to cover fully
nonlinear second-order elliptic and parabolic equations. Very general existence
results are combined with regularity theory to obtain a complete theory. We refer to
[2,4] for the basic elements of the theory.

These remarkable general existence results require some structural hypotheses on
the fully nonlinear operator, deeply linked to the Perron’s method of super and sub-
solutions. Essentially the operator has to satisfy proper maximum and comparison
principles.

When those structural hypotheses are not satisfied not much is known about
existence theory for fully nonlinear operators. In great contrast, for equations with
divergence form operators, a vast number of results are known through various
different methods including the variational approach and the topological method via
degree theory.

In this article we consider the existence of positive solutions to a ‘semi-linear’
equation involving the Pucci’s extremal operators, in which the maximum principle
nor the comparison principle hold. Even though these problems have application in
areas like financial mathematics [1], our interest is on the theory of equations.
The Pucci’s extremal operators are perturbations of the usual Laplacian, sharing
with it many properties like homogeneity, positivity and comparison properties.
However they are not in divergence form, thus deviating in a fundamental manner
away from the Laplacian. The Pucci’s extremal operators represent an important
prototype of fully nonlinear operators, sitting at the center of the theory of
regularity.

Our approach to study the existence problem is based on degree theory for
compact operators in positive cones. This approach has been successfully applied by
many authors to a variety of problems. Of special interest to us is the work of de
Figueiredo et al. [8], on which we base our arguments. This approach requires a
priori bounds for the solutions, which are obtained via blow up techniques as in the
fundamental paper of Gidas and Spruck [9]. The success of this approach rests on
Liouville type theorems.

In a recent article [7], the authors studied a Liouville type theorem for the Pucci’s
operators in the radially symmetric case. We proved the existence of a critical
exponent that separates the existence and nonexistence range for power nonlinea-
rities.

We describe our results in a more precise manner next. Let us first recall the
definition of the Pucci’s extremal operators. Given two parameter 0 <A< A, the
matrix operators .#} , and M ; 4 are defined as follows: if M is a symmetric N x N

matrix

M (M) = A Z e+ Z e

e;>0 e;<0



378 P.L. Felmer, A. Quaas | J. Differential Equations 199 (2004) 376-393

and
My (M 7226,—1—/1263,,
;>0 ;<0
where ¢; = ¢;(M), i =1, ..., N, are the eigenvalues of M. The Pucci’s operators are

obtained applying .#+ i Or M 4 to the Hessian D?u of the scalar function u. These

two operators have many properties in common, but they are not equivalent.
For more details and equivalent definitions see the monograph of Caffarelli and
Cabré [2].

We consider the equation

MFE(D*u)+u” =0 in RY, (1.1)

where p> 1. For notational simplicity, here and in the rest of the paper, we denote by
+ , both operators .# j 4 and 4 4, in such a way that (1.1) represents actually the
two corresponding equations. In [7], see also [6], we proved

Theorem 1.1. Let N=3. Then there exist numbers pf>1 and p; >1 such that: if
l<p<p! (1<p<py) then (1.1) does not have a radially symmetric C* solution.

The numbers p} and p, are called critical exponents for the operators M}, and
M; ,, respectively. When the parameters 4 and A are equal then pr=p, =pyv=
(N +2)/(N —2), the usual Sobolev critical exponent, see [3,13]. For other Liouville
type theorems we refer the reader to the article by Cutri and Leoni [5]. Notice that in
the case A< A, we have p} >py and p, <py.

Besides the Liouville type theorem for positive radial solutions we proved in [7],
we also obtained an existence result for positive radially symmetric solutions in a
ball, when 1<p<p*. Thus it is natural then to ask for the existence of positive
solutions for more general nonlinearities.

It is the main purpose of this article to prove existence theorems for positive
radially symmetric solutions for the equation

%fA(Dzu)—yu—i—f() 0 in Bg,

(1.2)
u=0 on OBy,

where By is the ball of radius R in RV and f is an appropriate nonlinearity. As for
Eq. (1.1), Eq. (1.2) represents the two equations corresponding to %fA and .4 4.

We observe that when A = A = 1 then /%)i  simply reduce to the Laplace operator,
so (1.2) becomes

Au—vyu+f(u)=0 in Bg,

1.3
u=0 on OBg. (1.3)
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This equation has been studied by many authors, not only in a ball, but on general
domains. We refer the reader to the review paper by Lions [10] and the references
therein.

Continuing with the description of our results, let us introduce the precise
assumptions on our nonlinearity f-

(f0) feC([0,40)) and is locally Lipschitz.
(f1) f(s)=0 and there is 1 <p<p* and a constant C*>0 such that

lim AC) =C".

so>+ow  §P

(f2) There is a constant ¢* >0 such that ¢* —y<pu;" and

AC

s—>0 5 ’

where pf (u7) is the first eigenvalue for ﬂh (A} 4) in Bg. See Theorem 3.1 in
Section 3.

The first model problem is y =1 and f(s) =s”, 1<p<p*. The second model
problem is y = 0 and f(s) = as + s*, | <p<p?* and 0<a <y .
Now we are in a position to state our main theorem

Theorem 1.2. Assume N =3 and [ satisfies the hypotheses (f0), (f1) and (f2). Then
there exist a positive radially symmetric C* solution of (1.2).

In case of the first model problem, we can extend Theorem 1.2 for positive
solutions in R". Precisely we have

Theorem 1.3. Assume N >3 and 1 <p<pZ*. Then there is a positive radially symmetric
C? solution of the equation

M (DPu) —u+1 =0 in RY. (1.4)

In order to prove or main theorem we use degree theory on positive cones
as presented in [8]. A priori bounds for solutions are obtained by blow up
method introduced by Gidas and Spruck [7] in combination with the Liouville type
Theorem 1.1.

In order to set up our abstract scheme of proof, we have to study existence and
regularity of solutions for the equation

M (D*u) —yu=g(r) in Bg,

(L.5)
u=0 on OBpg
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for a given continuous g. Even though this result may be deduced from the general
theory of viscosity solutions, we prefer to give a direct proof. Our aim is that all our
results are self-contained.

The plan of the paper is the following. In Section 2, we study existence and
regularity for Eq. (1.5). In Section 3, we consider the eigenvalue problem for the
Pucci’s operator, basing our arguments in the Krein—Rutman theorem that is proved
by Rabinowitz [14]. With this result we can obtain a more complete existence
theorem for Eq. (1.2). In Section 4, we describe the abstract setting in [8] and we
prove the necessary a priori bounds that allow to use the abstract theory. We prove
here Theorems 1.2 and 1.3.

2. Basic existence theorem

In this section, we study a basic existence theorem upon which we base our
arguments to construct a solution to (1.2).

Theorem 2.1. Let g: [0, R]—>R be a continuous, nonpositive function and y=0. Then
there exists a unique C* positive radial solution to (1.5).

The proof of this theorem is based on the existence theorem for the initial value
problem together with some comparison arguments. Particular attention has to be
taken to the regularity of the solution.

Remark 2.1. There is no lose of generality by assuming that y>0 since, when y<0
we can consider the term yu as part of the function f(u).

In the case of a radially symmetric function, the Pucci’s operators have a simple
expression. First we note that when u(x) = ¢(|x|) is a C? radially symmetric function
then we have

2 o @)
D u(x) = ] I+

R

¢'(|x]) WWWX

where I is the N x N identity matrix and X is the matrix whose entries are x;x;. Then
the eigenvalues of D’u are ¢”(|x|), which is simple, and ¢’(|x|)/|x|, which has
multiplicity N — 1.

In view of this we can give more explicit definition of the Pucci’s operators. In the
case of ./ , we define the functions

s/A, s>0,
s/h <0

As, s>0,
As,  s<0

me) = { and m(s) = {
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then we see that u satisfies (1.5) if and only if u satisfies

o=t (-C ) 40400, 21

v'(0) =0, v(R)=0. (2.2)

In the case of .#; , we have a similar situation, just interchanging the roles of 4
and A.
The main step in the proof of Theorem 2.1 is the following

Proposition 2.1. Assume g is a continuous function. Then there exists a C* solution to
the initial value problem

v = M(—(Nr D m(v') +yv + g(r)), re0, R], (2.3)

v(0) =d, v(0)=0. (2.4)

For the proof of this proposition we need a series of lemmas. The first lemma is a
regularity result. We observe that the only difficulty with the regularity of the
solution to (2.3) and (2.4) may appear at the origin. We have

Lemma 2.1. Assume 7=>0. If ve C' is a solution of (2.3) and (2.4) and g is continuous,
then ve C?.

Proof. Without lose of generality we can assume that y = 0 by considering the term
yv as part of the right-hand side. We do the proof just for the operator %T 4, the
other is analogous.

The solution v is clearly C? in (0, R], so we only need to worry about r = 0. Since
v'(0) = 0, it is sufficient to prove that /(r)/r converges as r—0. We split the proof in
three cases: (i) g(0) <0, (ii) g(0) >0 and (iii) g(0) = 0.

(i) If g(0) <0, then ¢g(r) <0 in [0, ], for some 6 >0. Consequently, v satisfies

{r¥ 1Y = ?;’N’I, re(0,4].

If we integrate from 0 to r<J we have

V() Jo g(s)sN " ds

)

and then
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(ii) If g(0)>0, with the same argument as in (i) we prove that

/
fim ) _ 90
r-0 r NA

where N = A(N —1)/4 + 1.
(iii) If g(0) = 0. We can rewrite Eq. (2.1) in terms of two v-dependent positive
bounded functions # and ¢ as

"(r) = =(N = Dn(r) —=+a(r)g(r). (2.5)
Integrating from 0 to r we get
/ _ _ r / r
v =V 1)/ n(s) 2 ds+1/ o(s)g(s) ds. (2.6)
r r 0 N rJo
On the other hand, using that g(0) = 0 we have that
1 r
;/ a(s)g(s)ds—0 as r—0. (2.7)
0

We claim that ¢/(r)/r—>0 as r—0. Suppose first that lim,_ sup v/(r)/r>0. From
(2.6) and (2.7) we see that it is not possible that v/(r) >0 for r small. Suppose then
that ¢/(r) changes sign for r small. Then there is a sequence {r,} such that r, »0 and
for some £>0

/
lim sup M =&
n— oo ry

There exists a second sequence {7,} with 7, <r, such that v/(7,) =0 and v/(r)>0
for re (7, r,). Then we have

V) _g_=(N=1) /0 n(s)0/(s) ds +_l/0r" a(s)g(s) ds. (2.8)

r”[ rl‘l rn

From here, using (2.7), we find that for n large

(LEDY PP

7n K

and hence

e

Iy N
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On the other hand, from (2.6) and using again (2.7), for n large we have

;<U’(rn) _—(N— 1)/0"”7,(3) vis) o (V= 1)/""%) vls) o

n n s n s

Tn

+rl a(s)g(s) ds
nJo

<§— (v - 1)/’_%r](s)&ds<§,

4 I'n K

providing a contradiction. A slight modification allows to handle the case € = co.
With this we conclude the proof since the case lim,_,¢ inf ¢/(r) /r <0 is similar. O

The next lemma is a compactness result.

Lemma 2.2. Assume {g,} is a uniformly bounded sequence of continuous functions. If
u, is a solution of (2.3) and (2.4) with g, as a right-hand side then there exists C>0
such that

_unr(r)‘<C and |u)(r)|<C, for all re(0,R].

Proof. We first claim that if {u,(r,)} is bounded, with r,€[0, R], then {u/ (r,)/r,}
and {u"(r,)} are bounded. Suppose first that

lim
n—+00 )

From (2.3) and (2.4) and since g, is uniformly bounded, we have that u/,(r,) > + o0
as n— + oo.

If u(r)>0 for all re(0,r,], then u(r,) >0, which is impossible. Thus, for all n
there exists 7,€(0,r,) such that «”(F,) =0 and u(r)>0 for all re(7,,r,). Hence
' (Fy) <u/(ry), which implies that

)=
lim “ Sr") =—-ow and u'(7,)=0.
n—+oo Iy

This is in contradiction with (2.3). Suppose next that

o (r
lim ) _ + 0,
n—+o0 ry

then with a similar argument we also get a contradiction. Thus, we have that
{u(r,)/rn} is bounded. Then in view of (2.3) we also see that {u (r,)}, proving the
claim.



384 P.L. Felmer, A. Quaas | J. Differential Equations 199 (2004) 376-393

Suppose now that there exists {r,} <[0, R] such that

lim  u,(r,) = +o0.
n—+oo

Define v,(r) = u,(r)/||tn|| .- Then ||v,||,, =1 and v, satisfies (2.3) with the right-
hand side g,,/||u4|| ., - Using the claim we just proved we conclude that for a positive
constant C

/
0, (1) <C, |(r)|<C, for all re[0,R].

Then, by Arzela-Ascoli theorem, v,—v uniformly in C'([0,R]), up to a sub-
sequence. Using Lemma 2.1, we conclude that v is a C? solution of (2.3) and (2.4)
with d = 0 and g = 0. This implies that v = 0, contradicting ||v||, = 1. Thus, {u,} is
uniformly bounded.

The application of the claim concludes the proof. [

Now we are ready to complete the

Proof of Proposition 2.1. We do the proof just for the operator ﬂj 1~ Suppose first
that yd + ¢g(0) <0. Consider the initial value problem

N—1
(V1Y = M, w(0) = d, '(0) = 0. (2.9)
Using an argument of Ni and Nussbaum [11], we can find a C? solution of (2.9).
Then, for some 6 >0, u satisfies

u' = M(—#m(u/) +9g(r) + Vu>7 re(0,9).

Next we consider (2.3) with initial value u(6) and /() at r = J. From standard
theory of ordinary differential equation we find a C? solution of this problem for
re[s, R]. Thus (2.3) and (2.4) has a C? solution in [0, R]. The case yd + g(0)>0 is
similar.

Now we consider the case yd + ¢g(0) = 0. First we use the arguments given above
to find a C? solution u, of (2.3) and (2.4) with the right side g,,(r) = g(r) — 1/n. Using
Lemma 2.1 we find that u, —u in C'(]0, R]) up to a sub-sequence and, from Lemma
2.2, we conclude that u is a C? solution to (2.3) and (2.4). O

Remark 2.2. At this point we cannot guarantee the uniqueness of the solution to
(2.3) and (2.4).
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In the arguments to follow we need the maximum principle and comparison
results for the Pucci’s operators. We prove them now in the case of C? solutions,
since we only need this regular case.

Before continuing let us recall some basic properties of the matrix operators /%:—r T
See Lemma 2.10 in [2] for the proof.

Lemma 2.3. Let M and N be two symmetric matrices then:

() A5 (M) + M7 J(N)SMT (M + N)SMT (M) + 47 4(N),
(i) 7 (M) + M7 ((N)< M5 (M + N)< M7 (M) + .47 ,(N).

Now the maximum and comparison principles

Proposition 2.2. Let Q be a bounded domain in R" .

(1) If uis continuous in Q and u is a C* solution of M3 ,(D*u)<0 in Q, with u=0 on
0Q, then u=0 in Q.
(2) Let u,v be continuous functions in Q. If u,v are C* in Q and

a/%fA(Dzu) —yu<g(x), and ,ﬂfA(DZU) —yo=g(x)

in Q, with uzv on 0Q. Then u=v in Q.

Proof. (1) Let us consider the function v, = u + ¢,, where o,(x) = &(d* — |x|*),
with d such that v,>0 on 0Q. Since D?v, = D*u— 2ely, Lemma 2.3 implies
that

MFE(DPry(x)) <0, for xeQ.

But then v, cannot have a minimum. Thus we conclude that v, >0 in Q, for all ¢>0.
Hence u>=0 in Q.
(2) Consider w, = u+ @, — v. Then, using Lemma 2.3, we find that

=ﬂfA(D2wg) — yw, <0.
Then w, cannot have a negative minimum. [

Proof of Theorem 2.1. We first prove uniqueness of the initial value problem (2.3)
and (2.4). Assume that there are two different solutions u; and u;, both satisfying
u1(0) = up(0) = d. Then u;(R)#u>(R), because the contrary and Proposition 2.2
would imply that u; = uy. If u;(R)>uz(R) then we define u;,(r) = u;(r) — e. We see
that u;, is a sub-solution and if ¢ is small we have u;,(R)>u>(R). But then, by
Proposition 2.2 we get that d — eu;,(0) >u,(0) = d, which is impossible. We conclude
that (2.3) and (2.4) has a unique solution.
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Next we find appropriate super and sub-solutions to (1.5). Clearly ¥ = 0 is a sub-
solution. For the super-solution we consider (r) =%(r* — R*), with o<O.
We have

@(r)=ar and @'(r) =o.

Thus, @ is a super-solution to (1.5) if « is such that
Ao+ AN = 1o — y(% (r* — R2)> <g(r).

Let u; and u; be the solutions to (2.3) and (2.4) with u;(0) = @(0) + ¢ and u, = —e,
with ¢>0. Then by Proposition 2.2 we have u;(R)>0 and u(R) <0.

To complete the existence part, we only need to prove that the function d - u(d, R)
is continuous in d, where u(d, R) is the solution to (2.3) and (2.4). But this follows in
a standard way using the uniqueness of solutions of the initial value problem.

Finally, the uniqueness part follows from Proposition 2.2. [

Remark 2.3. In the case of a general g(r) e C([0, R]), one can also find sub-solution
and super-solutions and then the same proof holds.

3. Eigenvalue problem for e/%,f 4 and 45 ,

In this section, we study the eigenvalue problem for the Pucci’s operators. In the
Introduction we described our hypothesis (f2) on the nonlinearity f in terms of the
first eigenfunction of the operator. Here we prove that such an eigenvalue is positive
and the first eigenfunction is positive also. This eigenvalue problem is studied in the
context of radially symmetric functions, but one should also have a similar result in
general domains. We will prove the following theorem.

Theorem 3.1. The eigenvalue problem

—E%fA(Dzu) =uu in Bg

. (3.1)
u>01in Bg, u=0 on OBy,

has a solution (,uf—’,uf—r), with ,uf—r and uf—r positive. Moreover, all positive solutions to
(3.1) are of the form (it ,oui"), with o>0.

Here Eq. (3.1) represents the two eigenvalue problems, for %j’ 4 and A5 ,.
The eigenpairs (u),uf) and (uy,u;) correspond to the operators ./#;, and
M 4, respectively. For the proof of this theorem we rely on ideas from Rabinowitz
[14]’. The starting point is the Krein—Rutman theorem, which can be proved

using a general result on existence of a one parameter family of fixed points,
see [14].
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Theorem 3.2. Let (E,|| - ||) be a Banach space and K be a closed cone in E with vertex
at 0. Let T: R" x K—K be a compact operator such that T(0,u) =0 for all ueE,
then there exists an unbounded connected component € of R™ x K of solutions of
u = T(u,u) and starting from (0,0).

Remark 3.1. Here we denote by R" the interval [0, +0).
Let us consider the cone of nonnegative continuous functions

Cy ={weC[0,R]/w(R)=0, w(R) =0}

and define #*: C4 — Cy as the inverse of —/%:—r .- The operator #* is well defined
after Theorem 2.1 and it is compact by Lemma 2.2. In the next three lemmas we
describe the main properties of the operator £*.

Lemma 3.1. The operator £* is monotone, that is if g1, g> € Cy such that g1 <g» then
LE(g1) <L * (92).

Proof. Direct from Proposition 2.2. [

Lemma 3.2. Let g1,92€ Cy, then

@ Z (g +92)=22L (91) + < (92)
(b) L7 (g1 +¢g2) <L (g91) + L (92)-

Proof. Let u; = % (g;), i = 1,2. Then, using Lemma 2.3, we obtain
— M7 4 (D*uy + DPur) < — M ((D*uy) — M7 4(D*ur) = g1 + g,

from where the inequality follows taking #~ on both sides. The case Z" is
analogous. [

Lemma 3.3. Let geCy and u= %*(g). If g#0 then u(r)>0 for all re(0,R).
Moreover u'(R) <0.

Proof. Since ¢(r)#0, there exists r*e(0,R) such that u(r*)>0. Suppose by
contradiction that there exists a 7e (0, R) such that u(7) = 0. Assume, without lose
of generality, that F<r* and u(r) >0 if re (7, r*). Consider the comparison function

1) = ol — ),

We have that for o large —.#,(D*,)<0 in the annulus A4 = {r/F<r<#},
where 7=F+ (r* —F)/2. Choose now ¢ such that uv,(F)<u(7). Then, using
Proposition 2.2 we get v.(r)<u(r) for all re(7,7). Since v,(7F)#0 we get the
contradiction since #/(F) = 0.
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With a similar argument we get «'(R) <0. O
Now we are in a position to prove the existence of eigenvalues.

Proof of Theorem 3.1. . Take uye Cx\{0}, we claim that there exists M >0 such that
M L*uy>uy. Suppose that LT uy —uy/M ¢ Cy for all M >0. Taking the limit as
M — + oo we have L*uy¢ Int(Cy), getting a contradiction with Lemma 3.3.
Define now T,: RTx Cy—>Cy as T,(uu) =pu?L* (u) + ues* (), for
£>0. From Theorem 3.2, there exists a connected component %, of solution to
T.(u,u) = u.
We show next that ¥, < [0, M] x Cyx. In fact, let (1, u) € ,, then

u=puL*u+ peL*uy,
hence u>pe L *uy =4 eup. If we apply £+ we get

3%{2% eLEu Z%SMO.

But u>u%*u, then u> (%)28140. By recurrence we get
uz= (i)nsuo for all n>2.
M

This implies that 4 <M and thus ;< [0, M] x Cy.

Now we conclude. Since €, is unbounded there exists y, and u, so that (u,,u,) €%,
and ||u;|| , = 1. Then, by the compactness of £* we find u, €[0, M] and u; with
lur]], = 1 such that uy = ;. £*u;. From here we also deduce that y, >0.

To complete the proof of Theorem 3.1 we need the following lemma, whose proof
is simple and can be seen in [14].

Lemma 3.4. Let K be a closed cone with nonempty interior and y € int(K). Then for all
V¢ K there exists a unique number 6,,(y) such that:

(i) if nel0,0,,(»)] then yo + pyek,
(i) if =6y, (v) then yo + py¢ K.

Moreover, if yo + uyeint(K) then p<d,, ().

Continuing with the proof of Theorem 3.1, let us consider ue Cy, u#0 and u>0
such that u = ¥ *u. Here we split the proof.

Case ¥~ Define y; = 6,,(—u) and y, = d,(—u;) as given by the previous lemma,
with K = C. Using Lemma 3.2(a) we have that

1
L =y )<L () =< (u) :’u— (”1 =7 %”)
i
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and similarly

1 U
L (u—yuy <<uy ul).
(= ypur) . 2
If u — you; #0, then L~ (u — puy) €int(Cy), so p/pu <1 . Since L~ (u; — yu) € Cy,
then y;/u<1 which is a contradiction. Thus u = y,u;.
Case #*: Using the previous lemma with K = —Cy we define y, = d_,, (1), y, =
0_y(u1). From Lemma 3.2(b) we have then

1 1
L (u— ) =— (Vl &” - “1>7 L (ur — u)><y2 . uy — “)
H H I Hy
If —u+pu1#0, then L' (—u+yui)eint(Cy) so p/uy<l. Since L (—u; +
you) € Cy, then p; /<1 which is a contradiction. Thus u = y,u;. O

4. A priori bounds and proof of Theorem 1.2

Our existence theorem will be proved by using the approach of de Figueiredo et al.
[8]. It consists in using degree theory for compact operators in cones. This abstract
tool is combined with an appropriate a priori bounds and computation of degree.

We start recalling the abstract setting in [8]. Let K be a closed cone with nonempty
interior in the Banach space (E,||-||). Let &: K—»K and F:E x [0, 0)—>K be
compact operators such that ¢(0) =0 and F(x,0) = &(x) for all xe E. Then the
following theorem is proved in [12]. See also [8, Proposition 2.1 and Remark 2.1].

Theorem 4.1. Assume there exist numbers 0< Ry <Ry and T >0 such that:
(1) x#£pd(x) for all 0< <1 and ||x|| = Ry,

(i) F(x,t)#x for all ||x|| = Ry, t€[0,+00) and

(iii) F(x,t) = x has no solution xe By, for t = T.

Then @ has a fixed point in U where U = {xe K/R, <||x||<R:}.

We note that solving (1.2) is equivalent to find a fixed point of @:Cyu— Cy
defined as

(u)(r) € 2(f(u(r), ref0,R],

where ¢ is the inverse of —Eﬂf (D*) +7-. As we mentioned in Section 2 we only
need to consider the case y>0.

By Theorem 2.1 and Lemma 2.2 . is well defined and compact. We define next
the operator F as F(u,t)(r) = L(f (u(r) +1)).

We complete the proof of Theorem 1.2 by proving conditions (i)—(iii) in Theorem
4.1. First a priori bounds
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Proposition 4.1. Let u be a radial C* solution of the equation
— MfA(Dzu) +yu=f(u+t) in Bg,
u>0in Bg and u=0 on OBg, (4.1)
with t=0. Then there exists a constant C, independent of u, such that
Jull, <C.
Proof. We argue by contradiction. Let {u,}, . be a sequence of positive solution to
(4.1) such that ||u,||., > + oo as n— + oo. Suppose first that u,(r,) = ||u||,, and

r,— 0, up to sub-sequence.
Let us define

1
va(r) = ﬁun(rn + VMJ’P/Z), (4.2)
n

with u,(r,) = M, then v, satisfies

Uy, u, +1t) . _
—M; (D) + SV :f(;/[ig) in M'?(Bg — 1)

and ||v,||, = 1. By Lemmas 2.1 and 2.2 we have that, up to a sub-sequence, v, — v in
C'([0,R)), as n— + oo, where R is a fixed number. Note ve C?.

Since (f1) holds, we have that f(u, + ¢)/M? — C*v*, and u,/ M? —0. Thus, as R is
arbitrary, after a diagonal procedure, we obtain a nontrivial positive v that
satisfies

ME,(D%) + C' =0 in RV with p<p?. (4.3)

But this contradicts Theorem 1.1. Suppose now that r,—>rye(0,R), up to sub-
sequence. Set >0 such that [r, — d,r, + 0] =(0, R). Let us define now v, as in (4.2)

with rel, = (—5M571/2,5M571/2), then v, satisfies

N-1) yu,  —f(u,+1) .

A 1/ ( AN n — n f //20
Uy + it M]];—l/2rn m(vn) M‘:,) M{; i v, ’
W/ (N - 1) / YUn _ _f(un + t) . i
oy ) g = 0

and ||v,||, = 1. Since v},(0) = 0 we can argue as in Lemma 2.2 and find that v, > v in
C'[~a,a], where a>0 is a fixed number. Also, since (f1) holds, we can argue as
before to obtain a nontrivial positive v which satisfies

"+ =0 in R with p>1. (4.4)
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But this is a contradiction. In the case r, —> R, arguing as before we will end up with a
nontrivial positive v which satisfies (4.4) in R", again a contradiction. [J

Our next proposition implies condition (i) in Theorem 4.1.
Proposition 4.2. There is Ry >0 so that the equation

—Mj,(D*u) +yu= ff (u) in Br
u>0in Bg, u=0 on OBg,

pe(0,1], has no solution u with 0<||u|| , <R;.

Proof. We argue by contradiction. Let {(u,,f8,)},.n be @ sequence of positive
solution to (4.5) such that ||v,||,, >0 as n— + oo. Define v, = u,/||u,]|,,, then we
have that v, satisfies

S (un)

n

M= (Dzv,,) —yo, + B, v, =0 1in By

and ||v,|],, = 1. Using Lemmas 2.1 and 2.2, up to a sub-sequence, we find v, —»v in
C'[0,R], B,— Bel0,1]. Moreover ve C? and ||v||, = 1. By hypothesis (f2) we then
obtain that v satisfies

M=*(D*) + (Bc* —y)v =0 in Bg,
v>0in Bg, v=0 on 0Bg.

If fc* —y<0 then we get a contradiction with the maximum principle, Proposition
2.2. If 0< fc* — vy then by (f2) fc* — y</11lL and we get a contradiction with Theorem
2.1. O

In order to prove condition (iii) in Theorem 4.1 we need a previous lemma.

Lemma 4.1. Let u be a positive radial solution to

—MfA(Dzu) +yu=f(u+t) in Bg,
u=>0 on 8BR

with t large, then there exist C >0, independent of u, such that u(0)>= CR*#.

Proof. After integration, we see that all we have to prove is the existence of C >0 so
that

—u'(r)=Cr? for all re(0,R). (4.6)
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We have that u satisfies

(V-1

Al + mu') —yu=—f(u+1) if u">0,

'+ ( m(u/) —yu = ff(u + t) if ¥’ <0.

N-1)
—
From (f1) we have that there exists C>0, independent of u, such that —yu + f'(u +
t)> Ct’, for ¢t large. Let us fix 7€ (0, R). If () =0, then )L@u’(f) < — Cr, thus
—u'(F) = C’F/(A(N —1)). If u"(F) <0, suppose first «”(r) <0 for all 0<r<7. In this
case we have that u is decreasing and satisfies

—C N-1
Ny <7 (4.7)
A
Integrating from 0 to 7 we get (4.6) at 7. Suppose now that there exists a first /<7

such that

Ccev

u'(F) =0 and hence — u/(f)zi(Ni—rl)'

From here and since «’ <0 for rel := (#,7) we have that u is decreasing in I and
satisfies (4.7) in I. Integrating (4.7) from 7 to 7 we obtain

crivcr (7N al > _cr

] --N71>7 (T
S Tr T VR G A

= .
A N

Proposition 4.3. There exists a constant T >0 so that if (4.1) possesses a solution u,
then

0<e<T.

Proof of Proposition 4.3. We argue by contradiction. Suppose there is a sequence
{tn},cn such that #,» + oo as n— oo, such that for each #, there exist a solution u,
to (4.1). By Lemma 4.1 we have ||u,|| , = M,,— + o0 asn— + oo. Since M, > CR*#
we can argue as in the proof of Proposition 4.1 to reach a contradiction. [

Proof of Theorem 1.2. Propositions 4.1-4.3 gives the conditions (i)—(iii) in Theorem
4.1, from where the result follows. O

Proof of Theorem 1.3. We apply Theorem 1.2 to find a solution of

—Mj,(D*u) +u=u" in Bg,

. (4.8)
u>01in Bg,, u=0 on 0Bg,,

where R, — co. We find thus a sequence which is uniformly bounded by application a
blow up argument as in Proposition 4.1. [
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