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Abstract 

We prove that the cyclic monotonically normal space T of Rudin is not a &space. Consequently, 

T has the monotone extension property but does not have 0; or D* (IF!; +; cch). This answers 

some questions of van Douwen. 0 1998 Elsevier Science B.V. 
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In memory of Kiiti Morita 

Throughout, we use the terminology of [2]. The definition of a &space and &,-function 

appears in Definition 1 of [2]. The definitions of D* (IR; <), DT and D* (IR; +; cch) appear 

in the introduction of [2, pp. 82, 831. 

Theorem 1. There exists a monotonically normal space T which is not a J*-space. 

Proof. The space T is the space described by Rudin in [6]. Since our argument is clearly 

gleaned from the proof in [6], we will use the same notation and simply point out the 

necessary changes. For convenience, let (zz~)~ = xij, and let T be the topology on T 

described in 161. 

Let k : 71Y + T be a K1 -function such that U, V E 71Y and U c V imply that 

k(U) c k(V). Th en, from [6, p. 3051, we get the following fact: 

(a) There is p E X such that, for all x > p in X and i < 3. UPzi c k(U,, n Y). 

Henceforth, we fix p to satisfy (a). 

(b’) If p < t E X and i < 3, then Up,i C njcs k(Ut%, nY). (The proof of this follows 

immediately from the proof of (b) in [6].) 
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If IZ < w and p < z E X, let Vnz, be the set of u E X such that ICI 6 V, n is the 

number of terms of X between 51 and u and all these terms are of the form ~1, for some 

21 6 u < ‘u. Let 5’; be the statement that 

V&l c~(U,,onY)nk(U,,,nY), forallzEX. 

(c’) 5’; holds for all rz < w. 

Proof of (c’). Sh holds since V&l = (21) and 

21 E Upzl c (-) quqj f-l Y) c @L,o f-l Y) n k&L, 1 f- Y), 

j<3 

by (b’). Suppose S’A holds and let ‘u E V(n+l)zl, for some 2 E X. Note that 511 6 V; 

hence, u E V,,, 1. Then by inductive hypothesis, 

21 E WJz,,o n Y) n Wk,,l n Y) c WJ,, I n Y), 

because k is monotone. Also, ‘u E UPz,o c k(U,,o n Y), by (a). Hence, 

u E V&o n Y) n @Jz, 1 n Y), 

and this completes the induction. 0 

(d’) k is not a &function. 

Proof of (d’). Fix II: and choose y E Y which extends zr such that if w E X and 

21 < w < y then w = ~1 for some 21 < u < y. Since k is a Kl-function, there exists 

z E X such that zr < z < y and B,(y) c k(B,, (y) n Y). Pick t < w < y, and note 

that, since w E some V&l, 

v E k(Uz,o n Y) n k&L,, n Y), 

by (c’). Hence, 

‘u E @z,(y) n Y) n WJz,o n Y) n kWz,I n Y) # 0, 

but 

~,I(y)n(~,,o~U~,~)nY=~,,(y)n~,,lnY=O, 

and this proves that k is not a &function. 0 

Theorem 2. The space T has D’(R; <) but it does not have DT or D*(R; +;cch). 

Proof. Since T is monotonically normal, T has D*(R; <) by Theorem 3.3 of [5]. By 

Theorem 9 of [I], T does not have the property 0;. From the diagram of Theorem 10 

of [l] one immediately gets that T does not have the property D* (R; +; cch). 0 

Theorem 2 answers the question on lines 9 and 10 [3, p. 311; it also answers the first 

question on [3, p. 371; see also line 10 on [4, p. 3001. 
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