

Topology and its Applications 82 (1998) 67-69

TOPOLOGY AND ITS APPLICATIONS

$D^*(\mathbb{R};\leqslant)$ does not imply D_1^*

Carlos R. Borges¹

^a Department of Mathematics, University of California, 579 Kerr Hall, Davis, CA 95616, USA Received 28 October 1996; revised 22 January 1997

Abstract

We prove that the cyclic monotonically normal space T of Rudin is not a J_2 -space. Consequently, T has the monotone extension property but does not have D_1^* or $D^*(\mathbb{R};+;cch)$. This answers some questions of van Douwen. © 1998 Elsevier Science B.V.

Keywords: Monotonically normal; Monotone extension property; J₂-space

AMS classification: Primary 54C30, Secondary 54C20

In memory of Kiiti Morita

Throughout, we use the terminology of [2]. The definition of a J_2 -space and J_2 -function appears in Definition 1 of [2]. The definitions of $D^*(\mathbb{R}; \leq)$, D_1^* and $D^*(\mathbb{R}; +; \text{cch})$ appear in the introduction of [2, pp. 82, 83].

Theorem 1. There exists a monotonically normal space T which is not a J_2 -space.

Proof. The space T is the space described by Rudin in [6]. Since our argument is clearly gleaned from the proof in [6], we will use the same notation and simply point out the necessary changes. For convenience, let $(x_i)_j = x_{ij}$, and let τ be the topology on T described in [6].

Let $k:\tau|Y \to \tau$ be a K_1 -function such that $U, V \in \tau|Y$ and $U \subset V$ imply that $k(U) \subset k(V)$. Then, from [6, p. 305], we get the following fact:

(a) There is $p \in X$ such that, for all x > p in X and i < 3, $U_{pxi} \subset k(U_{xi} \cap Y)$. Henceforth, we fix p to satisfy (a).

(b') If $p < t \in X$ and i < 3, then $U_{pti} \subset \bigcap_{j < 3} k(U_{t_ij} \cap Y)$. (The proof of this follows immediately from the proof of (b) in [6].)

¹ E-mail: crborges@ucdavis.edu.

If $n < \omega$ and $p < x \in X$, let V_{nx_1} be the set of $v \in X$ such that $x_1 \leq v$, n is the number of terms of X between x_1 and v and all these terms are of the form u_1 , for some $x_1 \leq u < v$. Let S'_n be the statement that

$$V_{nx1} \subset k(U_{x_10} \cap Y) \cap k(U_{x_11} \cap Y), \text{ for all } x \in X.$$

(c') S'_n holds for all n < w.

Proof of (c'). S'_0 holds since $V_{0x1} = \{x_1\}$ and

$$x_1\in U_{px1}\subset \bigcap_{j<3}k(U_{x_1j}\cap Y)\subset k(U_{x_10}\cap Y)\cap k(U_{x_11}\cap Y),$$

by (b'). Suppose S'_n holds and let $v \in V_{(n+1)x_1}$, for some $x \in X$. Note that $x_{11} \leq v$; hence, $v \in V_{nx_{11}}$. Then by inductive hypothesis,

$$v \in k(U_{x_{11}0} \cap Y) \cap k(U_{x_{11}1} \cap Y) \subset k(U_{x_{1}1} \cap Y),$$

because k is monotone. Also, $v \in U_{px_1,0} \subset k(U_{x_1,0} \cap Y)$, by (a). Hence,

$$v \in k(U_{x,0} \cap Y) \cap k(U_{x,1} \cap Y),$$

and this completes the induction. \Box

(d') k is not a J_2 -function.

Proof of (d'). Fix x and choose $y \in Y$ which extends x_1 such that if $w \in X$ and $x_1 < w < y$ then $w = u_1$ for some $x_1 \leq u < y$. Since k is a K_1 -function, there exists $z \in X$ such that $x_1 < z < y$ and $B_z(y) \subset k(B_{x_1}(y) \cap Y)$. Pick z < v < y, and note that, since $v \in$ some V_{nx_1} ,

 $v \in k(U_{x,0} \cap Y) \cap k(U_{x,1} \cap Y),$

by (c'). Hence,

$$v \in k(B_{x_1}(y) \cap Y) \cap k(U_{x,0} \cap Y) \cap k(U_{x_11} \cap Y) \neq \emptyset,$$

but

$$B_{x_1}(y) \cap (U_{x,0} \cap U_{x_1}) \cap Y = B_{x_1}(y) \cap U_{rx1} \cap Y = \emptyset,$$

and this proves that k is not a J_2 -function. \Box

Theorem 2. The space T has $D^*(\mathbb{R}; \leq)$ but it does not have D_1^* or $D^*(\mathbb{R}; +; \operatorname{cch})$.

Proof. Since T is monotonically normal, T has $D^*(\mathbb{R}; \leq)$ by Theorem 3.3 of [5]. By Theorem 9 of [1], T does not have the property D_1^* . From the diagram of Theorem 10 of [1] one immediately gets that T does not have the property $D^*(\mathbb{R}; +; \operatorname{cch})$. \Box

Theorem 2 answers the question on lines 9 and 10 [3, p. 31]; it also answers the first question on [3, p. 37]; see also line 10 on [4, p. 300].

68

References

- C.R. Borges, Extensions of real-valued functions, Questions Answers Gen. Topology 14 (1996) 233-243.
- [2] C.R. Borges, Extension properties of K_i-spaces, Questions Answers Gen. Topology 7 (1989) 81–97.
- [3] E.K. van Douwen, Simultaneous extension of continuous functions, Ph.D. Thesis, Academische Pers, Amsterdam, 1975.
- [4] E.K. van Douwen, Simultaneous linear extension of continuous functions, Gen. Topology Appl. 5 (1975) 297–319.
- [5] R.W. Heath, D.J. Lutzer and P.L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc. 178 (1973) 481–493.
- [6] M.E. Rudin, A cyclic monotonically normal space which is not K_0 , Proc. Amer. Math. Soc. 119 (1993) 303–307.