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Detection of Jumps in Single-Channel Data Containing
Subconductance Levels

Silke Draber and Roland Schultze
Institut fur Angewandte Physik der Universitat Kiel, D-24098 Kiel, Germany

ABSTRACT Detection algorithms are widely used for the analysis of single-channel data because they remove the background
noise from the measured current signal and reconstruct the noise-free time series. Standard detection algorithms assume
channels switching only between zero and full conductance. Many types of channels, however, show subconductance levels.
A new detection algorithm for data containing sublevels, the so-called sublevel Hinkley-detector (SHD), calculates several test
values in parallel, one for each possible jump. The velocity of increase has a maximum for the correct jump. This feature is used
to detect the jump and to diagnose the new level of current. Because patch-clamp data are always filtered by an antialiasing
low-pass filter before sampling, the algorithm is supplemented by a special diagnosis phase accounting for the distortion of the
originally rectangular jumps. Along with the reconstructed (noise-free) time series the SHD also gives a matrix of the transition
counts between the levels. This matrix is a useful statistical tool for the decision whether the observed channel(s) have in fact
a subconductance conformation or if there are simply several channels of different conductivity contained within the patch.

INTRODUCTION

A detector analyzes the noisy experimental time series and
reconstructs the noise-free original time series of open and
closed events, i.e., it detects the jumps of the current signal.
Standard methods for detecting jumps in patch-clamp data
are the Bessel filter with threshold analysis (Colquhoun and
Sigworth, 1983), the Hinkley-detector (Page, 1955; Hinkley,
1971; Basseville and Benveniste, 1986, Schultze and Draber,
1993), and the higher-order Hinkley-detector (Schultze and
Draber, 1993). All these detection methods require prior
knowledge about the levels of current between which the
jumps of the current signal can occur. They work with equi-
distant current levels only.
A problem often encountered when analyzing patch-clamp

data are levels of current that are not equally spaced. This can
originate from channels of different conductivity within the
patch or, as is physiologically more interesting, from chan-
nels with a molecular conformation of reduced conductivity,
i.e., with a subconductance level (Patlak, 1988, 1993; Schild
et al., 1991; Tyerman et al., 1992; Ferguson et al., 1993;
Ramanan and Brink, 1993). Fig. 1 shows a record of a single
channel that frequently reduces its conductivity to a sub-
conductance level of about 55% of the full conductance. The
amplitude histogram in Fig. 1 B shows a sublevel located
between the large peaks of the baseline and the full current.
All the standard detectors mentioned above cannot be applied
to such data. There have been some approaches to deal with
patch-clamp data containing sublevels. Tyerman et al. (1992)
analyze plots showing the channel current versus its deriva-
tive. A similar method makes use of mean-variance plots
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(Patlak, 1988, 1993). Another technique is based on hidden
Markov models (Chung et al., 1990).

In this article, we introduce the "sublevel Hinkley-
detector" (SHD). The development of this detection algo-
rithm is based on the so-called dynamic Hinkley-detector,
which was originally invented for the online identification of
technical processes (Schultze, 1992, 1993) where jumps to
time-varying levels had to be detected. Now, we describe the
application to the analysis of patch-clamp data containing
sublevels. For this quite different purpose, the basic algo-
rithm is modified, mainly by the introduction of a special
diagnosis phase subsequent to jump detection.

Fig. 2 gives a preview of what the algorithm is capable of.
The upper trace is the noisy data, a section of Fig. 1 A. The
lower trace (Fig. 2 B) is the noise-free current signal recon-
structed by the SHD.

THE ALGORITHM

A detector scans through the time series in an iterative way.
It always assumes one level of current to be the actual level.
For every new data point the detector tests whether the
sampled value makes it likely that a jump to another level of
current may have occurred. If the jump seems more likely
than the actual level, the detector detects a jump. After de-
tection it has to diagnose what type of jump has occurred.
After jump detection and diagnosis, the detector goes on
scanning through the current signal, but now with the new
level as actual level.

Alternative levels

Fig. 3 illustrates the nomenclature of levels and of jump
types. It displays a schematic time series of two channels
switching between conformations of full (f), reduced (s), and
zero conductance. The current signal switches between the
levels Of + Os, lf + Os, 2f + Os, Of + ls, lf + ls, Of + 2s.
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FIGURE 1 Current signal of a K+ channel in an excised patch of the tonoplast of Chara corallina at 145.7 mV with symmetrical solutions (250 mM
KCI, 5 mM CaCl2). (A) Pipette current sampled at 100 kHz. The levels Os + Of, ls + Of, Os + If are shown by the arrows on the right. The displayed data
is a representative section (200 ms) of the whole record, which is 800 ms in length. (B) Amplitude histogram of the whole record with the noise-free levels
as vertical dashed lines. The levels of current do not have equal distance. The arrows mark the full single-channel current If = 22.2 pA, and the subconductance
current Is = 12.1 pA.

The question arises, what alternative levels can be reached
with one jump from a given level? Six principal types of
jumps can be distinguished: a channel with full conductivity
can open (+f) or close (-f), a subconductance or small
channel can open (+s) or close (-s). If a transition between
the subconductance and the full conductance states is pos-
sible in the gating scheme, a full conductance can change to
a small conductance (f -* s) and vice versa (s -* f). Ex-

amples for these sixjump types are shown in Fig. 3 as arrows.

The fis diagram (Fig. 4), where every level is represented
by a box, provides a systematic approach. In most cases, all
six types of jumps can occur from a given level, e.g., from
level lf + 2s:

1) lf+ 2s-- --> 2f+ 2s

2) lf+ 2s --->lf+ 3s

3) lf+ 2s Off+ 2s

4) lf+ 2s-f3 -lf+ ls

5) lf+2s OfsKf+3s

6) lf+ 2s 2f+ ls

A

FIGURE 2 (A) A section (20 ms) of the
time series in Fig. 1. This zoomed presenta-
tion gives a better impression of the frequent
transitions between the full-conducting level
lf + Os and the sublevel Of + ls. (B) Noise-
free time series of gating reconstructed by the
SHD as developed in this article.
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From some levels at the edge or corner of thefts diagram in
Fig. 4 there are only two, three, or four alternatives. Starting
from the baseline leaves only two jump alternatives, +f or

+s, as shown in Fig. 4.
A detector for subconductance analysis has to detect if

there is a jump from one level to another. After detection it
has to diagnose which of the two, three, four, or six types of
jumps has taken place.

Calculation of test values ht and jump detection

The classic Hinkley-detector (Hinkley, 1971; Basseville and
Benveniste, 1986; Schultze and Draber, 1993) looking for a

jump of the signal zt from level go up to level p,u calculates
the test value g:

gt = gt-l + (et-P) (1)

wherep = (,u -,o)/2 is the half absolute difference between
two levels and et = Zt- jio denotes the innovation, the dif-
ference of the sampled value to the actually assumed level
of current. The test values range between 0 and a threshold
A. If a test value falls below 0 it is immediately reset to 0.
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FIGURE 3 Schematic time series of current produced by two identical
channels with full conductance (J) and subconductance (s). The level Of +
Os is the baseline. There are six principal types ofjumps. A full conductance
can open (+f) or close (-f), a small conductance can open (+s) or close
(-s), or a full conductance can convert to a small one (f-1.s) or vice versa

(s-*f). Examples of these jump types are shown as upward or downward
arrows.
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FIGURE 4 Alternative levels in thefls diagram. From most of the levels,
e.g., 2f + ls (@), all six types of jumps (see Fig. 3) are possible. The six
arrows starting at 2f + ls (0) show to which alternative levels the current
signal canjump from there. From some levels at the edges of thefts diagram,
there are fewer than six transitions possible. An important example often
referred to in this article is the baseline Of+ Os (0). The two types ofjump,
one to the full-conducting level lf + Os and one to the sublevel Of + ls,
are again shown as arrows.

If a test value rises and exceeds the detection threshold A, the
Hinkley-detector detects a jump. For details, see Schultze
and Draber (1993).

In contrast, the new SHD makes use of many "half jump
magnitudes" pi to account for the different alternative levels.
The innovation term (et- p) is multiplied with the halfjump
magnitude pi to construct a bank of test values hit, one for
each jump i:

hit = hjt_1 +pi (et- pi) (2)

Ajump is detected when one test value hit reaches the thresh-
old E. The choice of E is addressed below.
The SHD finds the correct candidate by virtue of a peculiar

dependence of the speed of growth of the test values on pi.
The difference pi * (et- pi) between the subsequent test val-
ues in Eq. 2 is the speed of growth, i.e., the slope of the time
series of test values (Fig. 5).
Assume a true jump to a level lying 2 * pw away from the

actual level. pw is the true half jump magnitude. Neglecting
the noise, the innovation becomes et = 2 * Pw after the jump.
The speed of growth is

hi-hi -1 = pip(et- ) = pi(2pw- pt) (3)

This is a parabola (Fig. 6), which has its maximum at
Pi = Pw This result ensures that the test value for the true
jump has the strongest increase and therefore reaches the
threshold first. If the true new level is not in the set of al-
ternative levels, the SHD selects the one closest to the true
jump magnitude (see Discussion).

Details of the algorithm

The details of the algorithm are illustrated by the examples
shown in Fig. 5. The detector must decide whether the jump
from the baseline goes to the full level et 2p1 or to the
sublevel et 2P2. The series of test values are displayed as
circles. Full circles represent the test values hit related to a
jump to the full level, and open circles represent the test
values h2t indicating a jump to the sublevel.

In Fig. 5, A and B, the innovation et before the jump is 0
because there is no noise. Fig. 5, C and D, shows the scat-
tering ofthe innovation due to noise. Before ajump, the slope
pi - (et - p) in Eq. 2 is negative. In a linear detector, this
would lead to a decrease of the test values hit. To keep the
algorithm always alert, a test value hit is immediately reset
to 0 if it becomes negative. This is the inherent nonlinearity
of the detector.

After the jump, both test values in Fig. 5,A and B, increase
linearly. In Fig. 5, A and C, the test value hit for the full level
increases faster than the test value h2t for the sublevel and
therefore reaches the threshold e for jump detection earlier.
Thus, the SHD detects thejump to the full conductance level,
which is actually correct. In Fig. 5, B and D, the true jump
is an opening of a subconducting channel. In that situation
the test value h2t for thejump + s reaches the threshold e first.
A jump to the sublevel is detected correctly.
One important observation in the examples with back-

ground noise (Fig. 5, C and D) is that the noise has little
influence on the general behavior of the test values. The
increasing test values are quite insensitive to noise because
they are calculated as cumulative sums (Eq. 2). Positive and
negative deviations from the mean cancel each other out.

Generally, if a test value hit exceeds the threshold E, ajump
to the corresponding level li is detected. If two or more test
values cross the threshold within the same sampling interval,
the diagnosis selects the greatest one.

After a jump to the new level 1i has been detected, the time
of the jump is estimated (backward) to be the last sampling
step with hit = 0. In the examples of Fig. 5, the times of the
jump would have been estimated correctly. After detection
and diagnosis all test values are reset to 0 and the algorithm
starts from the estimated jump moment with the new level
4 as actual level.

Choice of the threshold

In the absence of noise, as in Fig. 5, A and B, it would be
sufficient to choose any small value as threshold E. In the
presence of noise, the threshold E has to be chosen ac-
cording to the noise. The aim is to select E as small as
possible without having too many false alarms. As a rule,
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FIGURE 5 Detection of jumps from the baseline Of + Os to the full conductance level lf + Os or to the subconductance level Of + ls. In this plot the
actual level before the jump is arbitrarily chosen to be 0. This is done without loss of generality because the innovation et (X) and the jump magnitudes
2p1 and 2p2 are defined as differences to the actual level. The broken line shows the idealized jump of the mean value of the current. The detector has to
decide whether the jump from the baseline goes to the full level with jump magnitude 2p, or to the sublevel with jump magnitude 2p2. The series of test
values are displayed as circles, * for the test values h,, that indicate a jump to the full level, and 0 for the test values h2, indicating a jump to the sublevel.
At the beginning, before the jump has occurred, both test values often have identical value 0. (A) A noise-free jump from the baseline to the full level.
After the jump, both test values begin to rise. Four sampling steps later the test value h1t crosses the threshold e. The jump is detected and diagnosed to
have gone to the full level. (B) A noise-free jump to the sublevel. Here the test values do not rise as fast as in (A). It takes nine sampling steps until the
jump to the sublevel is detected. (C, D) With noise: the innovation values (X) scatter around their mean value, 0 before the jump and 2p1 or 2p2 afterward.
As in the noise-free cases, the test value for the correct alternative level increases faster than the other test value and therefore reaches the threshold e for
jump detection earlier. Scales: to show the test values hit (dimension A2) and the current values et (dimension A) in the same plot, the scaled quantities hi/pl
and e/p1 are used.

E is chosen proportional to the variance or' of the back- according to the signal-to-noise ratio (SNR)
ground noise.

SNR2e A/p = 32

E = 8 -or2 (4)

This rule is deduced by correspondence to the standard
Hinkley-detector whose false alarm rate has been thor-
oughly studied before (Schultze and Draber, 1993). To
have fewer than 100 false alarms per 1,000,000 sampling
steps, the threshold A of the Hinkley-detector is chosen

2p =2
8=

pA = 8o-2

(5)

(6)

(7)

According to the multiplication withpi in Eq. 2,pA corresponds
to E. Thus, Eq. 7 leads to the rule for the SHD, given in Eq. 4.

A

C

1 407Draber and Schultze



Volume 67 October 1994

slope

2
PW)

Pi
PWU

FIGURE 6 The slope of the increasing test value hit versus the assumed
half jump magnitude pi (Eq. 3). The test value increases the stronger, the
closer the assumed jump magnitude 2pi is to the true jump magnitude 2pw.

Comparing Fig. 5, C and D, it is obvious that the jump to
the full level is detected faster than the jump to the sublevel.
The alarm delay, the time from the jump to its detection,
depends on the jump magnitude. Because the SHD decides
about jump detection with the same reliability (Shirayev,
1961) irrespective of the jump magnitude, the alarm delay is
not a general constant but is longer for smaller jumps where
the signal-to-noise ratio is also smaller.
The alarm delay is important for describing the sensitivity

of the SHD. If an isolated event is shorter than the alarm
delay, it will not be detected. As a consequence, the temporal
resolution tres of the SHD is equal to the alarm delay. For
noise-free events an equation for the alarm delay (equal to
tres) can be derived by dividing the threshold by the slope pi2
(Eq. 3) for the correct level.

tres,i i /(8 )

In this equation, the time resolution tres i is given in sampling
units. Note that tres depends on the half jump magnitude pi.

Illustration by a simulated example

We have simulated a 10-ms record of current through a

patch with two different channels (Fig. 7A). The small chan-
nel (7 pA) opens once at 2.2 ms and closes again at 7.8 ms.
The other channel shows a flickering behavior with many

short closures. It conducts a larger current, 10 pA. In Fig. 7
B, white background noise with a standard deviation of 2.0
pA is added. This noisy time series is processed by the SHD.
Its output is shown in Fig. 7 C. Comparing Fig. 7, A and C,
it becomes obvious that the reconstruction is nearly perfect.
Only two short events are missed.

The diagnosis phase

In every patch-clamp setup the analog signal has to be passed
through an antialiasing filter (AAF) before sampling because
the frequencies above the half-sampling frequency have to be
removed (sampling theorem, Blackman and Tukey, 1958).
Normally, a four-pole or eight-pole Bessel filter is used as

AAF. The consequence of low-pass filtering is sketched in

Fig. 8. The originally rectangular edge is smoothed. Because
of the soft transition from one level to another, the detection
algorithm may be misled, because during the first sampling
steps after the jump, the jump magnitude looks smaller than it
actually is. Directly after the jump, the SHD as introduced above
would be mistaken, diagnosing a small instead of a big jump.
The situation with the AAF is simulated in Fig. 7 D. In

contrast to Fig. 7 B, the signal is passed through an eight-pole
Bessel filter with a cutoff frequency off3dB = 25 kHz before
sampling with 100 kHz (Fig. 7 D).

Fig. 7 E displays the signal reconstructed with the SHD.
As expected, the SHD often comes to incorrect conclusions
about the jump magnitude. Because the transitions are low-
pass filtered, the SHD is often misled, diagnosing a closure
-s or an opening +s instead of -f or +f (Fig. 7E). Some
events, e.g., the closure at 5 ms, are long enough for the SHD
to diagnose a second jump, which then goes to the correct
level. This kind of transient error does not look too bad in
the plot of the time series. But when doing statistics on how
often what type of jump has occurred (see Figs. 10-12, be-
low), this kind of temporarily false diagnoses, too, would
lead to wrong results.
To develop an improved SHD that can be applied to fil-

tered data, the basic algorithm is now modified. Instead of
making the diagnosis immediately after jump detection, the
SHD now goes on calculating the test values with the same
actual level as before. The test values are processed accord-
ing to Eq. 2 but without resetting any values below 0 or above
E. This diagnosis phase after jump detection lasts for 5.T,
with Tr = 0.3321/f3dB being the risetime (Colquhoun and
Sigworth, 1983) of the AAF. Fig. 8 shows an example with
our standard values for the sampling frequencyf, = 100 kHz
and the filter cutoff frequencyf3dB = 25 kHz. The diagnosis
phase is six sampling periods long. Including the sample of
detection, it contains seven samples of each test value,
marked by circles in Fig. 8. The improved SHD searches for
the maximal test value during the diagnosis phase (the star
in Fig. 8) and diagnoses a jump to the corresponding level.

Fig. 8 explains why this method leads to a correct diag-
nosis even in the case of filtered data. After the current signal
has reached the new level, the slope of the correct test value
is maximal in accordance with Eq. 3. From a certain time
after the jump (some filter risetimes Tr) on, the diagnosis
would be correct. During this diagnosis phase the correct test
value wins over the incorrect test values. The duration 5 Tr
for the diagnosis phase was determined "experimentally" by
simulation. Several types of events with ratios of sublevel to
full current IjIffrom 10% up to 90% were used. Trying different
lengths of the diagnosis phase when analyzing the filtered events
by the SHD confinns that a diagnosis phase of 5 T, is long
enough to overcome the AAF-induced problems.

There is, however, still an exception. Very short events
like that in Fig. 9, where the opening is immediately followed
by a closure, do not stay long enough at the new level for
correct diagnosis. The short event shown in Fig. 9 would be
diagnosed as a subconductance event. Therefore, the SHD is
finally supplemented by the rule that events that are esti-
mated to be shorter than five times the filter risetime (six

Biophysical Journal1 408
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FIGURE 7 Simulation with and with-
out AAF. There are two channels, a large
one with 10 pA and a smaller one with
7 pA. The sampling interval is 10 p.s.
(A)Simulated time series (10 ms) of gat-
ing without noise. The signal switches be-
tween the four levels of current, indicated
by horizontal dotted lines. It is the "origi-
nal" for all following traces. (B) Time se-
ries of (A) with additional background
noise a = 2.OpA. The time series is not
filtered. (C) Reconstruction by means of
the basic SHD without diagnosis phase.
The quality of reconstruction is good.
(D) Simulated noisy time series with the
same gating events as in (A). In contrast
to (B), the time series is filtered through
a Bessel low-pass filter with cutoff fre-
quencyf3m = 25 kHz. (E) Reconstruction
with the basic SHD without diagnosis
phase. The quality is unacceptable, be-
cause often the SHD has diagnosed a
small instead of a big jump. (F) Recon-
struction with the improved SHD, as de-
veloped in this article. The quality of the
diagnoses is perfect. Some short events
(e.g., at 2.9 or 5.8 ms) are ignored.

sampling steps or less in our case) are ignored. They are

treated as if they were missed brief events. The question of
missed events is addressed in the Discussion section.
Now we repeat the analysis of the simulated, filtered signal

in Fig. 7 D and present the result in Fig. 7 F. In comparison
with Fig. 7 E, more brief events are missed. But all detected
events are assigned to the correct levels. This is the final
version of the SHD for the analysis of patch-clamp data. It
has also been used for the successful reconstruction of the
measured data in Fig. 2.

GUIDELINES FOR APPLICATION

Length of diagnosis phase

The analog current signal from the patch-clamp amplifier is
filtered through an antialiasing low-pass filter, commonly a

Bessel filter. The frequency f3m of 3-dB attenuation of the
AAF must be known to calculate the length of the diagnosis

phase 5 Tr = 1.66/f3dB. The length of the diagnosis phase is
an empirical choice based on the criterion that the event am-
plitude is recognized correctly in subconductance data with
0.1 ' Is/If C 0.9.

Determination of the current levels

For the cumulative-sum algorithm (Eq. 2) the following six
parameters of the record have to be determined: 1) the current
IO of the baseline (level Of+ Os), 2) the single-channel current
If of a channel with big or full conductivity, 3) the single-
channel current Is of a subconductance level or a channel with
small conductivity, 4) the maximum number of full channels
Nf and 5) small channels Ns, and 6) the standard deviation a

of background noise.
We recommend an interactive eye-fit procedure consisting

of two stages. First, the time series (e.g., Fig. 1 A) is dis-
played together with the levels Of + Os, * *, Nff + Nss of
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FIGURE 8 The diagnosis phase. This example shows that the diagnosis
phase is required to make a correct decision because the current signal is
prefiltered by an AAF, here a Bessel filter withf3dB = 25 kHz. The unfiltered
current jumps at time 12 ps from the baseline Of + Os to the full level lf
+ Os (dashed). The noise is 0. The sublevel is at 0.7 If (70% conductivity).
The filtered current signal (solid) smoothly increases. Three sampling steps
after the jump (time = 40 ps), when the filtered signal has not yet reached
its full magnitude, the test values h,t (solid, 0) for level lf + Os and h2,
(dash-dot, 0) for Of + ls have both exceeded the threshold E = 0.1633 If2.
If the SHD would now have to decide about the jump magnitude, it would
come to the incorrect result that a small jump to Of + ls had taken place,
because the test value 0 for this level is still greater than the correct one
0. To avoid such misinterpretations caused by the AAF, the SHD waits with
the decision until the end of the diagnosis phase. The test values within the
diagnosis phase (0, 0) are compared. The maximum (star) is taken as an
indication of the correct new level. (Scales) the current values in this plot
are divided by the full current If = 2p, to show them in dimensionless form.
The test values and the threshold E are divided by 4f2.

current as horizontal lines such as those in Fig. 7. It is now
possible to change the parameters IO, If, Nf, I,, and N. inter-
actively until the fitted lines match the current levels of the
record. In a second stage, the experimental amplitude his-
togram is displayed together with the levels of current as
vertical lines (Fig. 1) and with the theoretical amplitude his-
togram (TAH I), which is a sum of gaussian distributions

Ns Nf

TAH(I=2 1a.
m=O n=O

(9)

ex( I( (Io +rmIs + nIf))2)X exp(-

The parameters a. are not adjusted manually; they are fitted
by an automatic least-squares optimization to the measured
amplitude histogram.

All the (Nf + 1) . (NS + 1) levels in Eq. 9 are used for fitting
and for the subsequent detection procedure with the SHD.
These levels are sufficient to describe all possible levels of
current in the signal. The question whether they are all
needed leads to the more general issue of whether there are
Nf big and N. small channels acting independently or whether
there are Nf = Ns identical channels that can switch to a

.5

1- ------------; Xfull conductance
fullconductance

O oX /r lS_uI-----------
diagnosis phase

0 20 40 60 80 100 120 14

time in microseconds

o

FIGURE 9 A very short open event (dashed), which is too short for a
reliable determination of the magnitude. Its duration is 30 Ps. The other
parameters, the scales, and the meaning of the symbols are the same as in
Fig. 8. The filtered current signal hardly reaches the level of full conduc-
tance. Therefore, the open event with full conductance looks similar to a
subconductance event. The maximal test value during the diagnosis phase
is marked by a star. It corresponds to a jump to the sublevel and therefore
leads to an incorrect conclusion about the jump magnitude. The estimated
length of the open event is 40 ps, the time between the last zero-valued test
value at 20 ps and the maximum (star) at 60 ps. To avoid such misinter-
pretations, the estimated length is used to exclude too-short events with
uncertain amplitude from further analysis. If the estimated event length is
shorter than 5 T, (filter risetime T, = 13 ps), the event is simply ignored.

subconductance state with reduced current. The SHD is ap-
plied to the data without any restriction to one of these sce-
narios, but afterward the output of the SHD can be used to
distinguish the subconductance case from the case of dif-
ferent channels.

DISTINGUISHING SUBLEVELS FROM
DIFFERENT CHANNELS

The observation of different conductivities in single-channel
data does not necessarily mean that there are channels with
an additional conformation of reduced conductance. Differ-
ent conductivities do also occur if channels in the patch are
not identical and have different conductances. To find a
method for distinguishing the "sublevel situation" from the
"different channel situation" we simulate both kinds of data
and compare the output of the SHD applied to both time
series.

Simulation

We have chosen two gating schemes for simulation. One
describes a flickering channel sometimes switching to a sub-
level S with 70% conductivity. The scheme is shown at the
left side in Fig. 10.
The other scheme (Fig. 11) comprises two distinct chan-

nels with different conductivity. The channel with the larger
conductance has a flickering gating behavior, the small chan-
nel changes its conductance only about every 20 ms.

Biophysical Journal1410
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FIGURE 10 Gating scheme of a channel with true
subconductance state S and transition matrix ob-
tained from a simulation with two channels, both
according to the gating scheme. The rate constants
are kco =10 s-1, koc = 5 s-1, kcs = 2 s-1, ksc = 3
s-'k = 300 s-', kos = 100 s-1, koc = 1000 s-1,
and kco = 5000 s'-. The transition matrix on the right
shows how many transitions there were between the
various levels the SHD has counted in the recon-
structed record. The dashed boxes frame the transi-
tions f-*s and s--f between full and sublevel. The
solid boxes surround the levels with more than two
channels open. Because there are only two channels
simulated, the solid boxes remain empty.
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The simulation procedure is described in detail in a pre-

vious article (Draber and Schultze, 1994). The main features
are 1) simulation in discrete time with a simulation period of
Tsim = 1 gus, which is short enough with respect to the life-
times of the states of the two models and with respect to the
risetime of the AAF; 2) at every simulation step the transition
probabilities Tsimkij from the actual state i to the other states
j i and the probability 1 -E T k. to stay in state i
provide the basis for a Monte Carlo simulation; 3) the typical
colored noise of a patch-clamp setup is added. Its power

spectrum is flat below 1 kHz and rises proportionally to the
frequency above 1 kHz (Colquhoun and Sigworth, 1983;
Schultze and Draber, 1993); 4) to simulate the electronic
processing of the measured data, an eighth-order Bessel filter
with a cutoff frequency (-3 dB) off3dB = 25 kHz is used as

a low-pass filter for antialiasing; and 5) sampling with 100
kHz as it is done in our laboratory setup (Schultze and Dra-
ber, 1993; Draber et al., 1993; Draber and Schultze, 1994)
is the final step of simulation.
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The simulated records have a length of 2 s and contain
200,000 sampled values; the standard deviation of noise is
or = 2.OpA. One time series represents the behavior of two
small channels and two large channels according to the gat-
ing scheme in Fig. 11. In contrast, the other time series was
obtained by simulating two identical channels with subcon-
ductance levels (see gating scheme in Fig. 10).

Transition matrix

The rows and columns of the transition matrix correspond to
the levels of current. The rows stand for the level before a

transition, and the columns stand for the level afterward.
Every time the SHD detects a jump, it increments the cor-

responding element in the matrix. Finally, the matrix gives
the number of transitions between the levels. Note that the
transition matrices in Figs. 10 and 11 are nearly symmetrical.
This is a consequence of the microreversibility of the un-

derlying gating schemes.

FIGURE 11 Transition matrix obtained from data
simulated according to the gating schemes on the left
with two large and two small channels. The rate con-

stants of the simulated model are kco = 10 s-1, koc =
5 s-1, koG = 1000 s-', kGo = 5000 s-1, kc,s = 40 s-1,
and ksc5 = 60 s- . Detected transitionsff- s and s

f in the dashed boxes are rare because they are not
produced by the gating scheme. Such transitions are

mimicked by coincidental transitions +fand -s or -f
and +s occurring in the same sampling interval. The
solid boxes contain the quite frequent transitions to
levels with more than two channels open.
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The transition matrix turns out to be a useful tool for the
decision whether the channels have a subconductance con-
formation or if there are simply several channels of different
conductivity within the patch. In the "different channel situ-
ation" the transitions f -* s and s -*fin the dashed boxes
are very unlikely. Of course, such transitions may be mim-
icked by coincidental transitions of a small and a large chan-
nel. +f and -s together at the same time look like a s -- f
transition. Nevertheless, the "different-channel situation" is
characterized by only small numbers in the dashed boxes of
the transition matrix (Fig. 11). In the "sublevel situation"
withN = Nf = NS on the other hand, transitions to levels with
more than N channels open are strictly forbidden. This situ-
ation is characterized in Fig. 10 by zeroes in the solid frames.
With these rules as the basis for a distinction between the

two principally different situations, we come back to the
measurement shown in Fig. 1. The transition matrix in Fig.
12 is the result of the SHD applied to the measured data in
Fig. 1. It also shows symmetry. There are no transitions with
more than one channel involved. The solid frame is empty.
The dashed boxes, however, report 333 transitionsf-> s and
s -* f. The numbers in the transition matrix (Fig. 12) allow
the conclusion that the observed K+ channel in the tonoplast
of Chara corallina can switch to a conformation with re-
duced conductivity.

DISCUSSION

Required accuracy of levels

The SHD uses the information about the levels as prior
knowledge. In noisy data, the determination of these levels
by means of an eye fit is not always accurate. The question
arises how large deviations between true and fitted level can
be tolerated by the SHD. From the parabola in Fig. 6 it be-
comes clear that at least one condition must be fulfilled.
Given that the SHD chooses the level closest to the true one,
the fitted correct level must be nearer to the true level in the
data than any other alternative level.

If the number of channels is high and the open probability
is low, a reliable determination of the number N of channels

to Of if Of if
+ + + +

from Os Os is is
Of +0s - 67 15 0

lf+Os 71 - :164: 0

Of + is 10 5169: - 0

.lf+is 0 O 0 0

FIGURE 12 Transition matrix obtained from the measurement on Chara
K+ channels shown in Fig. 1. The two dashed boxes contain the transitions
f-ps and s--fbetween full and sublevel. The solid frame surrounds the levels
with more than one channel open. Because there are many (333) transitions
between full and sublevel and no events with more than one open channel,
this is evidence of a subconductance conformation of the K+ channel in the

is not always possible. Statistical tests (Horn, 1991; Draber
et al., 1993) might be a useful help, but they, too, are more

complicated in the case of different channel types. If the
number of channels is not determined correctly, this has con-

sequences on the interpretation ofthe transition matrix for the
distinction between different channels and channels with
sublevels. High numbers in the solid frames (Fig. 11) may
not only be due to independent small and large channels, they
may simply be due to an underestimation of the channel
number. Conversely, if the channel number is overestimated,
the solid boxes remain empty even if there are channels of
different type.

Therefore, the distinction between the "sublevel situation"
and the "different channel situation" should be based mainly
on the numbers in the dashed boxes if the number of channels
is not precisely known.

Missed events

If dwell-time distributions are analyzed, the effect of missed
events has to be taken into account. In contrast to equidistant
levels, where the omission of brief events (Colquhoun and
Sigworth, 1983; Ball et al., 1993; Draber and Schultze, 1994)
can be described by a single parameter, the time resolution
tr, the situation here is more complex.

Analyzing single-channel data with sublevels, the tempo-
ral resolution is no longer a constant (see Eq. 8). Jumps are

detected earlier if they have a larger magnitude. This feature
of the SHD becomes very obvious in Fig. 5 where it takes
nine sampling intervals to detect a jump to the sublevel, but
only four for the detection of a jump to the full level. A
sublevel event of eight sampling steps duration would not
have been detected, whereas a full-conductance event of the
same duration would, no doubt, be detected.

Besides this jump magnitude-dependent resolution limit,
there is another fixed dead time of the detector caused by the
AAF that has forced us to introduce the diagnosis phase.
All events shorter than 5-T, are ignored, because their mag-
nitude cannot be determined exactly. This imposes a lower
bound on the temporal resolution, especially for larger jump
magnitudes.

Because of this combination of two criteria for omission
of short events, the development of a method for missed
events correction is expected to be much more difficult than
for the standard case with equidistant levels.

Computing time

The complexity of the mathematical calculations (Eq. 2) is
similar to conventional detectors for equidistant levels, e.g.,

a Bessel filter with threshold detection. On a 486 personal
computer with 50-MHz clock frequency, it takes 40 s to
analyze a record with 200,000 samples, including already the
creation of the reconstructed time series, of the transition
matrix, and of dwell-time histograms. The SHD needs about
the same computing time as other recursive detectors, but it

Chara tonoplast.
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is the only one that can analyze subconductance data.
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Generalization

The description above was restricted to records with two
different unitary conductances. It is obvious that the algo-
rithm can be extended to records with an arbitrary number
of sublevels or channel types just by the correct selection of
the half jump magnitudes pi.

We thank Dr. U.-P. Hansen for his continuous support during the investi-
gations and for critical reading. We also thank Dr. Christian Ruge for helpful
discussions.
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