JACC: CARDIOVASCULAR INTERVENTIONS VOL. 8, NO. 15, 2015
DECEMBER 28, 2015:2041-6

size of the THV. One concern with overexpansion is
impairment of proper leaflet function, resulting in
significant central aortic regurgitation necessitating a
second valve. We, however, saw no significant central
insufficiency in any of our overexpanded S3 THV
implants; our series from the 2 heart centers in
Munich, Germany, encompassed more than 30 pa-
tients with initial deliberate overexpansion of the
THV and more than 100 patients with subsequent
post-dilation of a nominally deployed THV. S3 was
originally not designed for overexpansion; however,
we believe that the new frame geometry with a higher
frame height and longer leaflets allows the S3 to be
overexpanded to accommodate larger annulus sizes
without causing significant central aortic insuffi-
ciency. It is also important to note that the valve
frame foreshortens more when it is overexpanded,
which may have implications for valve positioning.

Compared with the strategy of choosing the larger
valve size and underdeploying it, the practice of
selecting the smaller THV and overexpanding it, as
noted above, may allow for a very safe and effective
valve implantation with a lower risk of complications
such as annular rupture. Furthermore, overexpanded
THVs are more circular when fully deployed, which
may have a positive impact on their durability, whereas
the leaflets of the underdeployed valves may interact
with the valve frame, leading to impaired durability.

Figure 2 provides the sizing chart for the S3 THV
along with measurements for an overexpanded valve
based on our current experience. We used measure-
ments obtained during diastole for sizing because of
the better image quality noted during diastole. It is
recommended to use balloon sizing in cases where
the annulus size falls in the “gray zone” between 2
valve sizes. In these gray zone cases, instead of
selecting the larger valve size and underexpanding
the valve, it may be preferable to select the smaller
valve size and overexpand it with the addition of
the pre-defined volume, especially when treating
severely degenerated and/or calcified valves.

With this novel overexpansion concept, patients
with an annulus size of up to 740 mm? (mean diameter
of 31 mm) and more can be treated safely depending
on the stiffness and degree of calcification of the
native valve and annulus. It is important to note that
overexpansion is limited by the burst pressure of the
deployment balloon. Rupture of the balloon can in-
crease the risk of embolization and stroke. Therefore,
it is not recommended to add more than 2 to 4 ml of
additional volume to the nominal deployment balloon
volume for the given valve size. The addition of 2
extra ml of volume to the 23-mm, 3 ml to the 26-mm,
and 4 ml to the 29-mm THYV correlates with ~11% to
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13% more volume in the deployment balloon for each
valve size. Depending on the final diameter desired, it
may also be possible to use less additional volume. In
the future, benchmark tests are needed to confirm the
long-term durability of an overexpanded S3 THV and
viability of this strategy of overexpansion.
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ECG-Independent @
Calculation of Instantaneous “**
Wave-Free Ratio

The instantaneous wave-free ratio (iFR) is a re-
cently developed invasive index of coronary disease
severity that simplifies stenosis assessment by elimi-
nating the need for vasodilator administration (1-4).
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Diastolic iFR window
The iFR window runs
from 25% of the way into
diastole and ends 5ms
before the end of
diastole
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FIGURE 1 ECG-Independent Methodology for the Calculation of iFR

Identification of iFR window

For accurate calculation of instant wave-Free
Ratio (iFR) the correct window in diastole
needs to be identified in each cardiac beat
(grey box).

To achieve that consistently, a range of
mathematical algorithms are used to analyze
and identify various characteristic features

of the pressure waveforms: peak, the dichrotic
notch and the pressure nadir at the end of
diastole (black dots).

Using the ECG and pressure signals
to idenfy beat to beat fiducial points
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Current iFR algorithm

Current iFR algorithm uses ECG and
pressure signals (Pa and Pd) to detect
fiducial points which identify each

cardiac beat (black arrows). The ECG is used
as a belt and braces approach to ensure
specific time points in the pressure
waveforms are correctly identified.

This methodology is currently implemented
in clinical iFR consoles and therefore require
an ECG signal input from the patient

for iFR calculation

Using pressure signals alone to identify
beat to beat fiducial points
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New ECG-independent iFR algorithm

The new ECG-independent iFR algorithm
uses the same mathematical algorithms

over pressure waveforms, but no longer
requires the additional step of the ECG gating
to ensure correct beat identification.

This additional ECG step has now been
removed, as beat to beat identification of

each cardiac cycle can be reliably achieved
with pressure waveforms alone (black arrows).

ECG = electrocardiographic; iFR = instantaneous wave-free ratio.

Multiple studies have so far compared iFR with other
established invasive modalities such as hyperemic
fractional flow reserve (FFR) and demonstrated it to be
at least noninferior in its ability to detect vessel-
specific myocardial ischemia (5,6) or flow limitation
(7,8). iFR can also detect changes in stenosis hemo-
dynamics after percutaneous intervention (9) and
recently has been shown to provide useful pullback
physiological information within a diseased vessel (3).

Ongoing trials are evaluating the impact of iFR-
guided revascularization on hard clinical outcomes
(NCT02053038, NCT02166736, and NCT02015832).
iFR is calculated using conventional pressure
guidewires as a ratio of coronary pressures (Pd/Pa)
obtained during a specific period in baseline diastole,
the wave-free period (1). Current iFR algorithms use
both the electrocardiogram and coronary pressures as
gating mechanisms to identify each cardiac beat


https://clinicaltrials.gov/ct2/show/NCT02053038?term=NCT02053038&amp;rank=1
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within a hemodynamic trace and the diastolic iFR
window within each beat (1). The need for electro-
cardiographic signals from the patient is, therefore, a
current requirement for iFR calculation (10) in clinical
consoles.

Although current electrocardiography (ECG)-
dependent iFR methodology has been demonstrated
to be robust during both offline and real-time online
measurements (10), a natural development of the
technique would be to eliminate the need for elec-
trocardiographic signals for its calculation, removing
another procedural step and further simplifying the
procedure. In the present study, we present an up-
date in the development of iFR: a new methodology
that uses only pressure signals for iFR calculation,
aiming to further simplify the application of invasive
functional assessment. The ECG-independent iFR
calculation relies on the identification of specific end-
systolic and end-diastolic waveform characteristics at
both proximal (Pa) and distal (Pd) coronary pressure
traces (Figure 1).

This study used a pooled sample of 320 coronary
hemodynamic traces, representing all data from Im-
perial College NHS Trust used in previous multicenter
studies in which our center participated (ADVISE
[ADenosine Vasodilator Independent Stenosis Evalu-
ation] study [1], ADVISE Registry study (2), and a
study by Nijjer et al. [9]). The detailed methodology
for data acquisition was reported previously (1,2). We
tested the new iFR algorithm, which uses pressure
signals alone (iFR-P) and compared it with the current
methodology, which uses both electrocardiographic
and pressure signals iFR-ECG).

iFR-P and iFR-ECG derived almost identical nu-
merical information. The correlation coefficient be-
tween methodologies was very high (r = 0.9997), with
no numerical bias (mean difference = 0.0003) and
minimal scatter (SD of the difference [SDD] between
values = 0.004). For physiologically intermediate and
mild stenoses, close to the iFR cutoff zone of 0.89 to
0.90, individual variability between iFR-ECG and iFR-
P was even smaller (SDD = 0.0027 when iFR =0.80).
As a result, when using an iFR-ECG cutoff of 0.89 as a
reference standard to define physiologically signifi-
cant lesions, there was no classification mismatch
between modalities (area under the receiver-
operating characteristic curve = 1). When the same
iFR-P cutoff of 0.89 was tested to match an iFR-ECG
of 0.89, sensitivity, specificity, negative and posi-
tive predictive values, and overall accuracy were all
100%. This is particularly important in light of
ongoing clinical trials such as DEFINE-FLAIR (Func-
tional Lesion Assessment of Intermediate Stenosis
to Guide Revascularisation; NCT02053038) and iFR
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SWEDEHEART (Evaluation of iFR vs FFR in Stable
Angina or Acute Coronary Syndrome; NCT02166736)
studies, which currently use the iFR-ECG algorithm
and fixed iFR cutoffs to guide decision making. The
results of these trials will therefore be directly
applicable to the future use of ECG-free iFR in clinical
practice.
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