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Abstract

In this paper, by using a monotone iterative technique in the presence of lower and upper solutions, we discuss the existence
of solutions for a new system of nonlinear mixed type implicit impulsive integro-differential equations in Banach spaces. Under
wide monotonicity conditions and the noncompactness measure conditions, we also obtain the existence of extremal solutions and
a unique solution between lower and upper solutions.
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1. Introduction

It is well known that the theory of impulsive differential equations is a new and important branch of differential
equation theory, which has an extensive physical, chemical, biological, engineering background and realistic
mathematical model, and hence has been emerging as an important area of investigation in the last few decades,
see [1–9]. Correspondingly, applications of the theory of impulsive differential equations to different areas were
considered by many authors and some basic results on impulsive differential equations have been obtained (see,
for example, [10–22], and the references therein). Furthermore, the existence of solutions to impulsive differential
equations or impulsive integro-differential equations in Banach spaces has also been studied by many authors, see [1,
7,23–40,50,51].

Recently, He and He [51] investigated the existence of minimal and maximal solutions of impulsive integro-
differential equations with periodic boundary conditions by establishing a comparison result and using the method
of upper and lower solutions and the monotone iterative technique. Ahmad and Sivasundaram [7] developed the
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monotone method for impulsive hybrid set integro-differential equations in all its generality. Very recently, Li and
Liu [27] pointed out “the monotone iterative technique in the presence of lower and upper solutions is an important
method for seeking solutions of differential equations in abstract spaces”. Further, Li and Liu used a monotone iterative
technique in the presence of lower and upper solutions to discuss the existence of solutions for the initial value problem
of the impulsive integro-differential equation of Volterra type in a Banach space E:u′(t) = f (t, u(t), T u(t)), t ∈ J, t 6= tk,

4u|t=tk = Ik(u(tk)), (i = 1, 2, . . . ,m),
u(0) = x0,

where f ∈ C(J × E × E, E), J = [0, a], 0 < t1 < t2 < · · · < tm < a and Ik ∈ C(E, E), k = 1, 2, . . . ,m. Under
wide monotonicity conditions and the noncompactness measure condition of nonlinearity f , the authors also obtained
the existence of extremal solutions and a unique solution between lower and upper solutions. On the other hand, Sun
and Ma [34] used a monotone iterative technique in the presence of lower and upper solutions to discuss the existence
of solutions for the following initial value problem of the impulsive integro-differential equation of Volterra type in a
Banach space:

u′′(t)− f (x, u, u) = θ, x ∈ J, x 6= xi ,

4u|x=xi = Ii (u(xi )), (i = 1, 2, . . . ,m),
4u′|x=xi = Īi (u(xi )), (i = 1, 2, . . . ,m),
u(0) = w0, u′(0) = w1.

For more details of the monotone iterative methods, the readers can refer to [7,33,34,43–51] and the references therein.
In this paper, we study the following system of nonlinear mixed type implicit impulsive integro-differential

equation problem in Banach spaces E1 and E2: Find (x, y) : J × J → E1 × E2 such that
x ′(t) = f (t, x(t), y(t), λSx(t)), t 6= tk,
y′(t) = g(t, y(t), x(t), µT y(t)), t 6= tk,
4x |t=tk = Ik(x(tk)), (k = 1, 2, . . . ,m),
4y|t=tk = Îk(y(tk)), (k = 1, 2, . . . ,m),
x(t0) = x0, y(t0) = y0,

(1.1)

where J = [t0, t0 + a] ⊂ R = (−∞,+∞) is a compact interval, t0 < t1 < · · · < tm < t0 + a < +∞,
f : J × E1× E2× E1 → E1 and g : J × E2× E1× E2 → E2 are continuous, λ,µ ≥ 0 are two constants, x0 ∈ E1,
y0 ∈ E2,

Sx(t) =
∫ t

t0
h(t, s)x(s)ds

is a Volterra integral operator with integral kernel h(t, s) ∈ C(D,R+), D = {(t, s)|s, t ∈ J, t ≥ s}, R+ = [0,+∞),

T y(t) =
∫ t

t0
κ(t, s)y(s)ds

is a Fredholm integral operator with integral kernel κ(t, s) ∈ C(D0,R+), D0 = {(t, s)|s, t ∈ J }, and for
k = 1, 2, . . . ,m, Ik ∈ C[E1, E1], Îk ∈ C[E2, E2], 4x |t=tk denotes the jump of x(t) at t = tk , i.e., 4x |t=tk =

x(t+k )− x(t−k ), x(t−k ) and x(t+k ) represent the left and right limits of x(t) at t = tk , respectively.
If λ = 0 and µ = 0, then problem (1.1) reduces to finding (x, y) : J × J → E1 × E2 such that

x ′(t) = f (t, x(t), y(t)), t 6= tk,
y′(t) = g(t, y(t), x(t)), t 6= tk,
4x |t=tk = Ik(x(tk)), (k = 1, 2, . . . ,m),
4y|t=tk = Îk(y(tk)), (k = 1, 2, . . . ,m),
x(t0) = x0, y(t0) = y0.

(1.2)
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If f = g, x = y, E1 = E2 = E and for k = 1, 2, . . . ,m, Ik = Îk , then problem (1.2) further simplifies to finding
x : J → E such thatx ′(t) = f (t, x(t), x(t)), t 6= tk,

4x |t=tk = Ik(x(tk)), (k = 1, 2, . . . ,m),
x(t0) = x0.

(1.3)

Problem (1.3) was studied by some authors when f (t, x, y) ≡ p(t, x) for all t ∈ J and x, y ∈ E , see, for example, [1,
22,28].

Remark 1.1. For appropriate and suitable choices of f , g, λ, µ, S, T , Ik , Îk and Ei for i = 1, 2, it is easy to see
that problem (1.1) includes a number (systems) of differential equations, impulsive differential equations, (impulsive)
integro-differential equations studied by many authors as special cases, see, for example, [1–40,43,44,48–50] and the
references therein.

The purpose of this paper is to discuss the existence of solutions for the new system of nonlinear mixed type
implicit impulsive integro-differential equation (1.1) in Banach spaces by using a monotone iterative technique in the
presence of lower and upper solutions. Further, under wide monotonicity conditions and the noncompactness measure
conditions, we obtain the existence of extremal solutions and a unique solution between lower and upper solutions.
The new and useful results obtained in this paper improve and extend some relevant results in abstract differential
equations.

2. Preliminaries

Let E be an ordered Banach space with the norm ‖ ·‖ and partial order≤, whose positive cone P = {x ∈ E |x ≥ 0}
is normal with normal constant N . Let J = [t0, t0 + a] (where a > 0), t0 < t1 < · · · < tm < t0 + a < +∞,
J0 = [t0, t1], J1 = (t1, t2], . . . , Jk = (tk, tk+1], . . . , Jm = (tm, t0 + a] and

PC(J, E) = {x : J → E | x(t) is continuous at t 6= tk, and left

continuous at t = tk, and x(t+k ) exists, k = 1, 2, . . . ,m}.

Evidently, PC(J, E) is a Banach space with norm ‖x‖PC = supt∈J x(t). Let J ′ = J \ {t1, t2, . . . , tm}. An abstract
function (x, y) ∈ PC(J, E1)∩C1(J ′, E1)∩PC(J, E2)∩C1(J ′, E2) is called a solution of problem (1.1) if (x(t), y(t))
satisfies all the equalities of (1.1).

Let

PC1(J, E) = {x ∈ PC(J, E) ∩ C1(J ′, E)| x ′(t+k ), x ′(t−k ) exist, k = 1, 2, . . . ,m},

where x ′(t+k ) and x ′(t−k ) represent the right and left derivatives of x(t) at t = tk , respectively. For x ∈ PC1(J, E), by
virtue of the mean value theorem

x(tk)− x(tk − h) ∈ h co{x ′(t) : tk − h < t < tk} (h > 0),

it is easy to see that the left derivative x ′−(tk) exists and

x ′−(tk) = lim
h→0+

h−1
[x(tk)− x(tk − h)] = x ′(t−k ),

where co{x ′(t) : tk − h < t < tk} denotes the smallest closed convex subset containing {x ′(t) : tk − h < t < tk} in
PC1(J, E), and co(K ) = {x |x =

∑
y∈K λy y, λy ∈ [0, 1], there exist finite numbers λy 6= 0 and

∑
y∈K λy = 1} for

K ⊂ PC1(J, E). In what follows, x ′(tk) is understood as x ′−(tk), hence x ′ ∈ PC(J, E). Evidently, PC1(J, E) is a
Banach space with norm ‖x‖PC1 = max{supt∈J ‖x(t)‖, supt∈J ‖x

′(t)‖}.
If (x, y) ∈ PC(J, E1)∩C1(J ′, E1)∩PC(J, E2)∩C1(J ′, E2) is a solution of problem (1.1), then by the continuity

of f, g, (x, y) ∈ PC1(J, E1) ∩ PC1(J, E2).
A mapping F : J → E is differentiable at t ∈ J if there exists a F ′(t) ∈ E such that the limits

lim
h→0+

F(t + h)− F(t)

h



534 H.-y. Lan / Journal of Computational and Applied Mathematics 222 (2008) 531–543

and

lim
h→0+

F(t)− F(t − h)

h

exist and are equal to F ′(t). Here the limits are taken in E . At the endpoints of J , we consider the one-sided derivatives.
Let C(J, E) denote the Banach space of all continuous E-value functions on interval J with norm ‖x‖C =

maxt∈J ‖x(t)‖. Let α(·) denote the Kuratowski measure of noncompactness of the bounded set. For the details of
the definition and properties of the measure of noncompactness, see [38]. For any B ⊂ C(J, E) and t ∈ J , set
B(t) = {x(t)|x ∈ B} ⊂ E . If B is bounded in C(J, E), then B(t) is bounded in E , and α(B(t)) ≤ α(B).

Now, we first give the following lemmas in order to prove our main results.

Lemma 2.1 ([39]). Let B ⊂ C(J, E) be bounded and equicontinuous. α(B(t)) is continuous on J , and

α

({∫
J

x(t)dt |x ∈ B

})
≤

∫
J
α(B(t))dt.

Lemma 2.2 ([40]). Let B = {xn} ⊂ PC(J, E) be a bounded and countable set. α(B(t)) is a Lebesque integral on J ,
and

α

({∫
J

xn(t)dt

})
≤ 2

∫
J
α(B(t))dt.

Lemma 2.3 ([27]). For any p ∈ PC1(J,B), ν ∈ B and ωk ∈ B, k = 1, 2, . . . ,m, the line initial value problemu′(t)+ Mu(t) = p(t), t 6= tk,
4u|t=tk = ωk, (k = 1, 2, . . . ,m),
u(t0) = ν,

(2.1)

has a unique solution u ∈ PC1(J,B) given by

u(t) = νe−M(t−t0) +

∫ t

t0
e−M(t−s) p(s)ds +

∑
t0<tk<t

e−M(t−tk )ωk,

where M ≥ 0 is a constant.

3. Main results

In this section, we are in a position to prove our main results concerning the solutions of the nonlinear mixed type
implicit impulsive integro-differential equation system (1.1) in Banach spaces.

If a function (v, ω) ∈ PC1(J, E1)× PC1(J, E2) satisfies
v′(t) ≤ f (t, x(t), y(t), λSx(t)), t 6= tk,
ω′(t) ≤ g(t, y(t), x(t), µT y(t)), t 6= tk,
4v|t=tk ≤ Ik(x(tk)), (k = 1, 2, . . . ,m),
4ω|t=tk ≤ Îk(y(tk)), (k = 1, 2, . . . ,m),
v(t0) ≤ x0, ω(t0) ≤ y0,

(3.1)

we call it a lower solution of problem (1.1); if all the inequalities of (3.1) are inverse, we call it an upper solution of
problem (1.1).

Lemma 3.1. (x, y) ∈ PC1(J, E1) × PC1(J, E2) is a solution of problem (1.1) if and only if x ∈ PC1(J, E1) and
y ∈ PC1(J, E2) satisfy the following impulsive integral equations

x(t) = x0e−M1(t−t0) +

∫ t

t0
e−M1(t−s)

[ f (s, x(s), y(s), λSx(s))+ M1x(s)]ds +
∑

t0<tk<t
e−M1(t−tk ) Ik(x(tk)),

y(t) = y0e−M2(t−t0) +

∫ t

t0
e−M2(t−s)

[g(s, y(s), x(s), µT y(s))+ M2 y(s)]ds +
∑

t0<tk<t
e−M2(t−tk ) Îk(y(tk)),
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where Mi > 0 (i = 1, 2) is a constant.

Proof. The proof directly follows from Lemma 2.1 in [26] and it is omitted. �

Now, let us first list the following assumptions for convenience:

(H1) There exist u0, v0 ∈ PC1
[J, E1], ν0, ω0 ∈ PC1

[J, E2] and constants M1,M2 > 0 such that for all t ∈ J ,
v0(t) ≤ u0(t), ω0(t) ≤ ν0(t), (v0, ω0) ∈ PC1(J, E1)× PC1(J, E2) and (u0, ν0) ∈ PC1(J, E1)× PC1(J, E2)

are lower and upper solutions of problem (1.1), respectively, and

f (t, x2, y2, z2)− f (t, x1, y1, z1) ≥ −M1(x2 − x1),

for all t ∈ J and v0(t) ≤ x1 ≤ x2 ≤ u0(t), ω0(t) ≤ y1 ≤ y2 ≤ ν0(t) and λSv0(t) ≤ z1 ≤ z2 ≤ λSu0(t), and

g(t, y2, x2, ξ2)− g(t, y1, x1, ξ1) ≥ −M2(y2 − y1)

for all t ∈ J and v0(t) ≤ x1 ≤ x2 ≤ u0(t), ω0(t) ≤ y1 ≤ y2 ≤ ν0(t) and µTω0(t) ≤ ξ1 ≤ ξ2 ≤ µT ν0(t).
(H2) Ik(x) and Îk(y) are increasing on intervals [v0(t), u0(t)] and [ω0(t), ν0(t)] for t ∈ J , k = 1, 2, . . . ,m,

respectively, where [v0(t), u0(t)] = {x ∈ PC1
[J, E1]|v0(t) ≤ x(t) ≤ u0(t), t ∈ J } and [ω0(t), ν0(t)] =

{x ∈ PC1
[J, E2]|ω0(t) ≤ x(t) ≤ ν0(t), t ∈ J }.

(H3) There exists L i > 0(i = 1, 2) such that

α({ f (t, xn(t), yn(t), zn(t))}) ≤ L1[α({xn(t)})+ α({zn(t)})],

α({g(t, yn(t), xn(t), ξn(t))}) ≤ L2[α({yn(t)})+ α({ξn(t)})]

for all t ∈ J and increasing or decreasing monotonic sequences {xn} ⊂ [v0(t), u0(t)], {yn} ⊂ [ω0(t), ν0(t)],
{zn} ⊂ [λSv0(t), λSu0(t)] and {ξn} ⊂ [µTω0(t), µT ν0(t)].

In what follows, we prove the following main result of this paper.

Theorem 3.1. Let E1 and E2 be two ordered Banach spaces, whose positive cone Pi (i = 1, 2) is normal,
f ∈ C(J × E1 × E2 × E1, E1), g ∈ C(J × E2 × E1 × E2, E2), and Ik ∈ C(E1, E1), Îk ∈ C(E2, E2),
k = 1, 2, . . . ,m. Suppose that the conditions (H1)–(H3) hold. Then problem (1.1) has minimal and maximal solutions
between (v0, ω0) and (u0, ν0), which can be obtained by a monotone iterative procedure starting from (v0, ω0) and
(u0, ν0), respectively.

Proof. For any (x, y) ∈ PC1(J, E1)× PC1(J, E2), define (Px, Qy) on J × J by the equation

(Px)(t) = x0e−M1(t−t0) +

∫ t

t0
e−M1(t−s)

[ f (s, x(s), y(s), λSx(s))+ M1x(s)]ds

+
∑

t0<tk<t
e−M1(t−tk ) Ik(x(tk)),

(Qy)(t) = y0e−M2(t−t0) +

∫ t

t0
e−M2(t−s)

[g(s, y(s), x(s), µT y(s))+ M2 y(s)]ds

+
∑

t0<tk<t
e−M2(t−tk ) Îk(y(tk)).

(3.2)

Now define ‖ · ‖∗ on PC1(J, E1)× PC1(J, E2) by

‖(x, y)‖∗ = ‖x‖ + ‖y‖, ∀(x, y) ∈ PC1(J, E1)× PC1(J, E2).

It is easy to see that (PC1(J, E1) × PC1(J, E2), ‖ · ‖∗) is a Banach space (see [41]). Thus, for any given
(x, y) ∈ PC1(J, E1)× PC1(J, E2), it follows from (3.2) that{

(Px)′(t) = −M1 P(x(t))+ M1x(t)+ f (t, x(t), y(t), λSx(t)),
(Qy)′(t) = −M2 Q(x(t))+ M2 y(t)+ g(t, y(t), x(t), µT y(t)),

and so F(x, y) := (Px, Qy) ∈ PC1(J, E1)× PC1(J, E2) is a continuous mapping from PC1(J, E1)× PC1(J, E2)

into PC1(J, E1) × PC1(J, E2). By Lemma 3.1, the solution of problem (1.1) is equivalent to the fixed point of F .
By assumptions (H1) and (H2), F is increasing in [v0, u0]× [ω0, ν0], and maps any bounded set in [v0, u0]× [ω0, ν0]

into a bounded set.
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Firstly, we show that v0 ≤ Pv0, Pu0 ≤ u0, ω0 ≤ Qω0 and Qν0 ≤ ν0. In fact, let p(t) = v′0(t)+ M1v0(t), by the
definition of lower solution, p ∈ PC1(J, E1) and p(t) ≤ f (t, v0(t), ω0(t), λSv0(t)) + M1v0(t) for t ∈ J ′. Because
v0(t) is a solution of problem (2.1) for ν = v0(t0) and ωk = 4v0|t=tk (k = 1, 2, . . . ,m), it follows from Lemma 2.3
that for all t ∈ J ,

v0(t) = e−M1(t−t0)v0(t0)+
∫ t

t0
e−M1(t−s) p(s)ds +

∑
t0<tk<t

e−M1(t−tk )4v0|t=tk

≤ e−M1(t−t0)v0 +

∫ t

t0
e−M1(t−s) p(s)ds +

∑
t0<tk<t

e−M1(t−tk )4Ik(v(tk))

≤ Pv0(t),

i.e., v0 ≤ Pv0. Similarly, it can be shown that Pu0 ≤ u0, ω0 ≤ Qω0 and Qν0 ≤ ν0. Combining these facts and
the increasing property of F in [v0, u0] × [ω0, ν0], we see that F maps [v0, u0] × [ω0, ν0] into itself and F is a
continuously increasing operator.

Next, we define two sequences {(vn, ωn)} and {(un, νn)} in [v0, u0] × [ω0, ν0] by the iterative scheme

vn = Pvn−1, un = Pun−1, ωn = Qωn−1, νn = Qνn−1, n = 1, 2, . . . . (3.3)

Then by the monotonicity of F , we obtain

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ un ≤ · · · ≤ u1 ≤ u0,

ω0 ≤ ω1 ≤ · · · ≤ ωn ≤ · · · ≤ νn ≤ · · · ≤ ν1 ≤ ν0.
(3.4)

We shall prove that {vn} and {un} are uniformly convergent in J , and {ωn} and {νn} are uniformly convergent in J .
For convenience, let B = {vn|n ∈ N}, V = {ωn|n ∈ N} and B0 = {vn−1|n ∈ N}, V0 = {ωn−1|n ∈ N}.

Since B = P(B0), V = Q(V0), by (3.2) and the boundedness of B0 and V0, we easily see that B and V
are equicontinuous in every interval J ′k , where J ′1 = [t0, t1] and J ′k = (tk−1, tk], k = 2, 3, . . . ,m. From
B0 = B ∪ {v0} and V0 = V ∪ {ω0}, it follows that α(B0(t)) = α(B(t)) and α(V0(t)) = α(V (t)) for t ∈ J .
Letting

φ(t) = (α(B(t)), α(V (t))) = (α(B0(t)), α(V0(t))), t ∈ J,

by Lemma 2.1, we know that φ ∈ PC(J,R+) × PC(J,R+). Going from J ′1 to J ′m+1 interval-by-interval, we show
that φ(t) ≡ 0 in J .

Indeed, for t ∈ J , there exists a J ′k such that t ∈ J ′k . By Lemma 2.1, we have that

α(S(B0)(t)) = α

({∫ t

t0
h(t, s)vn−1(s)ds|n ∈ N

})
≤

k−1∑
j=1

α

({∫ t j

t j−1

h(t, s)vn−1(s)ds|n ∈ N

})
+ α

({∫ t

tk−1

h(t, s)vn−1(s)ds|n ∈ N
})

≤ h0

k−1∑
j=1

∫ t j

t j−1

α(B0(s))ds + h0

∫ t

tk−1

α(B0(s))ds

= h0

∫ t

t0
α(B0(s))ds

and

α(T (V0)(t)) = α

({∫ t

t0
κ(t, s)ωn−1(s)ds|n ∈ N

})
≤

k−1∑
j=1

α

({∫ t j

t j−1

κ(t, s)ωn−1(s)ds|n ∈ N

})
+ α

({∫ t

tk−1

κ(t, s)ωn−1(s)ds|n ∈ N
})
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≤ κ0

k−1∑
j=1

∫ t j

t j−1

α(V0(s))ds + κ0

∫ t

tk−1

α(V0(s))ds

= κ0

∫ t

t0
α(V0(s))ds,

where h0 = max{|h(t, s)| : (t, s) ∈ D} and κ0 = max{|κ(t, s)| : (t, s) ∈ D0}. Thus,∫ t

t0
α(S(B0)(s))ds ≤ ah0

∫ t

t0
α(B0(s))ds,

∫ t

t0
α(T (V0)(s))ds ≤ aκ0

∫ t

t0
α(V0(s))ds. (3.5)

For t ∈ J ′1, from (3.2), using Lemma 2.2, assumption (H3) and (3.5), we have

α(B(t)) = α(P(B0)(t))

= α

({∫ t

t0
e−M1(t−s)( f (s, vn−1(s), ωn−1(s), λSvn−1(s))+ M1vn−1(s))ds

})
≤ 2

∫ t

t0
e−M1(t−s)α ({( f (s, vn−1(s), ωn−1(s), λSvn−1(s))+ M1vn−1(s))}) ds

≤ 2
∫ t

t0
(L1(α(B0(s))+ λα(S(B0)(s)))+ M1α(B0(s)))ds

≤ 2(L1 + M1)

∫ t

t0
α(B0(s))ds + 2L1λ

∫ t

t0
α(S(B0)(s))ds

≤ 2(L1 + M1 + ah0L1λ)

∫ t

t0
α(B0(s))ds,

α(V (t)) = α(Q(V0)(t))

= α

({∫ t

t0
e−M2(t−s)( f (s, ωn−1(s), vn−1(s), µTωn−1(s))+ M2ωn−1(s))ds

})
≤ 2

∫ t

t0
e−M2(t−s)α ({( f (s, ωn−1(s), vn−1(s), µTωn−1(s))+ M2ωn−1(s))}) ds

≤ 2
∫ t

t0
(L2(α(V0(s))+ µα(T (V0)(s)))+ M2α(V0(s)))ds

≤ 2(L2 + M2)

∫ t

t0
α(V0(s))ds + 2L2µ

∫ t

t0
α(T (V0)(s))ds

≤ 2(L2 + M2 + aκ0L2µ)

∫ t

t0
α(V0(s))ds,

and so

φ(t) = (α(B(t)), α(V (t)))

≤

(
2(L1 + M1 + ah0L1λ)

∫ t

t0
α(B0(s))ds, 2(L2 + M2 + aκ0L2µ)

∫ t

t0
α(V0(s))ds

)
= Γ

∫ t

t0
(α(B0(s)), α(V0(s)))ds

= Γ
∫ t

t0
φ(s)ds,

where Γ = max{2(L1 + M1 + ah0L1λ), 2(L2 + M2 + aκ0L2µ)}. Hence, by the Bellman inequality, we know
that φ(t) ≡ 0 in J ′1. In particular, (α(B(t1)), α(V (t1))) = (α(B0(t1)), α(V0(t1))) = φ(t1) = 0, this means that
B(t1), B0(t1) and V (t1), V0(t1) are precompact in E1 and E2, respectively. Therefore, I1(B0(t1)) and Î1(V0(t1)) are
precompact in E1 and E2, respectively. This implies that

α(I1(B0(t1))) = 0 and α( Î1(V0(t1))) = 0.
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Now, for t ∈ J ′2, by (3.2) and the above argument for J ′1, we have

φ(t) = (α(B(t)), α(V (t)))

≤

(
2(L1 + M1 + ah0L1λ)

∫ t

t0
α(B0(s))ds + α(I1(vn−1(t1))),

2(L2 + M2 + aκ0L2µ)

∫ t

t0
α(V0(s))ds + α( Î1(ωn−1(t1)))

)
= Γ

∫ t

t0
(α(B0(s)), α(V0(s)))ds

= Γ
∫ t

t0
φ(s)ds.

Again by the Bellman inequality, we know that φ(t) ≡ 0 in J ′2, from which we obtain that α(B0(t2)) = α(V0(t2)) = 0
and α(I2(B0(t2))) = α( Î2(V0(t2))) = 0.

Continuing such a process interval-by-interval up to J ′m+1, we can prove that φ(t) ≡ 0 in every J ′k , k =
1, 2, . . . ,m + 1.

For any Jk , if for all n ∈ N, we modify the value of vn and ωn at t = tk−1 via vn(tk−1) = vn(t
+

k−1) and ωn(tk−1) =

ωn(t
+

k−1), respectively, then {vn} ⊂ C(Jk, E1), {ωn} ⊂ C(Jk, E2) and they are equicontinuous. Since α ({vn(t)}) ≡ 0
and α ({ωn(t)}) ≡ 0, {vn(t)} and {ωn(t)} are precompact in E1 and E2 for every t ∈ Jk , respectively. By the
Arzela–Ascoli theorem, we know that {vn} and {ωn(t)} are precompact in C(Jk, E1) and C(Jk, E2), respectively.
Hence, {vn} and {ωn} have convergent subsequences in C(Jk, E1) and C(Jk, E2), respectively. Combining this with
the monotonicity (3.4), we easily prove that {vn} itself is convergent in C(Jk, E1) and {ωn} itself is convergent in
C(Jk, E2). In particular, {vn(t)} and {ωn(t)} are uniformly convergent in J ′k . Consequently, {vn(t)} and {ωn(t)} are
uniformly convergent over the whole of J .

Using an argument similar to that for {vn(t)} and {ωn(t)}, we can prove that {un(t)} and {νn(t)} are also uniformly
convergent in J . Hence, {vn(t)} and {un(t)} are convergent in PC1(J, E1), and {ωn(t)} and {νn(t)} are convergent in
PC1(J, E2). Set

x = lim
n→∞

vn, x = lim
n→∞

un in PC1(J, E1), (3.6)

y = lim
n→∞

ωn, y = lim
n→∞

νn in PC1(J, E2). (3.7)

Letting n→∞ in (3.3) and (3.4), we see that v0 ≤ x ≤ x ≤ u0, ω0 ≤ y ≤ y ≤ ν0 and

x = Px, y = Qy and x = Px, y = Qy,

i.e.,

(x, y) = F(x, y), (x, y) = F(x, y). (3.8)

By the monotonicity of F , it is easy to see that (x, y) and (x, y) are the minimal and maximal fixed points of F
in [v0, u0] × [ω0, ν0]. That is, they are the minimal and maximal solutions of problem (1.1) between (v0, ω0) and
(u0, ν0), respectively. This completes the proof. �

Remark 3.1. The conditions for an impulsive argument are dropped in Theorem 3.1, i.e., we do not need the following
restrictions:

α(Ik(xk)) ≤ Mkα(xk), α( Īk(yk)) ≤ Nkα(yk), k = 1, 2, . . . ,m.

Further, the results do not rely on the Hausdorff measure of noncompactness, but use the Kuratowski measure of
noncompactness. Therefore, Theorem 3.1 greatly improves the corresponding results in [39].

In Theorem 3.1, if E1 and E2 are weakly sequentially complete, the condition (H3) holds automatically. In
fact, by Theorem 2.2 of [42], any monotonic and order-bounded sequence is precompact. Let {xn} and {zn}, {yn}

and {ξn} be two increasing or decreasing sequences obeying condition (H3), respectively, then by condition (H1),
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{ f (t, xn, yn, zn)+M1xn} and {g(t, xn, yn, ξn)+M2 yn} are monotonic and order-bounded sequences. By the property
of measure of noncompactness, we have

α ({ f (t, xn, yn, zn)+ M1xn}) ≤ α ({ f (t, xn, yn, zn)+ M1xn})+ M1α ({xn}) = 0.

α ({g(t, xn, yn, ξn)+ M2 yn}) ≤ α ({g(t, xn, yn, ξn)+ M2 yn})+ M2α ({yn}) = 0.

Hence, condition (H3) holds. From Theorem 3.1, we obtain the following result.

Corollary 3.1. Let E1 and E2 be ordered and weakly sequentially complete Banach spaces, whose positive cone P1
and P2 are normal, respectively, f ∈ C(J × E1× E2× E1, E1), g ∈ C(J × E2× E1× E2, E2) and Ik ∈ C(E1, E1),
Îk ∈ C(E2, E2), k = 1, 2, . . . ,m. If conditions (H1) and (H2) are satisfied, then problem (1.1) has minimal and
maximal solutions between (v0, ω0) and (u0, ν0), which can be obtained by a monotone iterative procedure starting
from (v0, ω0) and (u0, ν0), respectively.

Moreover, we shall discuss the uniqueness of the solution to problem (1.1) in [v0, u0] × [ω0, ν0]. If we replace
assumption (H3) by the following assumption:
(H4) There exist positive constants Ci (i = 1, 2, 3, 4) such that

f (t, x2, y2, z2)− f (t, x1, y1, z1) ≤ C1(x2 − x1)+ C2(z2 − z1),

g(t, y2, x2, ξ2)− g(t, y1, x1, ξ1) ≤ C3(y2 − y1)+ C4(ξ2 − ξ1)

for all t ∈ J, v0(t) ≤ x1 ≤ x2 ≤ u0(t), ω0(t) ≤ y1 ≤ y2 ≤ ν0(t), λSv0(t) ≤ z1 ≤ z2 ≤ λSu0(t),
µTω0(t) ≤ ξ1 ≤ ξ2 ≤ µT ν0(t), then we have the following unique existence result.

Theorem 3.2. Let Ei be an ordered Banach space, whose positive cone Pi is normal for i = 1, 2, f ∈ C(J ×
E1 × E2 × E1, E1), g ∈ C(J × E2 × E1 × E2, E2) and Ik ∈ C(E1, E1), Îk ∈ C(E2, E2), k = 1, 2, . . . ,m.
If conditions (H1), (H2) and (H4) hold, then problem (1.1) has a unique solution between (v0, ω0) and (u0, ν0), which
can be obtained by a monotone iterative procedure starting from (v0, ω0) or (u0, ν0).

Proof. We first prove that (H1) and (H4) imply (H3). In fact, for t ∈ J , let {xn} ⊂ [v0, u0], {yn} ⊂ [ω0, ν0],
{zn} ⊂ [λSv0(t), λSu0(t)] and {ξn} ⊂ [µTω0(t), µT ν0(t)] be increasing sequences. For m, n ∈ N with m > n, by
(H1) and (H4),

θ ≤ ( f (t, xm, ym, zm)− f (t, xn, yn, zn))+ M1(xm − xn)

≤ (C1 + M1)(xm − xn)+ C2(zm − zn),

θ ≤ (g(t, ym, xm, ξm)− g(t, yn, xn, ξn))+ M2(ym − yn)

≤ (C3 + M1)(ym − yn)+ C4(ξm − ξn).

By these and the normality of cone Pi (i = 1, 2), we have

‖ f (t, xm, ym, zm)− f (t, xn, yn, zn)‖

≤ N1‖(C1 + M1)(xm − xn)+ C2(zm − zn)‖ + M1‖xm − xn‖

≤ (M1 + M1 N1 + N1C1)‖xm − xn‖ + N1C2‖zm − zn‖

and

‖g(t, ym, xm, ξm)− g(t, yn, xn, ξn)‖

≤ N2‖(C3 + M2)(ym − yn)+ C4(ξm − ξn)‖ + M2‖ym − yn‖

≤ (M2 + M2 N2 + N2C3)‖ym − yn‖ + N2C4‖ξm − ξn‖.

From these inequalities and the definition of the measure of noncompactness, it follows that

α ({ f (t, xn, yn, zn)}) ≤ (M1 + M1 N1 + N1C1)α ({xn})+ N1C2α ({zn})

≤ L3(α ({xn})+ α ({zn})),

α ({g(t, yn, xn, ξn)}) ≤ (M2 + M2 N2 + N2C3)α ({yn})+ N2C4α ({ξn})

≤ L4(α ({yn})+ α ({ξn})),



540 H.-y. Lan / Journal of Computational and Applied Mathematics 222 (2008) 531–543

where L3 = max{M1 + M1 N1 + N1C1, N1C2} and L4 = max{M2 + M2 N2 + N2C3, N2C4}. If {xn}, {yn}, {zn} and
{ξn} are two decreasing sequences, the above inequalities are also valid. Hence (H3) holds.

Therefore, by Theorem 3.1, problem (1.1) has minimal solution (x, y) and maximal solution (x, y) in [v0, u0] ×

[ω0, ν0]. By the proof of Theorem 3.1, (3.3), (3.4), (3.6) and (3.7) are valid. Going from J ′1 to J ′m+1 interval-by-
interval, we show that (x, y) ≡ (x, y) in every J ′k , k = 1, 2, . . . ,m + 1.

Indeed, for t ∈ J ′1, by (3.6), (3.7) and (3.2) and assumption (H4), we have

θ ≤ x(t)− x(t) = Px(t)− Px(t)

=

∫ t

t0
eM1(t−s)( f (s, x(s), y(s), λSx(s))− f (s, x(s), y(s), λSx(s))+ M1(x(s)− x(s)))ds

≤

∫ t

t0
eM1(t−s)((M1 + C1)(x(s)− x(s))+ λC2(Sx(s)− Sx(s)))ds

≤

∫ t

t0
((M1 + C1)(x(s)− x(s))+ λC2(Sx(s)− Sx(s)))ds

≤ (M1 + C1)

∫ t

t0
(x(s)− x(s))ds + λC2h0

∫ t

t0

∫ s

t0
(x(t)− x(t))dtds

≤ (M1 + C1 + aλC2h0)

∫ t

t0
(x(s)− x(s))ds (3.9)

and

θ ≤ y(t)− y(t)

≤ (M2 + C3 + aλC4κ0)

∫ t

t0
(y(s)− y(s))ds. (3.10)

It follows from (3.9) and (3.10) and the normality of cone Pi (i = 1, 2) that

‖x(t)− x(t)‖ ≤ N1(M1 + C1 + aλC2h0)

∫ t

t0
‖x(s)− x(s)‖ds,

‖y(t)− y(t)‖ ≤ N2(M2 + C3 + aλC4κ0)

∫ t

t0
‖y(s)− y(s)‖ds.

By the Bellman inequality, these imply that (x(t), y(t)) ≡ (x(t), y(t)) in J ′1.

For t ∈ J ′2, since I1(x(t1)) = I1(x(t1)) and Î1(y(t1)) = Î1(y(t1)), using (3.2) and completely the same argument
as above for t ∈ J ′1, we can prove that

‖x(t)− x(t)‖ ≤ N1(M1 + C1 + aλC2h0)

∫ t

t0
‖x(s)− x(s)‖ds

= N1(M1 + C1 + aλC2h0)

∫ t

t1
‖x(s)− x(s)‖ds,

‖y(t)− y(t)‖ ≤ N2(M2 + C3 + aλC4κ0)

∫ t

t0
‖y(s)− y(s)‖ds

= N2(M2 + C3 + aλC4κ0)

∫ t

t1
‖y(s)− y(s)‖ds.

Again, by the Bellman inequality, we obtain that (x(t), y(t)) ≡ (x(t), y(t)) in J ′2.
Continuing such a process interval-by-interval up to J ′m+1, we see that (x(t), y(t)) ≡ (x(t), y(t)) over the whole

of J . Hence, (x∗, y∗) := (x(t), y(t)) = (x(t), y(t)) is the unique solution of problem (1.1) in [v0, u0] × [ω0, ν0],
which can be obtained by the monotone iterative procedure (3.3) starting from (v0, ω0) or (ω0, ν0). This completes
the proof. �
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Remark 3.2. Using the same approach as in Theorems 3.1 and 3.2, we can consider initial value problems (1.2) and
(1.3) and obtain analogous conclusions, respectively.

Remark 3.3. Using the above argument method interval-by-interval from J ′1 to J ′m+1, we can also improve the main
results in [29] and [34], and delete some restrictive conditions there.

4. An example

Example 1. Consider the following system of nonlinear mixed type implicit impulsive integro-differential equations
in Banach spaces E1 and E2: Find (x, y) : J × J → E1 × E2 such that

x ′n(t) =
1

20

{
e−6t

3n
[x4

n+1 + (t − yn)
3
] + λ

∫ t

0
e−(6t+s)xn(s)ds

}
, ∀0 ≤ t ≤ 1, t 6=

1
2
,

y′n(t) =
1

9n
[y4

n+1 + (t − xn)
3
] +

µ

2n

[∫ 1

0
ets yn+2(s)ds

]3

, ∀0 ≤ t ≤ 1, t 6=
1
2
,

4xn|t=1/2 = −
2
5

xn

(
1
2

)
,

4yn|t=1/2 = 4yn

(
1
2

)
,

xn(0) = yn(0) = 0 (n = 1, 2, . . . , ).

(4.1)

Evidently, (xn(t), yn(t)) ≡ (0, 0) (n = 1, 2, . . .) is a trivial solution of problem (4.1).

Theorem 4.1. Problem (4.1) admits minimal and maximal solutions (v(t), ω(t)) and (u(t), ν(t)) which are
continuously differentiable on J × J and satisfy

0 ≤ v(t), u(t) ≤


t

n
, ∀0 ≤ t ≤

1
2

t

n
−

1
5n
, ∀

1
2
< t ≤ 1,

(n = 1, 2, . . .),

0 ≤ ω(t), ν(t) ≤


t

n
, ∀0 ≤ t ≤

1
2

t

n
+

1
8n
, ∀

1
2
< t ≤ 1,

(n = 1, 2, . . .),

where J = [0, 1
2 ] ∪ (

1
2 , 1].

Proof. Let t0 = 0, a = 1, E1 = E2 = C0 = {x = (x1, x2, . . . , xn, . . .) : xn → 0} with norm ‖x‖ = supn |xn|

and P1 = P2 = {x = (x1, x2, . . . , xn, . . .) ∈ C0 : xn ≥ 0, n = 1, 2, . . .}. Then P1 and P2 are normal cones in
E1 and E2, respectively, and problem (4.1) can be regarded to be of the form (1.1) in E1 × E2. In this situation,
x0 = y0 = (0, 0, . . . , 0, . . .) = θ , J = [0, 1], h(t, s) = e−(6t+s), κ(t, s) = ets , x = (x1, x2, . . . , xn, . . .),
y = (y1, y2, . . . , yn, . . .), z = (z1, z2, . . . , zn, . . .), f = ( f1, f2, . . . , fn, . . .) and g = (g1, g2, . . . , gn, . . .) in which

fn(t, x, y, z) =
1

20

{
e−6t

3n
[(t − yn)

3
+ x4

n+1] + λzn

}
,

gn(t, x, y, z) =
1

9n
[(t − xn)

3
+ y4

n+1] +
µ

2n
z3

n,

m = 1, t1 = 1
2 and

I1(x) = −
2
5

x, ∀x ∈ E1 = C0,

Î1(y) = 4y, ∀y ∈ E2 = C0.
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Obviously, f ∈ C[J × E1 × E2 × E1, E1], g ∈ C[J × E2 × E1 × E2, E2], I1 ∈ C[E1, E1] and Î1 ∈ C[E2, E2]. Let

v0(t) = ω0(t) = (0, 0, . . . , 0, . . .), ∀0 ≤ t ≤ 1

u0(t) =


(

t,
t

2
. . . ,

t

n
, . . .

)
, ∀0 ≤ t ≤

1
2(

t −
1
5
, t −

1
10
, . . . ,

t

n
−

1
5n
, . . .

)
, ∀

1
2
< t ≤ 1,

ν0(t) =


(

t,
t

2
, . . . ,

t

n
, . . .

)
, ∀0 ≤ t ≤

1
2(

t +
1
8
, t +

1
16
, . . . ,

t

n
+

1
8n
, . . .

)
, ∀

1
2
< t ≤ 1.

It is not difficult to verify that conditions (H1)–(H3) hold. Hence, our conclusion follows from Theorem 3.1. �
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[32] J.J. Nieto, R. Rodrı́guez-López, Hybrid metric dynamical systems with impulses, Nonlinear Anal. 64 (2006) 368–380.
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