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ABSTRACT Motor enzymes are remarkable molecular machines that use the energy derived from the hydrolysis of a nucle-
oside triphosphate to generate mechanical movement, achieved through different steps that constitute their kinetic cycle. These
macromolecules, nowadays investigated with advanced experimental techniques to unveil their molecular mechanisms and the
properties of their kinetic cycles, are implicated in many biological processes, ranging from biopolymerization (e.g., RNA
polymerases and ribosomes) to intracellular transport (motor proteins such as kinesins or dyneins). Although the kinetics of in-
dividual motors is well studied on both theoretical and experimental grounds, the repercussions of their stepping cycle on the
collective dynamics still remains unclear. Advances in this direction will improve our comprehension of transport process
in the natural intracellular medium, where processive motor enzymes might operate in crowded conditions. In this work, we
therefore extend contemporary statistical kinetic analysis to study collective transport phenomena of motors in terms of lattice
gas models belonging to the exclusion process class. Via numerical simulations, we show how to interpret and use the random-
ness calculated from single particle trajectories in crowded conditions. Importantly, we also show that time fluctuations and non-
Poissonian behavior are intrinsically related to spatial correlations and the emergence of large, but finite, clusters of comoving
motors. The properties unveiled by our analysis have important biological implications on the collective transport characteristics
of processive motor enzymes in crowded conditions.
INTRODUCTION
The kinetic cycle of an enzyme, defined as the set of reac-
tions and conformational changes necessary to accomplish
its enzymatic activity, has an intrinsically stochastic nature.
The aleatory character has significant repercussions on the
kinetics of linear processive enzymes, such as motor pro-
teins, and on the features of their stepping dynamics over
a specific track. The recent breakthroughs in high-resolution
single-molecule techniques make it possible to observe
and reliably quantify fluctuations in the completion time
of individual enzymatic (stepping) cycles of isolated motors.
Statistical analysis of these variations allows extracting in-
formation on key molecular features (1–5).

In the natural intracellular environment, however, many
enzymatic processes occur in crowded conditions. Motor
proteins moving along microtubules (6), multiple ribosomes
translating an mRNA molecule (7), or polymerases tran-
scribing a DNA strand (8) are prominent examples in which
the single motor stepping cycle driven by nucleotide hydro-
lysis (e.g., ATP / ADP þ P) can strongly depend on the
presence of other motors moving on the same track. Motor
stepping, indeed, depends also on the availability of free
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sites of the same track (cytoskeletal filaments and nucleic
acids). These sites are necessary to catalyze nucleotide hy-
drolysis, which determines the motor mechanochemical
cycle in interaction with its specific pathway (9). Collective
and cooperative phenomena of processive motors, on the
other hand, have been largely studied in the theoretical liter-
ature (10–12) and in particular, in the field of driven lattice
gases. Most of these works describe motors as kinetically
unstructured elements, despite the many intermediary
mechanochemical conformational changes underlying one
single motor enzyme step. Some of them (13–17) also
explore the role of the internal kinetic cycle of the motors
on emerging collective properties.

A minimal representation of the stepping cycle of a motor
involving the consumption of an energetic substrate S (e.g.,
ATP or GTP) can be given by Michaelis-Menten enzymatic
kinetics where the catalyzed chemical reaction and the
enzyme spatial translocation are tightly coupled:

ðEþ SÞx #
kþ½S�

k�
ðESÞx

g

/
ðEþ PÞxþ‘: (1)

The substrate S binds the enzyme E with rate kþ[S] at
position x to first form a bound active state (ES, where a
backward rate k� is allowed) and then release the product
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P with a rate g. In this kinetic scheme, the completion of a
stochastic stepping cycle corresponds to the advancement of
the motor by a step of length l . The dwell or residence time
t, i.e., the time needed between two outputs P, is a stochastic
variable with fluctuations determined by the mechanochem-
ical cycle properties of the motor enzyme.

An important experimental quantity that is nowadays
possible to reliably measure is the randomness parameter
r (1,3,4). This parameter quantifies the fluctuations occur-
ring during the stepping cycle and is defined as the ratio
of the variance of the dwell-time t to its squared average,

r ¼ ht2i � hti2
hti2 ; (2)

where h,i represents an average over a large number of
events and experiments. Importantly, it has been experimen-
tally shown that the randomness of many biological systems
depends on the substrate concentration (18,19). Moreover, it
has been proved that in some conditions (see Moffitt et al.
(3,4)) one can extract valuable information on the kinetic
mechanisms of a single enzyme from the inverse of the
randomness n h 1/r, and associate it to the number of
limiting steps of the kinetic cycle (1,3–5).

In this work, we present a model of interacting molecular
motors endowed with internal kinetic cycles. Our model
brings insight into emergent features of motor enzyme col-
lective dynamics from the perspective of statistical kinetics.
We show that the randomness parameter r is useful to study
collective systems, although a different interpretation from
single molecule studies is necessary. Crucially, the presence
of (at least) an internal step in the single motor enzymatic
kinetics can radically change the collective translocation
of motors with excluded volume interactions with respect
to models with interacting motors lacking an internal kinetic
cycle. We thus provide a relation between the stochastic
kinetics of a single tracer and the formation of extended
clusters of motors moving along the same track. Interest-
ingly, these properties can be related to the concentration
of a biological fuel substrate (like ATP). The availability
of the energy substrate, driving the enzymatic cycle and
translocation step, generates anomalous dynamics both at
the single-molecule and collective levels. We then predict
a universal mechanism controlled by the energy substrate
availability that could regulate the formation of clusters of
motors in in vitro and in vivo systems.
FIGURE 1 Schematic representation of the collective models analyzed.

(Top) Unstructured particles moving along a filament following a Poisso-

nian step with rate p, which depends on the substrate concentration through

a Michaelis-Menten relation as described in the text. (Bottom) The two-

state model presented in the main text, whose stepping cycle kinetics is

shown (dashed region). The average stepping time of an isolated particle

is the same in the two models, allowing us to compare the two processes.

To see this figure in color, go online.
A short overview on driven collective transport of
Poissonian particles

We first survey traffic models composed of molecular motors
devoid of internal kinetic cycles (Poissonian walkers). This
part is indeed important to contrast the novel behavior induced
by the presence of an internal state in the motor kinetics.
Originally inspired by biopolymerization processes (20), the
totally asymmetric simple exclusion process (TASEP) de-
scribes the transport properties of particles,with (hard-sphere)
exclusion interaction, moving in a preferred direction along a
discrete lattice. TASEP is the archetypal model used to study
(biological and nonbiological) unidimensional transport
(10,11,21), theoretical aspects of probability theory (22,23),
and nonequilibrium statistical mechanics (11). This standard
model has posed the grounds for the development of theoret-
ical tools describing the cooperative phenomena of processive
molecular motors (24–26), with a good qualitative agreement
when compared to state-of-art experiments (6).

More specifically, TASEP consists of a unidimensional
discrete lattice in which particles hop from one site to the
next with probability per unit time p, provided that the
entering site is empty (i.e., no more than one particle can
occupy a site at the same time; see Fig. 1). The discrete lat-
tice represents here the track (like a microtubule filament)
along which the processive enzymes advance. For particles
lacking internal kinetic steps, the unique hopping rate p
depends on the substrate concentration providing the energy
necessary for the movement of particles. Assuming a Mi-
chaelis-Menten-like dependence, it writes

p ¼ k½S� g=ðk½S� þ gÞ;

where g represents the maximal hopping rate at saturating
substrate concentration and g /k is the substrate concentration
at which p ¼ g/2. When several particles occupy the lattice
with a density r, the steady-state current J (the number of par-
ticles passing through a site per unit time) is verywell approx-
imated (and exact in the limit of large systems) by the relation

J ¼ rvðrÞ ¼ p rð1� rÞ;

where r is the density of particles on the lattice and v(r) is
their velocity (see, e.g., Derrida (27)). This relationship is
bounded in saturating substrate concentrations by
Biophysical Journal 107(5) 1176–1184
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J ¼ g rð1� rÞ;

where g represents the maximal obtainable velocity at satu-
rating substrate conditions. The current-density parabola
typical of this driven particle model is shown in Fig. 2 A
and the linear dependence of the velocity on the density is
presented in Fig. 2 B (dashed lines).

This simple model, however, presents severe limitations
when compared to real motor proteins transport. For tight
coupled mechanisms at the single-molecule level, it is
straightforward to show (starting from Eq. 2) that a Poisso-
nian enzyme has always a randomness r strictly equal to 1.
A Poissonian walker is indeed characterized by exponential
waiting-time distributions with a typical time constant equal
to 1/p. Hence, without internal states, the randomness param-
eter r introduced above in Eq. 2 depends neither on the parti-
cles’ hopping rate nor on the substrate concentration. This is
in stark contrast to experimental results, for instance in the
context of processive motor proteins (18,19). (In these cases,
the dwell-time distribution can bewrittenvia a convolution of
exponential distributions with typical times related to the
microscopic limiting rate composing the kinetic cycle, and
the randomness parameter r becomes dependent on the sub-
strate concentration). In addition, at the collective level and in
the absence of internal states, changes in the substrate con-
centration only affect the timescale of the system leading to
an invariant rescaled current J/p, which remains the same
for all values of the substrate concentration (dashed line in
Fig. 2). This is not the case in the presence of internal states,
as we will show below. Taken together, Poissonian particles
without internal kinetic steps hide interesting novel features
of molecular-motor collective transport behavior.
RESULTS

We describe how the particles’ internal enzymatic kinetics
affects the overall transport process at different levels,
A B

FIGURE 2 Density-current relation (A) and velocity (B) of a lattice gas

with and without particles’ stepping cycle. (Dashed gray line in panel A)

J/p ¼ r(1 � r) for a standard exclusion process; (solid circles) current of

the two-state model at different substrate abundances w. (Dashed lines in

panel B) Velocity v(r)/p ¼ 1 – r typical of a set of Poissonian particles;

(solid circles) outcome of the two-state model. Two different values of

the substrate abundance are shown, w ¼ 1 (indigo) and w ¼ 0.05 (yellow).

To see this figure in color, go online.
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from mean quantities to temporal fluctuations and spatial
dynamical effects. In a first stage, we consider a lattice
with periodic boundary conditions to efficiently extract
and focus on the main new properties emerging from the
model. Then we analyze the more realistic case of open
boundary conditions, emphasize the equivalence of the
emergent phenomenology with the periodic boundary
case, and link our results to biologically relevant cases
and potential experimental applications.
The two-state model

To overcome the shortages of Poissonian-particle transport
models, here we describe motor enzymes as interacting par-
ticles endowed with an internal kinetic cycle moving on a
lattice. For the sake of simplicity, we deal with the simplest
enzymatic cycle illustrated in Eq. 1, and we consider the
backward rate k� negligible with respect to the forward
rate kþ[S]; then we rename kþ by k. This is a good approx-
imation for many biological systems, such as the coarse-
grained representation of the ribosomal biochemical cycle
(28,29). We then investigate the collective movement of
particles with this minimal stepping cycle: an irreversible
substrate-dependent kinetic step and a translocation step
defining a two-state model (see Fig. 1) (17). A particle on
the site i of the discrete lattice makes a transition to an
active, or excited, state with rate k[S], and then translocates
with rate g to the next site only if this is unoccupied. After
the translocation, the particle returns to its initial, ground
state. As a result of the internal kinetics, particles can prog-
ress in their stepping cycle also when spatially blocked by
their subsequent neighbors. The average residence time of
a single isolated particle is then given by the sum of the
average time needed to make the transition to the active state
and the average time needed for translocation:

hti ¼ 1=k½S� þ 1=g ¼ ð½S� þ KMÞ=½S�g:

Hence, we recover the Michaelis-Menten equation for the

inverse of the average residence time, where g represents
the maximal velocity of an isolated motor and the parameter
KM ¼ g/k is the Michaelis constant. With these prescrip-
tions, the hopping rate p of a Poissonian particle defined
in the previous section and the average hopping rate of an
isolated two-state particle coincide:

p ¼ 1=hti:

This choice will then allow us to directly compare the two-

state model to a standard exclusion process with hopping
rate p.

A relevant parameter in this analysis is the ratio wh k[S]/
g, which corresponds to the substrate concentrations in units
of the Michaelis-Menten constant KM. Changing w then is
equivalent to account for different substrate availabilities,
from limiting (w � 1) to saturating (w [ 1) conditions.



FIGURE 3 Inverse of the randomness n ¼ 1/r. Different colors and sym-

bols represents systems at different densities (from r ¼ 0.20 to 0.90). (Blue

circles) System composed of a single molecule; (blue line under blue cir-

cles) analytical value of n ¼ (1 þ w)2/(1 þ w2) obtained from Eq. 2. The

value of n for an effective TASEP with hopping rate p would instead be a

constant (n ¼ 1), for any density. To see this figure in color, go online.
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Internal molecular kinetic steps enhance
collective transport

We now numerically simulate the rescaled current J/p
versus the density r of particles for the two-state model
and show how the parameter w influences the current. We
refer the reader to Appendix A for a detailed description
of the simulation scheme.

We show that, in the two-state model, the rescaled current
is strongly affected by the parameter w controlling the sub-
strate concentration (see Fig. 2 A, blue and yellow circles).
This is in stark contrast to the collective dynamics of Pois-
sonian particles, which are characterized by a rescaled cur-
rent J/p independent of the substrate concentration (dashed
line). Remarkably, the transport is substantially enhanced by
the presence of the internal degree of freedom representing
the stepping cycle (Fig. 2 A). This behavior is displayed for
a broad range of the parameter w and, as expected, when
w / N, the two models coincide. Furthermore, Fig. 2 A
shows that, when the substrate concentration is severely
limiting (w � 1), J(r) is no longer symmetric and, interest-
ingly, the transport flux is optimized for high densities.
Additionally, the velocity v(r) is no longer linear with the
density as in the case of Poissonian particles, and its depen-
dence on r is strongly affected by the substrate availability
(Fig. 2 B).

Mean-field theories have attempted to analytically
describe collective models of particles with this minimal
stepping cycle (15,17). However, they exhibit serious
disagreement with numerical simulations, particularly in
the regime w � 1. Although in this article we do not intend
to provide a refined mean-field theory, we show that these
deviations arise from emergent correlation effects that also
influence substantially the randomness of tracer particles.
Residence time fluctuations of multiple particles
with internal kinetic steps

After havingdiscussed average steady-state quantities such as
the current and the velocity, we now turn our attention to the
fluctuations of the residence timeof a tracer particle. In partic-
ular, we focus on the inverse of the randomness parameter, de-
noted by n ¼ 1/r. Note that this quantity is no longer able to
identify mechanistic constraints on the stepping cycle as in
the single-molecule case (3–5). Fig. 3 shows the quantity n
measured for a tracer particle on a latticewith different overall
particle densities r, for the two-state kinetics presented above.
From these results it becomes evident that the randomness,
and hence n, depends on the crowding of the lattice.

We observe that the maximum of n is no longer bound by
the total number of kinetic steps of the motor (which
would be equal to 2 in this case) as it occurs in the sin-
gle-particle case (3–5) (Fig. 3, blue circles).

Moreover, values of n for limiting substrate concentra-
tions, i.e. for w / 0, do not give an indication of the
substrate-binding steps, and they remarkably depend
on the density r.

In the saturating substrate concentration, for w/N, which
corresponds to the single state TASEP-like limit (the internal
state has a very short lifetime, thus it is negligible), n tends to-
ward 1, as in a system of Poissonian steppers. As a result, the
meaning of n, well defined in the single-molecule case as the
number of rate-limiting steps of the mechanochemical cycle,
needs to be revised when considering collective transport of
motors: it does not exclusively represent features of the sin-
gle-molecule kinetics, but it can provide information on the
crowding and clustering of the system, as we show in the
following sections. Accordingly, our analysis also shows
that relevant informationon the local density ofmotors around
the tracer can be extracted by measuring its randomness r.

We stress once more that when considering Poissonian
particles, one obtains n ¼ 1 independently from the sub-
strate abundance, because varying p only rescales the time-
scale and does not affect the stochasticity of the system.
Instead, by considering an additional kinetic state, the parti-
cle residence time is no longer exponentially distributed (as
in a stochastic Poissonian process), but the distribution can
be interpreted in terms of a convolution of exponentials with
typical times related to the microscopic rates of the stepping
cycle of the motor (30,31). If only part of the kinetic cycle is
influenced by the presence of other enzymes on the lattice
(as in the two-state model, where only the translocation
step is affected by the density of enzymes), the residence
time distribution can be strongly conditioned by the neigh-
borhood occupancy, giving rise to long-range spatial corre-
lations that we study in the next section.
Clustering induced by kinetic steps and detecting
technique

A closer look at the system via kymographs (snapshots
of the system at consecutive times tracing the trajectories
of the particles, Fig. 4, A and B) reveals the emergence of
Biophysical Journal 107(5) 1176–1184



FIGURE 4 Clustering of processive enzymes is tuned by the substrate availability. (A) Kymograph of a system with substrate-limiting conditions

(w ¼ 0.01). (B) (Black lines) Magnified region. (Blue) Active particles. (Yellow) Ground state particles. The formation of particle clusters and shocks caused

by the internal kinetics is evident. (C andD) Distributions of clustersC(n) for r¼ 0.20 and r¼ 0.90, respectively, in three different cases: w� 1, w ~ 1, w[
1. When the substrate is limiting (w � 1), the cluster distributions display large tails; when w ~ 1, the distributions are less disperse in favor of smaller

clusters. The nonmonotonous behavior of the mean of the cluster distributions is shown in panels E and F for different densities. The minimum of hCi is
reached at the value of w corresponding to the maximum of n in Fig. 3. To see this figure in color, go online.

A B

FIGURE 5 Mean cluster as a function of the randomness for the single-

molecule case (blue circles) and densities r ¼ 0.20, 0.40, and 0.60 (A) and

r ¼ 0.60, 0.80, and 0.90 (B). By decreasing the relevance of the substrate-

depending internal states (i.e., by increasing w), one advances on the cusp-

shape curves starting from large mean cluster values (black arrow) in panel

A. Despite the nonunivocal nature of this relationship, for small values of

the randomness the cluster-size can be indirectly measured by observation

of the randomness and knowledge of the substrate conditions. To see this

figure in color, go online.
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clusters and queues of active particles for substrate-limiting
conditions (w ¼ 0.01) and particle density r ¼ 0.2. A more
quantitative analysis shows that by changing w, and there-
fore the substrate dependence, clustering increases when
the substrate is limiting and the probability of finding large
clusters is no longer negligible. This is clearly shown by
computing the cluster distribution C(n), i.e., the probability
of finding a cluster of particles of size n (n adjacent parti-
cles). We also show C(n) versus n for different values
of w for r ¼ 0.20 (Fig. 4 C ) and r ¼ 0.90 (Fig. 4 D): this
probability distribution displays large exponential tails in
substrate-limiting conditions, i.e., for small values of w. It
also shows a minimal dispersion when w is of order 1, and
then the large-cluster tail moderately increases for larger
values of w (i.e., in the single-state, TASEP-like limit).

As a consequence of the peculiar features of C(n), the
mean cluster size hCi arising from this distribution exhibits
a nonmonotonous dependency on the substrate concentra-
tion w, as illustrated in Fig. 4, E and F. Because the broad-
ness of C(n) becomes smaller around w ¼ 1 (see Fig. 4 C),
the mean cluster size as a function of w exhibits a minimum
when wx 1 ( i.e., the average cluster is smaller than in both
the substrate-limiting and saturating, TASEP-like cases).

In the previous section, we have shown that the inclusion
of the enzymatic kinetic cycle, even in its simplest form,
induces localized inhomogeneities of the density such as
particle crowding and queuing. Due to the strong nonmonot-
onous dependence of both the randomness parameter
(Fig. 3) and the mean cluster size (Fig. 4, E and F) on w,
and therefore on the substrate abundance, it is interesting
to plot the mean cluster size hCi versus the randomness
parameter (Fig. 5). The nonmonotonous dependence of the
Biophysical Journal 107(5) 1176–1184
randomness on w implies that by starting from very small
values of w and increasing it, one would eventually meet a
minimum of the randomness (maximum of n, see Fig. 3),
then see the fluctuations increasing again and saturate to 1
with the type of kinetics analyzed here. The nontrivial
mean cluster size dependence onw shows a similar behavior,
and by merging this information for each density, one ob-
tains the cusp-shaped curves presented in Fig. 5. Hence,
experimental measurements of the randomness could help
in identifying different clustering regimes at different sub-
strate concentrations, as Fig. 5 shows. Strikingly, the mini-
mum of the randomness approximately corresponds to the
minimum of the mean cluster size, tracing a link between
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the fluctuations of a tracer particle and the collective proper-
ties of the system. The cluster formation mechanism at low
substrate seems to decrease the stochasticity; in other words,
the randomness in the limit w� 1 is smaller than in the sin-
gle-molecule case (see Fig. 3).
C

FIGURE 6 Simulations in the open boundary case. Panels A and B show

the average density r (in red) and inverse of the randomness (in blue) as a

function of the parameter w for different pairs of entry and exit rates. (C)

Randomness parameter as a function of the average density r. (Green

circles) Simulations presented in panel B, i.e., a/g ¼ 0.0035 and b/g ¼
1.0; (pink squares) a/g ¼ 0.001 and b/g ¼ 0.6; and (orange triangles)

with a/g ¼ 0.1 and b/g ¼ 0.04. To see this figure in color, go online.
Open boundary conditions

In this section, we study the consequences of considering
the model presented above with open boundary conditions,
i.e., without fixing the density of particles but allowing par-
ticles to enter from one end of the lattice with rate a, and exit
from the other end with rate b. As it is well known from the
TASEP literature, this model presents boundary-induced
phase transitions (32). When the entry rate a is limiting,
the system is found in a low density (LD) phase, and
when the exit rate b constitutes a bottleneck, the lattice is
in a high density (HD) phase characterized by a queue of
particles piling up from the end of the lattice. Because
exclusion interactions limit the current of particles in the
bulk, a maximal current (MC) phase is then observed.
This is characterized by a smaller density compared to the
HD phase and, as the name suggests, the largest current
of particles flows through the lattice (corresponding to the
maximum of the curve J(r), see Fig. 2). By then changing
the entry and exit rates, it is possible to move between these
different phases. For the features of the different phases and
analysis of the rich phase diagram of TASEP-like models,
we refer the reader to other publications (11). For our pur-
poses, it is useful to note that, although the density of parti-
cles r is no longer a system control parameter, the average
occupation r of the lattice is determined by fixing the rates
a and b, allowing a mapping between the closed and
the open boundary cases. The same argument holds for
the two-state model (17). The average density of particles
on the lattice is regulated by the triplet a/g,b/g,w. See
also the phase diagram of the system (see Fig. S1 in the
Supporting Material). Importantly, for a fixed pair a/g,b/
g, by decreasing w, the open system eventually undergoes
a phase transition toward the MC (see Fig. S1).

Hence, if in the periodic case we isolated the effects that
the stepping cycle has on the dynamics of the motors and on
the local clustering for a fixed density, by changing w in the
open case we also take into account the differences in the
density induced by the boundary-controlled phase transi-
tions. Despite that, the outcomes can still be interpreted
within the same framework, and one is still able to provide
estimates of the crowding of the filament from measure-
ments of the randomness parameter. We show that with
some representative examples.

As a first example, we consider a crowded situation at
high substrate concentrations, i.e., with the system found
in the HD when w is large, as shown in Fig. 6 A. By
decreasing w the inverse of the randomness n remains con-
stant at the beginning, then the dependence shows a steep
increase when w ~ 1, as shown also in Fig. 3 for comparable
densities (gray diamonds) in periodic boundary conditions.
The system then undergoes a transition to the MC phase,
causing a change in the average density r. (Note that, con-
trary to the TASEP, in the two-state model the density in
the MC phase is, in general, different from 0.5 (17).)
Once the system is deep in the MC phase its average density
is smaller than in the HD regime, and the randomness
computed corresponds to the one calculated with a closed
system for similar density at limiting substrate concentra-
tions ( r � 0:7, between the green squares and yellow
diamonds in Fig. 3). The peak in n that is present in the
open boundary case is induced by the stepping cycle and
it has hence the same nature of the one observed in the
closed boundary case. We observe a reduction of the
average particle cluster size in correspondence to the peak
in n and before the transition to the MC (see Fig. S2). We
note that this fact provides evidence that the periodic lattice
case previously studied can already capture many of the
features of the open boundary case.

The second example consists of a lattice in the LD
phase when the substrate is present at high concentrations
(Fig. 6 B). As a result of the small entry rate (compared to
the other parameters), the average density r of motors on
the track is small and the exclusion interactions can, at a first
approximation, be neglected for large w. The plot of n then
resembles the one of the single molecule in the closed
boundary condition (blue circles in Fig. 3), and it presents
a maximum at values w ~ 1. However, when w decreases,
the lattice enters the MC regime, and the density effects
become evident; the inverse of the randomness increases
Biophysical Journal 107(5) 1176–1184
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again (generating a minimum in n) to reach the values
expected by the periodic boundary simulations.

These two examples represent two biologically relevant
situations: the first case is representative of processive
motors that are slowed down by a bottleneck situated at
the exit, and the second one of motors that are in excess
of substrate (e.g., high ATP concentrations) (large w) in
the LD phase. In particular, the second case can be applied
to ribosomes advancing on an mRNA. Indeed, to produce
Fig. 6, we have used biologically realistic parameters
for the rates a and b (29). The parameter w in the case
of mRNA translation is mainly given by the abundance
of cognate tRNA, and is smaller than 1 (10�2 ( w ( 1
in S. cerevisiae) (29). From Fig. 6 B one can then speculate
that w might have an important role in regulating the
randomness of the ribosomes traffic and therefore the noise
in protein synthesis at the level of translation. We are aware
that inhomogeneities in the sequence could further influ-
ence the randomness of ribosomes. Here we consider
the case in which the nucleotide sequence does not have
relevant bottlenecks, so that the dynamics can be consid-
ered, in first approximation, as uniform along the lattice.
In this work we have decided to only treat the homoge-
neous case to better separate the effects of the lattice inho-
mogeneities and the (more counterintuitive) ones induced
by the motor’s stepping cycle.

As in the periodic boundary case, one could imagine
extracting information on the filament crowding by the mea-
surement of the randomness of a tracer. In Fig. 6 C, we have
therefore represented the randomness as a function of the
average density r. Interestingly, other than direct measure-
ments of the randomness of a molecular motor by, e.g.,
quantum dots (33,34), in the case of protein synthesis one
can also relate this quantity to the noise in gene expression.

The results presented above are valid for highly proces-
sive motors entering on one side of the track and being
depleted at the other end. However, in considering finite
processivity, one should consider attachment and detach-
ment of motors at any position along the lattice (25).
Although we would expect the main phenomenology pre-
sented here to hold with those extensions (the randomness
depending on local density), to provide quantitative predic-
tions one should adapt the properties (number of states and
transition rates) of the stepping cycle to the case of interest.
Moreover, if considering finite processivity motors, the
detachment could depend on the biochemical state of the
motor (35,36). We expect that this can give rise to many
variations of the model whose analysis is out of the scope
of this article.
DISCUSSION

The several biochemical reactions involved in a single move
of an enzyme define its kinetic cycle, which has been thor-
oughly studied at a single-molecule level both theoretically
Biophysical Journal 107(5) 1176–1184
(3,4,37) and experimentally (18,19). Despite significant
progress of single-molecule techniques, how the internal
stepping dynamics affects collective transport of molecular
motors still remains an outstanding open question in molec-
ular and cellular biology.

In this work we have unveiled features of collective
enzyme kinetics and shown emergent (temporal and spatial)
correlations induced by internal molecular kinetics, with a
particular emphasis on biologically driven transport process
by processive enzymes.

We have thus focused on the collective properties of
processive enzymes on the same biological track (e.g.,
motor proteins on a cytoskeletal filament) and first shown
that collective models of unidimensional transport such as
the TASEP do not capture the complexity and the interplay
between the individual particle’s stepping cycle and the
macroscopic phenomenology of the system. Models built
on single particle steps without internal states (unstructured
Poissonian walkers) are characterized by stationary states
that neither catch the well-known dependence on the sub-
strate concentration of, for example, the fluctuations of
the particles’ residence times (the randomness), nor exhibit
the rich phenomenology associated with the fluctuations
of the residence time and also the emerging spatial
correlations.

To bridge the gap between single-molecule and multi-
particle models, we have extended a prototypical unidi-
mensional transport process (the TASEP) by explicitly
incorporating an intermediate state defining a stepping cycle
on each particle. The inclusion of the enzymatic stepping
cycles to a simple driven lattice gas model has now allowed
us to study the role of the kinetic cycle (and, e.g., its sub-
strate dependence) at a collective scale (see, e.g., Klumpp
et al. (15), Garai et al. (16), and Ciandrini et al. (17)). As
a proof of principle, we have studied the simplest kinetic cy-
cle, a Michaelis-Menten type with an irreversible substrate-
dependent transition and a translocation step (which can be
easily generalized to more complex kinetics schemes). This
unsophisticated stepping cycle is sufficient to give rise to
complex dynamical phenomena that reproduce the phenom-
enology of experimental results. Moreover, our approach is
also justified by the presence of two major timescales in the
stepping in many molecular motors (28,38,39).

We have first highlighted and revisited previous results:

1. The stepping cycle can enhance the current of particles if
compared to the standard TASEP.

2. The optimal transport capacity is obtained for higher
densities.

3. At low substrate abundance, the velocity v(r) of a tracer
particle depends in a nonlinear way on the density.

These predictions could be verified by in vitro and in vivo
experiments of processive molecular motors at low ATP
concentrations, similar to the ones performed in the litera-
ture (6,33,34).
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Furthermore, the phenomenology observed in the experi-
ments, including the substrate-dependent fluctuations of
the residence times (18,19), is recovered by the inclusion
of stepping-cycle kinetics. Here we have shown that the
randomness of a tracer particle strongly depends on the
crowding of the system, and significantly deviates from
the single-molecule behavior. We immediately noticed
that particles are no longer characterized by Poissonian
exponential residence times, whose distribution can be
expressed by a convolution of exponentials. These distri-
butions also bear some similarities to the Gamma-waiting
times distributions characteristic of semi-Markov processes;
the fact that only part of the stepping cycle is influenced by
the crowding of the system can indeed be seen as a peculiar
memory property of the individual particles (40).

Thus, in contrast to the case of an isolated molecule, the
inverse n of a randomness parameter does not give the
number of limiting steps of the enzyme kinetics anymore.
Interestingly, we have found that the crowding remarkably
affects measurements of the randomness, in particular at
low and medium substrate concentrations, and n is no longer
bound by the number of kinetic steps.

In the periodic system, we have focused on the time
evolution of the system via the kymographs and obtained
signatures of relevant particle clustering at low substrate
abundance. We have shown that when the system lacks
the resources necessary to force a particle to the excited
state (w � 1), the limiting substrate-dependent rate has
the remarkable effect of generating moving and spatially
localized queues of particles (clusters). This is consistent
with the results previously discussed: particles trapped in
a queue can in fact use the time to undergo a transition
to the active state, and then move almost simultaneously,
producing a larger current compared to standard exclusion
processes. Clustering at low w also explains why n, effec-
tively interpreted as the number of limiting steps, is larger
than 1 in such conditions. In fact, a cluster of particles can
be thought of as an extended object that necessitates more
than one transition before undergoing a translocation step.
Moreover, from a theoretical point of view, we stress that
the mean cluster size hCi remains finite, and there is no
transition toward a unique extensive cluster as displayed
by other models (41,42).

To make a more appropriate connection to biological sys-
tems, we have also analyzed the model in the open boundary
case. Although the model in open boundaries also presents
phase transitions influencing the randomness and the crowd-
ing of the system, the framework and the results obtained in
the periodic case remain valid. Because a given set of entry
and exit rates determines the average density on the track,
we can roughly map the open system to the periodic one.
Further extensions are out of the scope of this article.

On biological grounds, we present a clear mechanism that
allows processive enzymes such as motor proteins to spon-
taneously form clusters at low concentrations of energy re-
sources such as ATP, and at the same time to improve the
overall transport at high densities. In addition, we have
shown that there is a clear link between randomness mea-
surements and local density, and therefore suggest that the
evaluation of the randomness by tracer particles might be
used as a prompt to detect the crowding on the track. Using
an individual tracer might constitute an alternative strategy
to provide quantitative density measurements. This method-
ology is particularly relevant in crowded regimes in which
the relation between fluorescence and motor density is not
linear. The same arguments can be applied to many biolog-
ical tight-coupled processive machines, as ribosomes
translating an mRNA, which are known to usually work in
the regime w � 1 (here the substrate is mainly determined
by the abundance of cognate tRNAs). In this case, the
randomness contributes to noise in gene expression, which
might be used as an indirect measure.

This study opens up the interpretation of tracing particle
statistics of experiments in vivo and in vitro (33,34). It also
allows us to bridge the gap between refined single-molecule
theories (e.g., ratchet models (37)) and coarse-grained coop-
erative models of molecular motors, which are recovered in
particular conditions, to understand the principles of motor
collective coordination.
APPENDIX A: NUMERICAL SIMULATIONS

We have performed numerical simulations by implementing a continuous-

time Monte Carlo algorithm based on the Gillespie algorithm (43). Individ-

ual particles on a discrete lattice undergo a transition to their active state

with a rate k[S], then move with rate g provided that the next site is not

occupied by another particle. We start collecting data once the system

has entered the steady state. We typically neglected the first 2 � 106 runs

of our algorithm, and then collected data for other 2 � 106 runs. Without

loss of generality, we fix g ¼ 1 s�1 and changed the transition rate to

achieve different values of w. A cluster of size n is defined as a group

of n adjacent particles. To compute the cluster-size distributions and the

density, we weighed the particle configurations with the Gillespie intervals

dt. We compute the dwell-time distribution of tracer particles and compute

the randomness by using Eq. 2.

For the periodic case, the figures in this article (Figs. 2–5) show the

outcome of simulations for a periodic lattice composed of 500 sites, and

densities as displayed in the legends. In the open boundary case (Fig. 6),

to better avoid finite size effects, we instead considered a lattice of length

L ¼ 1000 sites.
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