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Velocity-Curvature Relationship of Colliding Spherical Calcium Waves in
Rat Cardiac Myocytes
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*Julius Bernstein Institute of Physiology and *Institute of Numerical Mathematics, Martin Luther University, Halle-Wittenberg,
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ABSTRACT Colliding spherical calcium waves in enzymatically isolated rat cardiac myocytes develop new wavefronts
propagating perpendicular to the original direction. When investigated by confocal laser scanning microscopy (CLSM), using
the fluorescent Ca®* indicator fluo-3 AM, “cusp”-like structures become visible that are favorably approximated by double
parabolae. The time-dependent position of the vertices is used to determine propagation velocity and negative curvature of
the wavefront in the region of collision. It is evident that negatively curved waves propagate faster than positively curved,
single waves. Considering two perfectly equal expanding circular waves, we demonstrated that the collision of calcium waves
is due to an autocatalytic process (calcium-induced calcium release), and not to a simple phenomenon of interference.
Following the spatiotemporal organization in simpler chemical systems maintained under conditions far from the thermody-
namic equilibrium (Belousov-Zhabotinskii reaction), the dependence of the normal velocity on the curvature of the spreading
wavefront is given by a linear relation. The so-called velocity-curvature relationship makes clear that the velocity is enhanced
by curvature toward the direction of forward propagation and decreased by curvature away from the direction of forward
propagation (with an influence of the diffusion coefficient). Experimentally obtained velocity data of both negatively and
positively curved calcium waves were approximated by orthogonal weighted regression. The negative slope of the straight
line resulted in an effective diffusion coefficient of 1.2 X 10™* mm?/s. From the so-called critical radius, which must be
exceeded to initiate a traveling calcium wave, a critical volume (with enhanced [Ca®*]) of ~12 um® was calculated. This is

almost identical to the volume that is occupied by a single calcium spark.

INTRODUCTION

In solutions with bathing Ca®* of more than 1 mM, single
rat cardiac myocytes tend to develop spontaneous calcium
waves with different spatiotemporal patterns (Cheng et al.,
1996; Lipp and Niggli, 1993; Trafford et al., 1993). It is
assumed that a spontaneous calcium wave may originate
from a calcium focus, which is composed of a certain but
unknown number of Ca®* sparks that are considered to
reflect stochastic events of local Ca>* release (Cheng et al.,
1993). To determine the critical volume of a so-called hot
spot, the investigation of the speed dependence on the
curvature of calcium waves proved to be useful. The mech-
anism of the propagation of those waves is probably deter-
mined by the interaction between calcium-induced calcium
release (CICR), calcium diffusion, and calcium reuptake
(Wier and Blatter, 1991; Williams et al., 1992; Williams,
1993). Cannell et al. (1994) suggested that after release
from one or a number of calcium channels of the sarcoplas-
mic reticulum, a calcium wave propagates faster the smaller
the size of the cytosolic volume, into which calcium may
diffuse. It was shown, indeed, that 1) the propagation ve-
locity of spherical calcium waves increases with decreasing
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curvature of the wavefront and 2) calcium, which is released
from the sarcoplasmic reticulum, can trigger a spontane-
ously spreading wave, only when the size of the focus is
beyond a critical value (Wussling and Salz, 1996).
Spatiotemporal organization, which is observed in living
cells (e.g., calcium waves in cardiac myocytes), also occurs
in simpler chemical and biochemical systems maintained
under conditions far from thermodynamic equilibrium
(Field et al., 1972; Bornmann et al., 1973; Mair and Miiller,
1996). One of the most interesting examples of self-orga-
nization is the Belousov-Zhabotinskii reaction, which dis-
plays temporal oscillations and spatial patterns when mal-
onic acid is catalytically oxidized and brominated by acidic
bromate (Field and Burger, 1985; Kuhnert et al., 1985).
Depending on the system’s excitability, propagating circu-
lar waves can develop either spontaneously or must be
initiated by a silver wire. The process of wave propagation
is mediated by the coupling of an autocatalytic reaction with
diffusion. The front of such waves can break up, leading to
the generation of open wave ends that can form rotating
spiral waves (Keener and Tyson, 1986), a phenomenon that
has also been observed in cardiac myocytes (Lipp and
Niggli, 1993) and nonmuscle cells (cf. Berridge, 1997). It
has been noted previously that there exists a relation be-
tween the curvature and the velocity of reaction/diffusion
waves (Zykov, 1980; Zykov and Morozova, 1980; Keener,
1986; Keener and Tyson, 1986), which can be approximated

by

N=c—-D=*K 1)
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where ¢ denotes the velocity of planar waves, D the effec-
tive diffusion coefficient, and X the curvature. From Eq. 1
it follows that with increasing curvature the normal velocity
either increases or decreases, depending on the sign of the
curvature. By definition, positive curvature is the reverse of
the radius of outward-propagating circular waves. Negative
curvature occurs when two outward-propagating circular
waves collide. At the site of collision the sign of the cur-
vature changes. Thus the point of collision always moves
fastest until it catches up with the positively curved part of
the wave. Equation 1 further predicts a critical radius that
must be exceeded to initiate wave propagation (R_; =
1/K_;; = ¢/D). Fig. 1 synoptically shows the dependence of
the wave speed (N) on both curvature (X, fop) and radius of
expansion (R, bottom), where ¢ and D are assumed to be 1.
The normalized velocity-curvature relationship results in a
straight line (/), whereas the velocity-radius relationship
yields two branches of a hyperbola (/). It is suitable to use
the straight line for the determination of R_,, which is
obtained by extrapolation to N = 0. The upper graph shows
that the propagation velocity of the wave front with negative
curvature is expected to be higher than that of a positively
curved spreading wave. This prediction was experimentally
verified by the investigation of colliding circular waves in
an excitable medium of the Belousov-Zhabotinskii reaction
(Foerster et al., 1988). It also appears that in living cells
(e.g., rat cardiac myocytes) the propagation of a wavefront
in the region of collision (e.g., of two spherical calcium
waves) is faster than the spread of a single circular wave.
One goal of this study was to verify this suggestion exper-
imentally in rat cardiac myocytes. Another goal was to
determine, by using orthogonal regression of velocity data
of both positively and negatively curved calcium wave-
fronts, the critical radius of a calcium spot and consequently
the effective diffusion coefficient.

Because of the cardiac cell’s diminutive size, only part of
the supposed geometrical form of the wave becomes visible.
Extrapolations into the extracellular space proved to be
useful for describing the patterns of spreading calcium
signals (Girard et al., 1992; Lipp and Niggli, 1993). A
certain mathematical effort is required to approximate
wavefronts by appropriate functions. These functions are
needed for the determination of curvature and velocity in
the colliding region of two spherical calcium waves.

METHODS
Preparation and solutions

Rapidly excised hearts of Wistar rats (230-250 g wt) were perfused in a
Langendorff apparatus according to a standard procedure. Ventricular
cardiocytes were isolated enzymatically and mechanically by stirring small
pieces of tissue. Several filtered fractions of isolated cells were stored in
HEPES-buffered solution at room temperature. The composition of the
solution was (in mM): NaCl 110; KC1 2.6; CaCl, 1.8; MgSO, 1.2; KH,PO,
1.2; glucose 11; HEPES 25; albumin (Sigma) 1 mg/ml solution; penicillin/
streptomycin (10,000 units/10 mg/ml; Biochrom) 0.1 ml/100 ml solution
(pH 7.4 at 20°C). Freshly prepared myocytes were loaded with fluo-3
(Molecular Probes, Eugene, OR) by means of a 10-min exposure of 5 uM
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FIGURE 1 Normalized velocity (N)-versus-curvature relationship

(straight line, J) and velocity-versus-radius relationship (two branches of a
hyperbola, II). Curves correspond to N = ¢ ~ D*K = ¢ — DIR, with¢ =
1 and D = 1 (a.u., arbitrary units). Curvature K (upper scale) as well as
radius R (lower scale) are negative in the left, and positive in the right part
of the corresponding graph. Velocity data of the left parts reflect the
propagation of negatively curved wavefronts and are higher than those of
positively curved wavefronts (right parts of the graphs). The velocity of
plane waves corresponds to the point (0, 1). The critical radius below
which no wave will propagate is calculated from the intersection of the
straight line with the curvature axis and amounts to 1, because of normal-
ization (see upper graph). For further explanation see Eq. 1.

fluo-3 AM, followed by a 30-min wash to remove the remaining extracel-
lular calcium indicator.

Myocytes with a diastolic sarcomere length of less than 1.8 um were
rejected. The mean sarcomere length (SL) was determined by fast Fourier
transform and amounted to 1.86 * 0.05 um (mean = SD, n = 50).
Myocytes that did not shorten by at least 20% of the mean SL, when
electrically stimulated after a 3-min rest, were also omitted (ASL: 433 +
48 nm, mean * SD, n = 50). From cells with spontaneously propagating
calcium waves, those with a frequency of less than one per minute at room
temperature were selected.
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Perfusion chamber and confocal laser
scanning microscope

The cell suspension was transferred to the glass bottom of a perfusion
chamber (20 mm in diameter and 0.17 mm thickness), which was covered
by an identical second plate mounted in a perspex ring. The solution layer’s
height was 0.5 mm, and the resulting volume was 200 ul. For the mea-
surement of spatiotemporal Ca®* patterns, we used an inverted microscope
(Olympus IMT-2) that is part of the confocal laser scanning microscope
INSIGHT PLUS (Meridian Instruments, Okemos, MI). The scan system
consists of a galvanometer-driven bidirectional mirror (Brakenhoff), which
allows image scanning of 512 times 480 pixels, with a speed of 100
scans/s. The speed of image display amounts to 25 scans/s (CCD camera).
The light source was an argon ion laser with emission wavelengths of 488
and 514 nm. The Z-drive accessory provides computerized control of
optical sectioning with a minimum vertical step of 0.6 wm. Image series
showing calcium waves of rat heart cells stained with fluo-3 were saved on
a videotape.

Image processing

For the digitization of video frames, we used a frame-grabber board with
software package QuickCapture (Data Translation, Marlboro, MA) and a
Macintosh Quadra 800 computer. The software used for both the calcula-
tion of intensity profiles and object boundaries, as well as for the presen-
tation of images in this paper, was IPLab Spectrum version 3.1 (Signal
Analytics, Vienna, VA) and National Institutes of Health Image 1.43
(Microsoft).

RESULTS

Fig. 2 (top) shows a fluorescent rat cardiac myocyte with a
spontaneous spherical calcium wave, which originated from
the outermost right edge. The positive curvature of the
spreading wave decreases (compare wavefronts in a and b).
To acquire its position, a strip of the image (20 pixels or 4.5
pm wide) that crosses the wave front perpendicularly was
selected as region of interest. At the bottom of Fig. 2,
overmodulated profiles of the fluorescence intensity are
depicted (a’, b’ correspond to a, b). The position of the
wave front was set, generally, at the maximum step of
increasing intensity.

Fig. 3 shows the nonlinear propagating behavior of spher-
ical calcium waves. In Fig. 3 A, the time-dependent position
of the wavefront of 20 cardiac myocytes is shown (n = 20).
The experimental conditions were identical ([Ca?*] of the
bath solution 1.8 mM, room temperature). At equidistant
time points, each data set was locally approximated (see the
Appendix). The procedure of nonparametric approximation
was repeated with means (see points in Fig. 3 B), thus
resulting in a curve with an initially small slope that steep-
ens with increasing time. The mean propagation velocity
was obtained by differentiation and plotted versus time in
Fig. 3 C. The oscillations of this curve are not an artifact and
may be due to “roughening” by differentiation. Actually,
fluctuations of the points in the propagation-time curve
(Fig. 3 B) are real but too small to become visible here. Fig.
3 D shows velocity versus curvature, which is given by the
reciprocal of the propagation length. The curve was calcu-

Volume 73 September 1997

50 pm

bl

FIGURE 2 Propagation of a spherical calcium wave from the right side
to the left side of a rat cardiac myocyte. Cell was loaded with 5 uM fluo-3
AM. (Top) A strip of the image is depicted as an inverted region of interest
at two different phases of the wave (a and b). Note: The marked region
crosses the wave front perpendicularly. (Bottom) Overmodulated intensity
profiles of fluorescence were acquired at different moments and positions
within the cell (a’ and b'). Position of the wave front was set to where the
increasing intensity was at a maximum (see a’, b’). Identical length
calibration for top and bottom.

lated using simultaneous values of the functions depicted in
Fig. 3, B and C. Again, fluctuations at low curvature reflect
the roughening effect of differentiation.

As mentioned by way of introduction, the curvature of a
calcium front appears negative in the region of colliding
calcium waves. Subsequently, Fig. 4 shows the develop-
ment, collision, and annihilation of two spherical calcium
waves that appear at different times and places. Selected
phases of the calcium signals are indicated by numbers in
milliseconds. The actual collision started between 400 and
420 ms, which is shown in the frames of the lower two
panels. In the collision zone, “cusp”-like wavefronts de-
velop, drift apart, and reach the side edges of the myocyte.
At 480 ms both calcium waves appeared to be practically
fused together before the annihilation began. The last frame,
at 680 ms, shows a phase of annihilation with two “black
holes” placed at two areas with previously enhanced cal-
cium concentration (see frame 400 ms). Fig. 5 A shows the
fluorescent myocyte at phase 400 ms after rotation by 40°.
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FIGURE 3 Data and analysis of nonlinear propagation of spontaneous spherical calcium waves (s = position of the wave front, ¢ = time, v = ds/dt =
propagation velocity, 1/s = curvature of the wavefront). (A) Data of time-dependent position of spreading waves from 20 different cardiac myocytes. (B)
Points represent means obtained from the experimental data depicted in A by a nonparametric approximation of each data set (n = 20) and subsequent
averaging. Nonparametric approximation of the means yields the curve s versus ¢. (C) Propagation velocity versus time as derived from the calculated curve
of B by differentiation. Oscillations may be due to “roughening” by differentiation. (D) Velocity versus curvature was caiculated from simultaneous values
of the functions depicted in B and C. Fluctuations at low curvature reflect the “roughening effect” of differentiation.

The corresponding three-dimensional views of the fluores-
cence intensity in Fig. 5, B and C, illustrate the determina-
tion of the areas of interest. Whereas in Fig. 5 B the intensity
profile is unfiltered, Fig. 5 C shows clusters of fluorescence
after normalization with minimum intensity raised from 0 to
128 pixels and maximum intensity remaining at 256 pixels.
The boundaries of both of the clusters at the white area
define the areas of interest used for the quantitative descrip-
tion of colliding spherical calcium waves. Those areas are
shown in Fig. 6 at the start of collision (@) and 20 ms
thereafter (b). Boundaries are not smooth and form more or
less wide “cusps” that distinctly drift apart as the collision
proceeds.

Fig. 7 illustrates the evaluation of colliding calcium
waves. The left panel shows object boundaries that were
obtained after enlargement of the areas of interest that are
shown in Fig. 6, a and b, and after sampling by computer.
It is important to remark that the “cusps” were approxi-
mated by pairs of parabolic functions (see the Appendix for

details; the approximation by hyperbolas according to
Foerster et al. (1988), who investigated cusplike structures
in simpler excitable media of the Belousov-Zhabotinskii
reaction, was not satisfying). The overlaid pairs of parabolas
differ distinctly from each other after only 20 ms. In the
right panel, circles represent experimental data and dotted
lines the corresponding approximation curves. The distance
of two ticks amounts to 10 pixels or 2.25 um in both panels.
It was an aim of the approximation to quantitatively char-
acterize the propagation of the wave front in the colliding
zone. Therefore, we determined the curvature K in the
vertices of the parabolae and the half-distance a between
them (see insets in both parts of the right panel of Fig. 7).
When observed from that point within a pair of parabolae,
which is assumed to be the origin of the new wave after
collision, the curves appear convex, so that the curvature is
considered to be negative. This is different from the curva-
ture of a spherical wavefront that is concave and positively
curved, when observed from the origin of the wave’s focus.
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FIGURE 4 Development of the collision of two spontaneous spherical calcium waves in a cardiac myocyte that was loaded with 5 uM fluo 3-AM. Note:
The foci develop at different times and positions within the cell. Frames in the lower panels show collisions at several phases. In the last frame (680 ms),
the annihilation of the waves becomes visible in the form of two “black holes” in place of two areas with previously enhanced fluorescence intensity

(compare to the frame at 400 ms).

Fig. 8 shows a summarizing plot of normal velocity (V)
versus curvature (K) of the front of spontaneously propa-
gating calcium waves in rat cardiac myocytes. The squares
are based on data resulting from colliding spherical calcium
waves as measured in 25 cardiocytes (n = 25). It is notice-
able that the majority of the velocities are greater at negative
than at positive curvature. Circles (means * SD) symbolize
propagation velocities of single spherical calcium waves,
derived from 20 cardiocytes (n = 20). The latter data
correspond to those of Fig. 3 A, but the circles depicted in
Fig. 8 were calculated after averaging of velocity and not
propagation length data, both versus time. The advantage of
this procedure is explained in the Appendix. All of the data

shown in Fig. 8§ were approximated by weighted orthogonal
regression and resulted in

N =85.7—-120.1 *K (according to Eq. 1)

with the critical radius R.;, = 1.4 um and the diffusion
coefficient of D = 1.2 X 10™* mm%s. Plane waves were
calculated to spread with a velocity of ~86 um/s.

DISCUSSION

The results presented in this paper confirm that spherical
calcium waves in rat cardiac myocytes propagate in a non-
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FIGURE 5 Spherical calcium waves immediately before collision and determination of the size of areas of interest. (A) The cell corresponds to the frame
at 400 ms (Fig. 4) after a rotation of 40°. (B) Three-dimensional view of the fluorescence intensity of the whole cell (no subtraction of the background,
no filtering). (C) Three-dimensional view of the fluorescence intensity of the whole cell after normalization of the intensity (minimum intensity was raised
from O to 128 pixels, and maximum remained at 256 pixels; linear filtering). Areas of interest are surrounded by the boundaries of both fluorescence clusters.

linear manner with respect to velocity (Wussling and Salz,
1996). Waves with positive curvature start with relatively
low velocity and approach a maximum value with increas-
ing radius. When spherical calcium waves collide with each
other, they form “cusp”-like fronts that drift apart within a
short time. Those wavefronts are considered to be nega-
tively curved. They spread with relatively high velocity
from the point of collision and slow down to a minimum
value while approaching a planar wavefront. Fig. 8 shows
that 1) In general, negatively curved waves propagate faster
than those with positive curvature. 2) The normal velocities
of negatively and positively curved waves, respectively, aim
at the same value at zero curvature, namely 86 pm/s. This
is in agreement with previously reported data (Ishide et al.,
1990; Williams, 1993; Engel et al., 1995). 3) When fitted by
a straight line (according to Eq. 1, describing wave propa-
gation in systems with Belousov-Zhabotinskii reaction), the
data yield the critical curvature, where waves do not prop-
agate. From this value, a critical radius of 1.4 um was

calculated, which is on the order of the radius of a calcium
spark at half-maximum light intensity (Cheng et al., 1993;
Goémez et al., 1996; Lipp and Niggli, 1996; Klein et al.,
1996). The corresponding volume with increased [Ca®*];
amounts to 12 p,m3. It is established that this volume, which
must be exceeded to generate a spontaneous calcium wave,
practically equals that which is occupied by a single calcium
spark (10 um®; Cheng et al., 1993). The effective diffusion
coefficient of D = 1.2 X 10~* mm?s, resulting from the
negative slope of the regression line (cf. Eq. 1 and Fig. 8),
corresponds to those of buffered Ca** in the cytoplasm of
various living cells (Lechleiter et al., 1991; Tang and Oth-
mer, 1994; Wang and Thompson, 1995).

During the collision of two calcium waves, a new wave-
front develops and propagates perpendicular to the original
direction. It is observed that the propagation velocity of the
new wavefront is abruptly enhanced immediately after the
collision, in comparison to the single wave propagation
immediately before the collision. The question that remains
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FIGURE 6 Fluorescent areas of in-
terest of two colliding spherical cal-
cium waves. (a and b) Frames of Fig.
4 at 420 and 440 ms, respectively,
each after a rotation and normaliza-
tion analog to the procedure demon-
strated in Fig. 5. Boundaries are un-
smooth and develop more or less
wide “cusps” that drift apart dis-
tinctly within a short time (b was
obtained 20 ms after a).
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concerns whether this effect is due to a simple phenomenon
of interference. Despite the fact that colliding calcium
waves annihilate each other (Ishide et al., 1990), we con-
sider two perfectly equal expanding circular waves that
interfere in the physical sense (similar to circular waves on
a water surface), with assumed points of intersection at x =
Oandy = =/(c*? + 2cryt), where t is time, ¢ is the normal
speed of a single wave before collision, and ry is the radius
at t = 0 (the moment when the two circles touch each other).
The positive velocity of the intersection is given by

dy/dt = (c’t + cry)ly )

To better compare the physical phenomenon of interfering
surface waves to the phenomenon of colliding calcium
waves, Fig. 9 shows the velocity of the wavefront, dy/dt,
during interference and collision, respectively, versus the
reciprocal of its position, 1/y. Fig. 9, curve a, corresponds to
the physical phenomenon of interference of two circular
waves and is calculated from Eq. 2, with the assumptions of
¢ = 86 um/s (see Fig. 8, velocity of plane calcium waves
according to the intersection of the straight line with the

50 pm

velocity axis) and r, = 86 um. Fig. 9, curve b, shows the
regression line of experimentally obtained data from collid-
ing calcium waves, where 1/y represents the reciprocal of
the half-distance between the vertices of parabolae (cf. Fig.
7, right). It should be mentioned that squares in Fig. 9
correspond to, but are not identical to, the curvature-related
squares in Fig. 8. The slope of curve b in Fig. 9, however,
is clearly different from that of curve a, thus suggesting that
the enhancement of the propagation velocity (immediately
after the collision of calcium waves) and its succeeding
decrease are due to an autocatalytic process rather than a
simple phenomenon of interfering circular waves.

During the collision, both single waves are expected to
undergo a deformation of the wavefronts in the colliding
region. This implication results from the observation that
the common wavefront propagates with enhanced velocity,
although it was slower than predicted from Eq. 2. In other
words, the propagation velocity of single waves is slowed
down during collision and subsequent annihilation. A pos-
sible explanation is the mutual hindrance of the diffusion of
Ca?* that was released from the sarcoplasmic reticulum.
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FIGURE 7 Illustration of the evaluation of colliding calcium waves.
(Left) Areas of interest are surrounded by lines, both after normalization of
fluorescence intensity (Fig. S), and agree with the areas of Fig. 6. The
“cusps” were approximated in pairs by parabolic functions, and the corre-
sponding curves, which differ from each other, are overlayed. (Right) The
upper part of the panel corresponds to a, and the lower part corresponds to
b. Circles represent experimental data. They are given by the values of
abscissa, ordinate, and intensity after the computerized determination of
the “cusp” boundaries. The division at the axes is 10 pixels (= 2.25 um)
in both panels. The procedure of approximation by parabolae (dotted lines)
is described in the Appendix. K represents the curvature at the vertex of a
parabola (in 1/um) and is considered to be negative (see text for explana-
tion). a is the half-distance between the vertices of the corresponding
parabolae (in pum). t represents time (leff). Note the changes in K and a
from top to bottom (i.e., within 20 ms).

This is caused by increased cytosolic [Ca®*]; in the region
of collision, thus acting as a diffusion barrier in the direction
of the single-wave propagation immediately before colli-
sion. Unfortunately, because of a certain inhomogeneity of
the fluorescent light signals and the relatively small size of
cardiac myocytes, the expected collision-induced deforma-
tion of the single wavefront would be nearly impossible to
resolve.
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FIGURE 9 (a) Velocity of the intersection of two expanding and inter-
fering circular waves versus the reciprocal of the distance between the
point of touching at ¢ = O (see text) and the intersection at any given
moment. (a’) Data obtained after division of curve a by 1.36 (see text for
explanation). (b) Velocity of the “cusps” of two propagating and colliding
spherical calcium waves versus the reciprocal of the half-distance between
the vertices of the parabolae, used for the approximation of the “cusps.”

It has been shown that calcium waves in cardiac myo-
cytes propagate faster in the longitudinal than in the trans-
verse direction (Engel et al., 1994; Parker et al., 1996). In
our experiments, we observed negatively curved wavefronts
(i.e., those after collision) traveling mainly in the transverse
direction of the cell. Therefore it was necessary to take into
account that diffusion within cardiac myocytes is anisotro-
pic. Considering the enhanced but unreduced velocities of
negatively curved in comparison to positively curved cal-
cium waves (see Fig. 8), an essential influence of the
reduction of the propagation velocity by traveling in a
transverse direction can be excluded. Furthermore, we have
divided the data of curve a in Fig. 9 by 1.36 (mean ratio of

400
o
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FIGURE 8 Normal velocity (N) versus curvature (K). i) 0 g o
[0, Data resulting from colliding spherical calcium E 200 %’
waves acquired from 25 cardiac cells (n = 25). O, = o o
Spherical calcium waves (means = SD) (n = 20, data 2 o - o
shown in Fig. 3 A). The data were approximated by ‘2 100 G
orthogonal weighted regression (see Appendix) and re- % o & [
sulted in N = 85.7 — 120.1*K (according to Eq. 1: N = > o A § o, 9o %°
¢ — D*K), with the critical radius R_,, = 1.4 pm and the o :%"\
effective diffusion coefficient D = 1.2 X 10™* mm?%s. 0 1
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velocities longitudinal/transverse; Engel et al., 1994) and
obtained curve a’. Even if we consider a certain effect of
anisotropy on the propagation velocity of circular waves,
there remains a discrepancy between the model of interfer-
ence (Fig. 9, curves a and a’) and colliding calcium waves
in cardiac myocytes (Fig. 9, curve b). Obviously, the veloc-
ity-curvature relationship (Eq. 1) is most suitable for the
description of spontaneous calcium waves in living cells.

In summary, colliding calcium waves develop “cusp”-
like, negatively curved fronts that propagate considerably
faster than single waves. Collision-induced velocity en-
hancement is not due to interference; rather it obeys the
velocity-curvature relationship derived from chemical sys-
tems with autocatalytic properties (Belousov-Zhabotinskii
reaction). Supposedly, the spatiotemporal patterns of both
negatively and positively curved calcium waves essentially
depend on the effective diffusion coefficient of cytosolic
Ca®". A critical volume with enhanced [Ca2+]i on the order
of a single calcium spark is suggested to initiate the prop-
agation of traveling calcium waves.

APPENDIX

Remarks on mathematical handling for
single waves

Single spherical calcium waves were observed in 20 cells. The measured
values s, i = 1,...,20,j = 1,..., 35, of the way at the time points ; =
0.02 - j can be modeled by

s = 5i(t) + ey (AL.D)

where the unknown functions s;(f) are supposed elements of a Sobolev
room W$(—w, +0) and the unknown e; are supposed realizations of
random errors.

The substitution of s,(f) in the models (Al.l1) by truncated Taylor
expansions,

sty + (2 = 19)) = si(ty) + (£ — 1) - 5"(10)

and introduction of Gaussian weight functions,

1(5— 1)
Wij(to; 4, h) := exp{ ) _J_hZ_O}

with a smoothing parameter & > 0 results in so-called local models,

s = si(t)) + (& — 10) - sV (8o)

Y - (Al2)
(tl_s'tL) . s§5)(t0) + ﬁ
| oy

ij

for each i and for each fixed t, from [¢;t35].

Biophysical Journal

Volume 73 September 1997

By least squares,

35
Q0 := 2 wii(to; 4, h)

j=t

: {sij = 5ite) — (t; — t0)s"(te) — - - - (A1.3)

t— t) 2
- (154'0) S?S’(to)} —> min

one can obtain both smoothed values §;(,) of the way s,(z,) and smoothed
values §,((t,) of the velocity s,"(t,) for each time point #, (Schmerling and
Peil, 1989).

In this manner we found from (A1.3), with & = 0.08, velocity estimates

vy = &) fori=1,...,20andj = 1,..., 35. The mean values ; for
all cells

. e

ViTho > Vij

at the time points #; are demonstrated as a curve in Fig. 3 C.
The sample variances

1 2
2 .= 5 _— o2
T Z(Vij V)
i=1
are needed as accuracies in the following weighted orthogonal regression.

Weighted orthogonal regression

There are given velocity mean values ¥, with their sample variances vsj and
curvature mean values k, with their sample variances ks7.
Between the true values v,° and &,°, a linear functional relationship

W=a+ Bk

forl =1,...,nis assumed.
According to Sprent (1969), we must estimate o and 8 from

" —a— B k)? D (k- k)
Q*:=Z(' 218 D +2(1ks21) s min
1

=1 ! =1
(A2.1)

which is equivalent to

N i (-‘;l—a—B'%l)z
C= 2T R

I=1

— min (A2.2)

(weighted orthogonal regression). From (A2.2) we found estimates & and
B by Gauss-Newton iteration. The result of this evaluation is demonstrated
as a straight line in Fig. 8.

Fitting data by a double parabola

In the area of collision, the “cusps” were approximated by a double
parabola. It can be described by the parametric representation
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x=xp+ (p — xp)cos ¢ — (a + b(p — xp)?)sin ¢
y =7y + (p — xp)sin ¢ + (a + b(p — x)*)cos ¢
p € (—, ©)(upper part)
and
x=xy+ (p — xp)cos ¢ + (a + b(p — xp)*)sin ¢
¥y =+ (p — xp)sin ¢ — (a + b(p — x,)*)cos ¢
p € (—%, x)(lower part)

(x0, Yo) is the center of the parabola, a the distance from the center to the
vertex, and ¢ the (small) angle of rotation. The curvature becomes —2b.

Every point (§;, ;) of the boundary of the “cusps” is approximated
by a point (x;, y;) of the parabola, i.e., we must find parameters
Pis - - - s Pas Xg» Yo» @b, @ such that

IF@,. . ..

’pn’ xO’ yO’ a, b’ d’)”% - min
where
& — xo = (p1 — xo)cos & + sign(n, — yo)a + b(p, — x,)))sin ¢

FO) = & — X0 = (o — Xo)c0s & + sign(m, — yola + b(p, — x,)))sin ¢
T m = yo = (1 — xo)sin & — sign(my — yo)a + bp; — x0)*)cos ¢

T — Yo — (Pa — Xo)sin & — sign(n, — yola + b(p, — xp)*)cos ¢,

The points (&,m;) are well separated into an upper and a lower area,
respectively (i.e., even though the determination of y, is part of the
minimization process, the values of sign(mn; — y,) do not change throughout
the computation, if the initial values are chosen properly).

The problem is solved by Gauss-Newton iteration (cf. Fletcher, 1987).
Note that the Jacobian has the form

(D, A
7=\p, B)

where D, and D, are diagonal and A and B are n X 5-blocks. That is, the
computation of (JTJ)~'/TF—what must be done in every Gauss-Newton
step—can be organized in such a way that it requires (n) floating point
operations only.
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the manuscript.
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