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In a context where injection of antigen (Ag)-specific T cells probably represents the future of leukemia
immunotherapy, identification of optimal target Ags is crucial. We therefore sought to discover a reliable
marker for selection of the most potent Ags. To this end, (1) we immunized mice against 8 individual Ags:
4 minor histocompatibility Ags (miHAs) and 4 leukemia-associated Ags (LAAs) that were overexpressed on
leukemic relative to normal thymocytes; (2) we assessed their ability to reject EL4 leukemic cells; and (3) we
correlated the properties of our Ags (and their cognate T cells) with their ability to induce protective anti-
leukemic responses. Overall, individual miHAs instigated more potent antileukemic responses than LAAs.
Three features had no influence on the ability of primed T cells to reject leukemic cells: (1) MHC-peptide
affinity; (2) the stability of MHC-peptide complexes; and (3) epitope density at the surface of leukemic
cells, as assessed using mass spectrometry. The cardinal feature of successful Ags is that they were recognized
by high-avidity CD8 T cells that proliferated extensively in vivo. Our work suggests that in vitro evaluation of
functional avidity represents the best criterion for selection of Ags, which should be prioritized in clinical
trials of leukemia immunotherapy.

� 2014 American Society for Blood and Marrow Transplantation.
INTRODUCTION GVL [20,21]. Moreover, evidence suggests that miHA-

Allogeneic hematopoietic cell transplantation (AHCT) led

to the discovery of the allogeneic graft-versus-leukemia
(GVL) effect, which remains the most convincing evidence
that immune cells can cure cancer in humans [1-3]. After
conventional HLA-matched AHCT, GVL is clearly mediated by
donor T cells that use several cytotoxic mechanisms to kill
leukemic cells [4-8]. T cells from an allogeneic (nonidentical
twin) HLA-matched donor can react to both leukemia-
associated Ags (LAAs) and minor histocompatibility Ags
(miHAs) on recipient cells, whereas an identical twin (syn-
geneic) donor can react to LAAs but not miHAs. miHAs are
polymorphic MHC-associated peptides that result from ge-
netic variations such as single nucleotide polymorphisms
[9-12]. Strikingly, in mice and humans, the GVL effect is
abrogated when the donor is syngeneic. There is, therefore,
general agreement that after conventional AHCT, the GVL
effect depends on direct recognition of host miHAs by donor
T cells [1,2,8,13-19].

Nonetheless, even though the GVL effect after conven-
tional AHCT is clearly miHA dependent, evidence suggests
that LAAs are immunogenic and might contribute to GVL
initiated by miHA-responsive T cells. Expansion of donor
T cells specific for PR1 and WT1 was observed post-AHCT,
and, in the case of WT1, correlated with the occurrence of
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triggered GVL initiates Ag spreading that leads to T cell
responses against LAAs [2]. Finally, overall comparisons
between miHAs and LAAs may not be fair. Though exact
numbers are not known, estimates suggest that the number
of different miHAs that can be recognized by allogeneic T
cells may be as high as 100 [12,22], whereas the number of
immunogenic LAAs expressed by a population of leukemic
cells is probably less than 10 [23,24]. Therefore, GVL might
appear to be dependent on miHAs simply because donor T
cells are confronted with a larger repertoire of miHAs than
LAAs. Consequently, there is no evidence that on a per Ag
basis, there are differences in the antileukemic activity of T
cells targeted to LAAs versus miHAs [25,26]. In a context
where injection of Ag-specific T cells probably represents the
future of leukemia immunotherapy [2], identification of the
best targets is of capital importance. If, on a per Ag basis,
LAAs are as effective as miHAs, then targeting LAAs would be
preferable because autologous T cells could be used. The
superiority of miHAs would require the use of allogeneic
donors. The goal of the present work was, therefore, to
investigate the rules determining whether an Ag (miHA or
LAA) is a good target for leukemia immunotherapy. We
sought to directly address this question using a straightfor-
ward approach: (1) we immunized mice against 8 individual
Ags (4 miHAs and 4 LAAs), and we then assessed their ability
to reject EL4 leukemic cells; and (2) we compared the
properties of these Ags (and their cognate T cells) to discover
which features correlated with antileukemic activity in vivo.
To the best of our knowledge, our work provides the first
direct comparison of antileukemic responses induced by
individual miHAs and LAAs. We report that, overall,
Transplantation.
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individual miHAs generated muchmore potent antileukemic
responses than LAAs. In vivo antileukemic activity was
dictated by the functional avidity of Ag-reactive T cells and
not by epitope density on leukemic cells nor by the strength
of peptide-MHC (pMHC) interactions.

MATERIALS AND METHODS
Mice

B10.C-H7b/Sn (B10.H7b), B10.LP- H3b H13b/(36NS)Sn (B10.H3b/H13b),
B10.129P-H46b H47b/(21M)Sn (B10.H4b), C57BL/10J (B10) and C57BL/6 (B6)
mice were obtained from The Jackson Laboratory (Bar Harbor, ME). B10.H7b,
B10.H3b/H13b, and B10.H4b mice are referred to as B10-congeneic mice.
Mice were housed under specific pathogen-free conditions and all experi-
mental protocols were approved by the Comité de Déontologie de l’Expér-
imentation sur des Animaux of Université de Montréal.

Peptides
Native peptides and FITC-conjugated peptides (SII[Lys-FITC]FEKL) and

(ASP[Lys-FITC]NSTVL) were synthesized by GenScript (Piscataway, NJ). Pu-
rity, as determined by the manufacturer, was greater than 95%. 13C-versions
of VAAANR*EVL, STLTYSR*M and KAPDNR*ETL peptides were synthesized
by JPT Peptide Technologies (Berlin, Germany).

Cell Lines
The EL4 lymphoma cell line was obtained from the American Type

Culture Collection (Manassas, VA) andwas cultured in DMEM supplemented
with 10% horse serum. RMA-S cells, provided by Dr. Sylvie Lesage (Université
de Montréal), were cultured in RPMI 1640 medium supplemented with 10%
fetal bovine serum and .048 mmol/L b-mercaptoethanol. Cell cultures were
supplemented with 2 mmol/L L-glutamine and 2 mmol/L penicillin-
streptomycin.

Preparation of Bone Marrowederived Dendritic Cells (DCs), Mouse
Immunization, and Survival Curves

Bonemarrowederived DCswere generated as previously described [27].
For mouse immunization, DCs from male mice were pulsed with the
selected peptide (2 mM) for 3 hours. Cells were washed and injected i.v. (106

cells per mice) in 8- to 16-week-old female mice on day -14 and day -7. On
day 0, EL4 cells were harvested, washed 3 times in PBS, and injected i.v.
Mice were monitored for loss of weight, paralysis, or tumor outgrowth.
B10-congeneic and B6 female mice were used to generate miHA- and LAA-
specific CD8 T cells, respectively. As negative controls, B6, B10, or B10-
congeneic female mice were immunized with unpulsed DCs derived from
syngeneic mice.

Cell Sorting, Flow Cytometry, and Cytotoxicity Assays
For cell sorting, 30� 106 splenocytes/mL were stained with FITC-labeled

anti-CD8a (53e6.7; BD Bioscience). Splenocyteswere stained for 30minutes
at 4�C, washed, and sorted using a FACSAria apparatus. MHC I tetramers
were provided by the NIH tetramer core facility (Atlanta, GA). For tetramer
labeling, sorted CD8 T cells were stained with 2.5 mg/106 cells of the
appropriate APC-labeledMHC class I tetramer for 15minutes at 37�C prior to
flow cytometry. Two negative controls were analyzed: (1) staining of naïve
cells with the relevant tetramer, and (2) staining of primed cells with an
irrelevant tetramer. Since both controls showed similar background stain-
ing, we present only staining of naïve cells with the relevant tetramer as a
negative control. Analyses were performed on a BD Canto II flow cytometer
using FACSDiva software (BD Bioscience; Mississauga, ON, Canada). In vitro
cytotoxicity assays were performed as previously described, with minor
modifications [28]. Splenocytes harvested from immunized mice were
depleted of natural killer cells using a biotinylated anti-NK1.1 antibody (Ab)
(PK136; BD Bioscience) and the EasySep mouse biotin positive selection kit
(Stem Cell Technologies). The remaining cells were restimulated in vitro in
complete RPMI with 2 mM of the relevant peptide for 5 days and used as
effectors. Target cells were CFSE-stained EL4 cells. Effector and target cells
were incubated at different ratios overnight and analyses were performed
on a BD LSR II flow cytometer using FACSDiva. The percentage of specific
lysis was calculated as follows: ([number of remaining CFSEþ cells after
incubation of target cells aloneminus number of remaining CFSEþ cells after
incubation with effector cells]/number of CFSEþ cells after incubation of
target cells alone) � 100.

MHC Binding Affinity and Half-life pMHC Complexes
Generation of pMHC complexes is deficient in RMA-S cells because these

cells do not express functional transporter associated with Ag processing.
However, at reduced temperatures (26�C) RMA-S cells express empty,
peptide-receptive, MHC class I molecules. These cells can, therefore, be used
to load specific peptides on MHC molecules to create pMHC complexes that
remain stable at 37�C [29]. For the evaluation of peptide binding to H2Db

and H2Kb, RMA-S cells were incubated overnight at 26�C, pulsed with 10�10

to 10�4M of the selected peptide, incubated at 37�C for 2 hours, washed, and
stained with Abs against MHC I molecules. For assessment of MHC binding
affinity, RMA-S cells were pulsed with the test peptide and 10�7 M of FITC-
conjugated competitor peptide. After incubation at 37�C for 1 hour, cells
were washed and analyzed by flow cytometry to evaluate displacement of
the FITC-conjugated peptide by the unlabeled peptide. To evaluate the half-
life of pMHC complexes, RMA-S cells were incubated overnight at 26�C with
50 mMof the selected peptide. On the followingmorning, cells werewashed,
incubated at 37�C, stained for MHC I molecules, and analyzed by flow
cytometry every hour for 12 hours. MHC staining was performed using Abs
against H2Db (B22e249.R1; Cedarlane, Hornby, ON, Canada) or H2Kb (Y3;
ATCC, Manassas, VA). Cell aliquots were stained with biotin-labeled anti-
IgG2a-k, (8.3; BD Bioscience) and PE-conjugated streptavidin (BD Bio-
science) for H2Db, and with FITC-conjugated anti-IgG2b-k (R12-3; BD
Bioscience) for H2Kb. Half-life of pMHC complexes and affinity of peptides
for MHC I molecules were estimated using a 1-phase exponential decay
equation and a dose-response curve, respectively [30,31].

ELISpot and Avidity Assays
Millipore MultiScreen PVDF plates were permeabilized with 35%

ethanol, washed, and coated overnight using the Mouse IFN-g ELISpot
Ready-SET-Go! reagent set from e-Bioscience (San Diego, CA). After
16 hours, sorted CD8 T cells from immunized and nonimmunized mice were
plated and incubated at 37�C for 48 hours in the presence of irradiated
splenocytes from syngeneic mice pulsed with the relevant peptide (4 mM for
the ELISpot assay and 10�4 to 10�14 M for the avidity assay). As a negative
control, CD8 T cells from naïve mice were incubated with peptide-pulsed
splenocytes. Spots were revealed using the reagent set manufacturer pro-
tocol and were enumerated using an ImmunoSpot S5 UV Analyzer (Cellular
Technology Ltd, Shaker Heights, OH). IFN-g productionwas expressed as the
number of spot-forming cells per 106 cells and the EC50 was calculated using
a dose-response curve.

Peptide Quantification
MHC Ieassociated peptides were eluted from the cell surface of 500 �

106 EL4 cells by mild acid elution as previously described [32]. Eluates were
spikedwith 500 fmoles of each 13C-labeled synthetic peptide, desalted on an
HLB cartridge 30 cc, filteredwith a 3000 Da cut-off membrane and separated
into 7 fractions by strong cation exchange SpinTips (Protea Bioscience).
Fractions were resuspended in .2% formic acid and analyzed by LC-MS/MS
using an Eksigent LC system coupled to an LTQ-Orbitrap ELITE mass spec-
trometer (Thermo Fisher Scientific). Peptides were separated on a custom
C18 reversed phase column (150 mm i.d. X 100 mm, Jupiter Proteo 4 mm,
Phenomenex) using a flow rate of 600 nL/minute and a linear gradient of 3%
to 60% aqueous ACN (.2% formic acid) in 120 minutes. Full mass spectrawere
acquired with the Orbitrap analyzer operated at a resolving power of 30,000
(at m/z 400). Mass calibration used an internal lock mass (protonated
(Si(CH3)2O))6; m/z 445.120029) and mass accuracy of peptide measure-
ments was within 5 parts per million. MS/MS spectra were acquired at
higher energy collisional dissociation with a normalized collision energy of
35%. Up to 12 precursor ions were accumulated to a target value of 50,000
with a maximum injection time of 300 ms and fragment ions were trans-
ferred to the Orbitrap analyzer operating at a resolution of 15,000 at m/z
400. The peptide quantification protocol was adapted from Anthony W.
Purcell et al. [33]. Briefly, Excalibur software (Thermo Science) was used to
extract both light (endogenous) and heavy forms (13C-labeled) of peptides
ion mass chromatogram from mass spectrometry raw files generated from
different samples. Absolute quantification was calculated using the
following formula: ([Light area under peak/Heavy area under peak] � [500
fmoles of 13C-labeled synthetic peptides x Avogadro’s number]) / cell
number.

Statistical Analysis
Results are expressed as means � SD. Statistical significance was tested

using parametric and nonparametric tests. P values < .05 were considered
statistically significant.

RESULTS
Experimental model

We used the EL4 T-lymphoblastic leukemia cell line that
originated from a C57BL/6 (B6) mouse. Amino acid sequences
of several B6 miHAs were elucidated by us and others,
including H3a, H4a, H7a and H13a, which were used in this
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study [34-39]. In addition, we studied 4 LAAs, which were
shown by mass spectrometry (MS) analyses to be present on
EL4 cells but not on B6 thymocytes: VAAANREVL (Xlr3),
SMYVPGKL (Pfnd5), STLTYSRM (Sgk) and NSMVLFDHV
(Top2a) (Table 1) [32]. Genes coding for these LAAs were
shown to be involved in several types of cancer
(Supplemental Table S1). We experimentally validated that
(1) each of our Ags was presented by either H2Db or H2Kb

(Figure 1A); and (2) in each case, mice primed with Ag-
pulsed DCs generated cytotoxic T cells that killed EL4 cells
in vitro (Figure 1B). Thus, our 8 Ags were immunogenic and
were presented at the surface of EL4 cells by a single MHC
class I allotype.

Protective Antileukemic Responses Can be Generated by
Some miHAs but None of the LAAs

First, we wished to evaluate whether immunization
against individual Ags could protect mice against EL4 leu-
kemia. Mice were primed twice (day -14 and -7) with DCs
pulsed with themiHA or LAA of interest. On day 0, mice were
injected with 5 � 105 EL4 cells, and were, thereafter, moni-
tored daily. Mice that were paralyzed, moribund, or pre-
sented tumors with a diameter greater than 1 cm were
euthanized. B10-congeneic mice were primed against miHAs
and B6 mice were primed against LAAs. We previously re-
ported that disparity at the H9 locus between B10 and B6
mice had no effect on their respective response to EL4 cell
injection [40,41]. Control mice were immunized with
unpulsed syngeneic DCs.

Immunization against the H4a miHA and the 4 LAAs had
no biologically significant effect onmice survival: all mice had
to be sacrificed by day 29. For H4a and 3 LAAs, median sur-
vival was similar to that of control animals immunized with
unpulsed DCs; for the SMYVPGKL LAA, immunization barely
increased survival by 1.5 day (Figure 2). In contrast, priming
against 3 other miHAs increased themean survival to 29 days
for H13a and to more than 100 days for H3a or H7a. The
protective value of anti-H7a responses was particularly
impressive, as no death occurred before day 26 in unprimed
B10.H7b mice and 60% remained leukemia-free at day 100
(Figure 2). To further hierarchize our Ags, we injected 5 � 104

EL4 cells (10-fold less than in the previous experiment) into
mice immunized against the 6 Ags that did not generate
complete protection against 5 � 105 EL4 cells. Immunization
against the 4 individual LAAs andH4a had no or onlymarginal
effect on mice survival (Supplemental Figure S1). By contrast,
40% ofmice immunized against H13a remained leukemia-free
on day 100 (Supplemental Figure S1). These data reveal the
Table 1
Key Features of miHA and LAAs

Antigen Type Peptide Sequence Peptide Source Gene

miHAs ASPCNSTVL (H3a)
TSPRNSTVL (H3b)

Zfp106

SGTVYIHL (H4a)
SGIVYIHL (H4b)

Emp3

KAPDNRETL (H7a)
KAPDNRDTL (H7b)

Stt3b

SSVVGVWYL (H13a)
SSVIGVWYL (H13b)

H13

LAAs NSMVLFDHV Top2a
VAAANREVL Xlr3a
SMYVPGKL Pfdn5
STLTYSRM Sgk1

miHA indicates minor histocompatibility antigens; LAAs, leukemia-associated anti
* Predicted MHC binding score was determined using NetMHCCons.
following hierarchy in the potency of antileukemic responses
elicited by our 8 Ags: H7a> H3a> H13a> the 4 LAAs and H4a.
Accordingly, protective antileukemic responses were induced
by 3 out of 4 miHAs but none of the LAAs.

Frequency of miHA- and LAA-specific CD8 T Cells in
Immunized Mice

Next, we assessed T cell expansion after Ag priming using
2 methods: tetramer staining and IFN-g ELISpot. These an-
alyses were performed on FACS-sorted CD8 Tcells from naïve
and immunized mice. Mice immunized against H7a, H3a and
H13a showed conspicuous accumulation of tetramer-positive
CD8 T cells (Figure 3A,B). For H4a and 3 LAAs, no tetramerþ

cells were detected, while in the case of VAAANREVL, a few
tetramerþ cells were observed.

In IFN-g ELISpot assays, the mean frequency of SFCs per
106 CD8 T cells was 16,380 for H7a, 12,440 for H3a and 4,827
for H13a (Figure 3C,D). For H4a and the 4 LAAs, the frequency
of SFCs was less than 1,000 per 106 CD8 T cells. Thus, the Ag
hierarchy in ELISpot assays was consistent with the hierarchy
observed using tetramer staining (Figure 4A). Furthermore,
the frequency of Ag-specific T cells detected with tetramer
staining and IFN-g ELISpot showed a strong correlation with
mice survival after injection of EL4 cells (Figure 4B,C). The
salient finding is, therefore, that the amplitude of T cell
expansion correlates with the strength of antileukemic re-
sponses. Of note, for the 3 most immunogenic Ags (H7a, H3a,
and H13a), the number of cells labeled by tetramers (11,337
to 65,295 per 106 CD8 T cells) was about 3-fold greater than
the number of IFN-g producing cells (4827 to 16,380 per 106

CD8 T cells). In contrast, with the other Ags, the frequency of
SFCs was similar (VAAANREVL) or greater (H4a and 3 LAAs)
than the frequency tetramerþ cells (Figures 3, 4). Tetramer
staining can detect T cells with medium- to high-affinity
TCRs. CD8 T cells with low-affinity TCRs are not stained by
pMHC tetramers but can be detected with functional assays
such as the IFN-g ELISpot [42-44]. Our data, therefore, sug-
gest that TCRs recognizing H7a, H3a, and H13a had higher
affinity for pMHC than TCRs recognizing other Ags.

Antileukemic Activity Correlates with T Cell Functional
Avidity

Having identified 3 immunodominant Ags that were able
to induce protective antileukemic responses, we sought to
determine themechanism responsible for their dominance. As
pointed out by Bihl et al., the term immunodominance is as
widely used as it is loosely defined [45]. This is largely because
the immunodominance hierarchymay vary as a function of the
MHC I Allele Predicted Binding Score (Nm)* Reference

H2Db 5.53 [34]

H2Kb 60.06 [35]

H2Db 37.51 [36,37]

H2Db 73.76 [38,39]

H2Db 466.68 [32]
H2Db 16.48 [32]
H2Kb 146.63 [32]
H2Kb 12.44 [32]

gens.



Figure 2. Mice immunized against miHAs are more resistant to EL4 cells than
mice immunized against LAAs. B6 (solid blue line) or B10-congeneic (solid red
line) mice were immunized with peptide-pulsed DCs on day -14 and -7, and
received 5 � 105 EL4 cells i.v. on day 0. In control groups, EL4 cells were
injected into B6 (solid black line), B10 (black dotted line) and B10-congeneic
(red dotted line) mice immunized with unpulsed DCs. ~x represents the me-
dian survival time. The log-rank test was used to compare the survival of
various groups to that of B6 or B10 mice immunized with unpulsed DCs. Ten to
15 mice per group.

Figure 1. LAAs and miHAs are immunogenic and bind to a single MHC class I
allotype. (A) Binding of LAAs and miHAs to H2Db and H2Kb. RMA-S cells were
pulsed with graded concentrations of the relevant peptide and stained with Ab
against H2Db (blue) or H2Kb (red). As a negative control (green), unpulsed
RMA-S cells were stained with Ab recognizing the relevant H2 allotype (H2Db

or H2Kb). The relative binding (y axis) was calculated by normalizing the MFI
obtained with each peptide concentration (x axis) to the intensity obtained at
a peptide concentration of 10�4 M. (B) Cytotoxic T lymphocytes primed against
individual miHAs and LAAs kill EL4 cells in vitro. Mice were immunized twice
(day -14 and -7) with peptide-pulsed DCs. We used B6 mice for LAAs and B10-
congeneic mice expressing the miHA b allele for the miHAs. On day 0, sple-
nocytes from naïve and from immunized mice were depleted of NK cells and
restimulated in vitro with peptide (2 mM) for 5 days. The resulting effector cells
were incubated at different effector: target ratios with CFSE-stained EL4 target
cells (x axis). All data are representative of 3 independent replicates.
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criteria used to build the hierarchy [46]. Here, we established
our Ag hierarchy as a function of their ability to generate
protective antileukemic responses (Figure 1, Supplemental
Figure S1): H7a > H3a > H13a > the 4 LAAs and H4a. This
hierarchywas congruentwith the number of Ag-specific Tcells
found after immunization (Figure 3). We then analyzed
the factors associated with immunodominance in various



Figure 4. The frequency of Ag-specific CD8 T cells in immunized mice corre-
lates with survival. (A) Correlation between the frequencies of SFCs (IFN-g
ELISpot) and of tetramerþ T cells. Correlation between median survival and (B)
the frequencies of SFCs (IFN-g ELISpot) and of (C) tetramerþ T cells. Fitness of
curves was determined by the coefficient of determination (r2). miHAs are
represented in red, LAAs in blue. Grey inserts show zoomed in depiction of low
values.

Figure 3. Frequency of Ag-specific CD8 T cells in primed mice. B6 or B10-
congeneic mice were immunized twice with peptide-pulsed DCs (day -14 and
-7). On day 0, splenocytes were harvested from the spleen of 3 naïve and
3 immunized mice (B6 mice for LAAs and B10-congeneic mice expressing the
b allele for themiHAs). Splenocyteswere stainedwith anti-CD8aAband sortedby
fluorescence-activated cell sorting. (A andB) Sorted CD8 Tcellswere stainedwith
MHC class I tetramers. (A) One representative experiment. (B) Frequency of tet-
ramerþ elements among CD8 T cells. Specific tetramer staining was obtained by
subtracting the unspecific staining observed in naïve unprimed mice. N.D. in-
dicates not detected. Data represent themeanpercentage of tetramerþ cells. Four
to 5 independent experiments per Ag. The frequencies of tetramerþ T cells was
significantly higher for H7a, H3a, and H13a than for other Ags (P < .05; t-test). (C
and D) Sorted CD8 Tcells were plated on aMultiScreen PVDF plate and incubated
for 48 hours in the presence of irradiated peptide-pulsed splenocytes. SFCs were
counted using an ImmunoSpot analyzer. (C) One representative experiment. The
number of spot forming cells and the number of plated CD8 T cells are indicated
below each well. (D) The frequency of SFCs in primed mice was calculated by
subtracting the number of SFCs in naïve mice. Data are expressed as the mean
frequency of SFCs per 106 CD8 T cells plated (3 independent experiments).
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experimental models, including properties of the Ag (density
on target cells, MHC binding affinity, and stability of pMHC
complexes) and of cognate T cells (frequency and functional
avidity) [31,47-59].

Epitope Density on EL4 Cells
MHC I-associated peptides were eluted from the cell

surface of EL4 cells, spiked with 13C-labeled synthetic



Figure 5. Epitope stability and abundance on EL4 cells do not correlate with
Ag potency. (A) Peptide abundance at the surface of EL4 cells. The abundance
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peptides, fractionated by liquid chromatography and
analyzed by MS for detection of isotopomers. Isotopomers
(peptides that have the same sequence but differ by the
presence of 1 isotopically labelled atom), appear as coeluting
pairs with a defined mass difference [28,60]. Absolute
quantification of peptide abundance was achieved by
comparing the abundance of native peptides to their corre-
sponding 13C-synthetic analogs. Three peptides were
selected for analysis: H7a which stands at the top of the hi-
erarchy, and 2 LAAs, which are at the bottom of the hierarchy
(VAAANREVL and STLTYSRM). Of note, based on the
NetMHCCons algorithm [61], these 3 peptides were pre-
dicted to have high MHC binding scores (Table 1). The mean
number of peptide copies per EL4 cell was estimated to be
1053 for H7a, 1737 for VAAANREVL and 6710 for STLTYSRM
(Figure 5A). Thus, the abundance of H7a was in no way
remarkable, being lower than that of the 2 LAAs. Hence,
epitope abundance on target EL4 cells did not correlate with
immunodominance.

MHC Binding Affinity and Stability of pMHC Complexes
For the assessment of the half-life of pMHC complexes,

RMA-S cells were incubated at 26�C overnight with the
selected peptide. Cells were then washed, incubated at 37�C,
and analyzed by flow cytometry every hour for 12 hours for
expression of H2Db or H2Kb. The half-life of pMHC com-
plexes, determined by using a 1-phase exponential decay
equation, ranged from 2.06 hours to 4.88 hours (Figure 5B).
To evaluate the MHC binding affinity of our 8 peptides, we
performed a competition-based assay using FITC-labeled
synthetic peptides [30]. We compared the ability of H2Db

and H2Kb binding peptides to displace either (ASP[Lys-FITC]
NSTVL) (H3a) or (SII[Lys-FITC]FEKL), respectively. We vali-
dated that FITC-conjugation of the reference peptides did not
prevent binding to their respective MHC allotype (data not
shown). The peptide concentration required for half-
maximal displacement of the FITC-conjugated peptide was
determined using a dose-response curve and ranged from
68.54 to 512.40 nM for (Figure 5C). The MHC binding affinity
and stability of pMHC complexes did not correlate with the
strength of antileukemic responses (Figure 5D,E). For both
parameters we observed a major overlap between immu-
nodominant and immunorecessive epitopes (Figure 5B,C).

T Cell Functional Avidity
If immunodominance in our model is not dictated by

properties of the Ags per se, it must be dictated by properties
of their cognate T cells: T cell frequency in the preimmune
repertoire or T cell functional avidity [57,58,62]. Frequencies
of H7a, VAAANREVL, and STLTYSRM was measured by MS. Two biological
replicates (R1 and R2) per peptide. (B) Half-life of pMHC complexes. RMA-S
cells were incubated overnight with 50 mM of the selected peptide. Cells
were then washed, incubated at 37�C and chased every hour for 12 hours by
staining for either H2Db or H2Kb. The half-life of the top 5 Ags was longer than
that of STLTYSRM and SMYVPGKL (P < .05; t-test). (C) Peptide binding affinity
was determined by a competition-based peptide-binding assay. RMA-S cells
were pulsed with peptide concentrations ranging from 10�10 to 10�4 M and
with 10�7 M of (ASP[Lys-FITC]NSTVL) (H3a) for H2Db binding peptides or (SII
[Lys-FITC]FEKL) for H2Kb binding peptides. Data were normalized to
maximum intensity values. The top 4 Ags showed a greater MHC binding
affinity than VAAANREVL and H4a (P < .05; t-test). However, statistical analysis
showed no significant differences between miHAs (grey) and LAAs (black).
Half-life of pMHC complexes (D) and peptide binding affinity (E) were plotted
against the median survival of EL4 bearing mice. Fitness of the curves was
determined by the coefficient of determination (r2).
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of Ag-specific T cells in the preimmune repertoire range from
1 to 89 cells/million naïve CD8 Tcells [57]. That the frequency
of H7a-specific T cells lies at the lower end of this range (at
2 cells/million) [31] argues against the possibility that our
immunodominant Ags are recognized by high-frequency CD8
T cells. We, therefore, investigated the role of functional
avidity of Ag-specific T cells using serial peptide concentra-
tions and defining EC50 as the exogenous peptide concen-
tration yielding half-maximal counts in IFN-g ELISpot assays.
In these assays, functional avidity (or antigen sensitivity) of
CD8 T cells refers to their activation threshold in response to
defined concentrations of exogenous peptide [54,63]. We
were unable to assess the frequency of T cells specific for H4a

and the 4 LAAs because their frequency was too low
(Figure 3D). Nonetheless, we found that the EC50 for H7a, H3a,
and H13a (the 3 top Ags) were .28 nM, 11.35 nM and 32.02
nM, respectively (Figure 6A). Functional avidity showed a
strong correlation with antileukemic activity (Figure 6B).
DISCUSSION
Our work provides a direct comparison of antileukemic

responses elicited by individual miHAs and LAAs. We wish to
reiterate that the 8 Ags studied herein were shown to be
present on EL4 cells [32,34-39] andeach of themelicitedCD8T
cells responses detectable by ELISpot and cytotoxicity assays.
Furthermore, for priming mice against specific Ags before
Figure 6. T cell functional avidity correlates with Ag potency. Sorted CD8 T
cells were plated on a MultiScreen PVDF plate and incubated for 48 hours in
the presence of peptide-pulsed (10�4 to 10�14 M) irradiated splenocytes. SFCs
were counted using an ImmunoSpot analyzer. (A) Data were normalized to
maximum intensity value and plotted using dose-response curves to deter-
mine the EC50 of each peptide (3 independent experiments). The functional
avidity of H7a-specific T cells was superior to that of H3a and H13a-specific T
cells (P < .05) (B) Average avidity was plotted against the median survival
following injection of EL4 cells. Fitness of curves was determined by the co-
efficient of determination (r2).
challenge with EL4 cells, we used DCs pulsed with the same
peptide concentration (2 mM) in each case. Thus, we strived to
minimize any potential bias toward miHAs or LAAs and, a
priori, our 8 Ags might have been considered potential targets
for leukemia immunotherapy. This was definitely not the case,
and we posit that several points can be made from our study.

One clear conclusion is that the mere expression of a
given Ag on the surface of leukemic cell and its ability to elicit
IFN-g secretion and cytotoxic responses (in vitro) are insuf-
ficient to predict that the Ag will elicit expansion of tet-
ramerþ T cells and biologically relevant T cell responses
in vivo. That was the case for our 4 LAAs and 1 miHA (H4a).
In vitro ELISpot and cytotoxicity assays are very sensitive and
may pick up biologically irrelevant responses from tetramer-
negative T cells [59,64]. Indeed, CD8 T cells that respond
specifically to pMHC on target cells (in vitro), yet are not
stained by the same pMHC as tetramers, have been reported
in several studies [42,65-67]. These in vitro responsive but
tetramer-negative CD8 T cells were shown to display low
TCR-pMHC affinity and, therefore, to be functionally inferior
to tetramerþ T cells in vivo [43,59]. Other negative findings
relate to pMHC interactions: miHAs and LAAs had over-
lapping affinities for their cognate MHC molecule, and
neither peptide affinity nor the stability of pMHC complexes
correlated with the strength of T cell responses. Because
absolute peptide quantification byMS is not widely available,
very little is known on the expression of miHAs and LAAs at
the peptide level (as opposed to the transcript or protein
level) [68].

Somewhat unexpectedly, we found that peptide density
on leukemic cells did not correlate with the ability of primed
T cells to eliminate leukemic cells. The abundance of H7a (the
best Ag) was inferior to that of the 2 LAAs, which elicited no
antileukemic response (Figure 5A). Thus, at the effector
stage, epitope density on target cells was not a critical
parameter. This is consistent with the fact that killing of
target cells by effector CD8 T cells only requires 3 pMHC
complexes/target cell, and that the delivery of lytic granules
to target cells is rapid and insensitive to Ag density
[59,69,70].

In our model, LAAs were clearly inferior to miHAs as
targets for immunotherapy. The most parsimonious expla-
nation is that high avidity T cells are deleted from the T cell
repertoire specific for self Ags (LAAs) but not for allo-Ags
(miHAs). However, it would be premature to dismiss all
LAAs from future studies. There are 3 main classes of LAAs:
those that are overexpressed on leukemic relative to normal
cells, cancer-testis Ags, and leukemia-specific Ags derived
from cancer-specific somatic mutations. Our conclusions
strictly concern LAAs that are overexpressed on leukemic
cells relative to normal cells. Overexpressed Ags nonetheless
represent the largest class of LAAs (eg, WT1, PR1, hTERT) and
the class that has received most attention because these Ags
are present on leukemic cells in most patients [1]. Cancer-
testis Ags are attractive because they are shared by many
tumors and were thought to be expressed only in tissues that
do not express MHC molecules and cannot, therefore, induce
central tolerance. However, more refined studies have
revealed expression of cancer-testis Ags in several cell sub-
sets, including medullary thymic epithelial cells [71,72].
Furthermore, with 1 exception (cyclin-A1), cancer-testis Ags
are poorly expressed by leukemic cells [73]. From an
immunologic perspective, Ags derived from cancer muta-
tions are extremely attractive because they are truly cancer
specific and cannot induce canonical central tolerance.
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However, 2 recent reports suggest that discovery of immu-
nogenic leukemia-specific Ags will be extremely challenging
and might be impossible for a large proportion of patients.
Indeed, hematologic cancers have fewer mutations than
other cancers (eg, an average of 13 mutations per acute
myelogenous leukemia genome) [24], and only about 5% of
cancer mutations yield immunogenic HLA class I-associated
epitopes [74].

The number of potential antigenic targets (miHAs and
LAAs) for T cell based leukemia immunotherapy is consid-
erable. It would be impossible to evaluate in vivo the anti-
leukemic potency of T cells targeted to all potential Ags. It is
therefore imperative to establish reliable criteria for in vitro
prediction of antileukemic activity. Of practical importance,
we found that the best predictor of antileukemic efficacy
measurable directly in vitro was T cell functional avidity.
Functional avidity is determinedmainly by TCR affinity for its
cognate epitope: in some models the kon of TCR-pMHC as-
sociation is the key element, in others the koff is more
important [31,58,75]. Other factors may impinge on func-
tional avidity including the expression level of TCRs, adhe-
sionmolecules or coreceptors, and changes in components of
the signaling cascade. When dealing with polyclonal T cell
populations (as opposed to single TCRs), it is difficult to
decipher the underpinnings of differential functional avidity.
Nonetheless, from a practical standpoint, our work suggests
that in vitro evaluation of functional avidity represents the
best criterion for selection of Ags, which should be priori-
tized in clinical trials of leukemia immunotherapy.
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