
Theoretical Computer Science I93 (I 998) 2 15-244

Theoretical
Computer Science

ELSEVIER

Circumscribing DATALOG:

expressive power and complexity

Marco Cadoli”,*, Luigi Palopolib

aDipartimento di Imformatica e Sistemistica. Universitri di Romu “La Sapienza”,

Via Salaria 113, I-00198 Roma, Italy

bDipurtimento di Elettronica Informaiica e Sistemistica, Universitri deila Calubria,

I-87036 Rende (CS), Italy

Received September 1995
Communicated by G. Levi

Abstract

In this paper we study a generalization of DATALOG, the language of function-free definite
clauses. It is known that standard DATALOG semantics (i.e., least Herbrand model semantics)

can be obtained by regarding programs as theories to be circumscribed with all predicates to be
minimized. The extension proposed here, called DATALOG~!~~, consists in considering the general
form of circumscription, where some predicates are minimized, some predicates are fixed, and
some vary. We study the complexity and the expressive power of the language thus obtained.
We show that this language (and, actually, its non-recursive fragment) is capable of expressing
all the queries in DB-co-m and, as such, is much more powerful than standard DATALOG,

whose expressive power is limited to a strict subset of PTIME queries. Both data and combined
complexities of answering DATALOGCIRC queries are studied. Data complexity is proved to be
co-NP-complete. Combined complexity is shown to be in general hard for co-NE and complete
for co-NE in the case of Herbrand bases containing k distinct constant symbols, where k is
bounded.

1. Introduction

1. I. Background

The issue of providing a sound logic basis ,to knowledge representation formalisms

has been, in recent years, one of the most challenging tasks for researchers. Logic-

based languages, in particular, have been studied and proposed as the most natural

candidates for knowledge based applications. Probably the simplest and semantically

cleanest logic language for databases is DATALOG (cf. [38]), the language of universally

quantified function-free definite clauses. DATALOG relies on two points:

* Corresponding author. Tel.: ++39649918326; Fax: ++39 6 85300849; e-mail: cadoli@dis.uniromal .it.

0304-3975/98/$19.00 @ 1998 -EElsevier Science B.V. All rights reserved
PII SO304-3975(97)00108-4

216

(1)

(2)

M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

Distinction among extensional predicates (i.e., those corresponding to relations in

the input database) and intensional ones (i.e., those that occur in the head of at

least one rule);

Uniqueness of the least (or minimum) Herbrand model of a set of rules plus

a relational database.

As an example, (1) corresponds to the fact that in the following DATALOG program rc:

non-3x01 + edge(X, Y), red(X), red(Y). (1)

non_3_col+ edge(X, Y), blue(X), blue(Y). (2)

non_3_col+ edge(X, Y), green(X), green(Y). (3)

edge,red, blue and green must be extensional relations, while non-3_co1 is an inten-

sional one.

A DATALOG program must be evaluated on a database which provides a (possibly

empty) extension for each of its extensional relations. As an example, 7c could be

evaluated on the following database D.

GREEN (NYDEI BLUE l,,u,

According to (2) above, the intended meaning of the program is the least Herbrand

model of rc A T,, where T, is the “translation” of the database D into a first-order

ground formula, i.e., edge(1,2) A edge(1,4) A edge(2,3) A red(2) A red(4) A green(1) A

blue(3).

The intuitive meaning of the program n is to check whether the relations RED,

BLUE and GREEN constitute a 3-coloring of the graph represented by relation EDGE.

In this specific case the propositional atom non_3_col is false in the least Herbrand

model M of rc A TD, hence we know that RED. BLUE and GREEN constitute such

a 3-coloring.

Semantics of DATALOG is therefore based on the declarative idea of the minimum

model, i.e., of the model in which the extension of all relations is as small as possible.

1.2. The idea

In the present paper we speculate about the possibility of providing a semantics

to DATALOG programs in a conceptually similar way, by employing circumscription,

a formal system whose semantics is based on the syntax-independent idea of minimal

models, which is a generalization of the idea seen above. Circumscription [27,24] is

a popular non-monotonic formalism that has been designed for the purpose of capturing

some aspects of common-sense reasoning. Indeed, with circumscription, the intuitive

meaning of sentences such as “normally students are young” is captured by logical

formulae in which the extension of some “abnormality” predicate is minimized, while

the extension of other predicates is treated differently.

M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244 217

For instance, consider the theory Tmike obtained as the conjunction of the following

two clauses:

(VX)(young(X) V -7student(X) V abnormal(X))

student(mike).

The intuitive meaning we would like to ascribe to the above theory is that a stu-

dent is young unless he/she is explicitly known to be abnormal from this point of

view. As no explicit evidence that Mike is abnormal is included in Tmike, Mike is

young. The ordinary notion of minimization delivers two minimal Herbrand models of

Tmike: Ml = {student(mike), young(mike)} and M2 = {student(mike), abnormal(mike)}.
However, M2 does not comply with the intuitive meaning we wanted to associate

with Tmike.
The approach of circumscription to this kind of problems is to partition the set of

predicates into three subsets, of which only one - usually denoted by P - is mini-

mized. In the above example abnormalities are to be minimized, hence abnormal is

in P. There are predicates that we do not want to minimize, but rather to be not af-

fected by minimization. This could be the case for student in the above example. Such

predicates are called jixed, and denoted by Q. Finally, if we do not have any special

attitude with respect to a property represented by a predicate - e.g., young - we put it

in the set Z of varying predicates. This partition of predicates into subsets modifies the

precedence relation among models: Two models are compared only if, for any given

fixed predicate, they encode the same extension, and are tested for minimality w.r.t. the

extensions they associate with minimized predicates, In our case, for the theory Tmike,
the only minimal model in this new sense is Mi, which correctly captures its intended

meaning.

This notion of minimality represents a generalization of classical least model se-

mantics for DATALOG programs. Indeed, the least model semantics of DATALOG rules

is obtained by circumscribing them with all the predicates to be minimized (i.e.,

Q=Z=0).

We propose to associate a semantics to DATALOG programs by employing general

circumscription. What is, in the context of databases, the intuitive meaning of consid-

ering a relation to be in a set of non-minimized predicates? Referring to the initial

example, we give intuitions for the set Q of fixed predicates, leaving to the body

of the paper discussion on varying ones. Suppose we do not know the extension of

RED, BLUE and GREEN as we do in D, but, on the contrary, we want the extension

of a relation of this kind to be arbitrary. Then every subset of the Herbrand base

{ 1,2,3,4} is a possible extension for them, i.e., they become “free” relations. As a

consequence, also the intensional predicates depending on the “free” ones (through

rules) will have several possible different extensions associated to them. This idea of

assigning arbitrary extensions to input relations has some similarities with Sagiv’s no-

tion of uniformity [32], which individuates properties of Datalog programs that hold

independently of the input database. There are two major differences between Sagiv’s

notion and ours. The first one is that we use the idea of arbitrary extension to define an

218 M. Cadoli, L. Palopolil Theoretical Cornpurer Science 193 (1998) 215-244

alternative way to provide semantics to Datalog programs, rather than discussing about

their properties. The second one is that, in our approach, only a subset of input relations

have associated an arbitrary extension (e.g., the extension of the relation EDGE is not

arbitrary).

As there are many possible extensions for “free” predicates and for intensional pred-

icates depending on them, this semantics seems to be intrinsically non-deterministic.

There are two ways to return to determinism:

Brave reasoning: Assume that a conclusion is valid if it holds in at least one possible

extension;

Skeptical reasoning: Assume that a conclusion is valid if it holds in all possible

extensions.

Brave and skeptical reasoning are often referred to also as possibility and certainty

inference in the literature. As we will ground the semantics of the language on cir-

cumscription - which is intrinsically skeptical - in this paper we opt for the second

possibility. Since we adopt the skeptical point of view, then the intuitive meaning of

program ‘II is the following: If for all possible choices of RED, BLUE and GREEN

there is an edge whose nodes are colored the same way, then non3_col becomes

true. Therefore non_3_col will be the flag to decide whether a graph represented with

relation EDGE is not 3-colorable. The intuition is formally captured minimizing only

predicates non-3_co1 and edge, and defining Q as {red, green, blue}.
This shift from the standard least model semantics of DATALOG programs is not so

exotic as it may appear. Indeed, general circumscription and logic programming have

much in common, as the former has been widely used for ascribing semantics to nega-

tion. It is well known that predicate completion in Horn formulae can be partially char-

acterized by some form of circumscription [30]. Moreover the semantics of programs

with stratified negation can be given in terms of prioritized circumscription [25,29].

Also, several semantics for non-stratified programs define intended models which are

models of a circumscription (e.g., stable models [17], perfect models [29]). Finally,

some forms of the negation as failure rule have been given a circumscriptive semantics

in the context of closed world reasoning (e.g., careful closed world assumption [18],

extended closed world assumption [191).

Dually, there have been several attempts at compiling circumscriptive formulae into

logic programs. In [16] a translation from a class of circumscriptive theories with

no fixed predicates into stratified logic programs is shown. More recently, in [33]

a translation method from general circumscriptive theories with fixed predicates into

disjunctive logic programs with stable model semantics has been proposed.

1.3. Main contributions

This paper is devoted to study the formal properties of DATALOG~'~~, the language

resulting from ascribing semantics to DATALOG formulae through general circumscrip-

tion. We will be particularly interested in studying the impact of adopting this new

semantics on the complexity and the expressive power of DATALOG. By presenting

M. Cadoli, L. PalopoliITheoretical Computer Science I93 (1998) 215-244 219

several examples, we will show how the language can be used to express complex

queries to relational databases.

We are able to show that the non-recursive fragment of DATALOG~'~~, denoted

NRDATALOG~[~~, is as expressive as SOv, the universal fragment of second order logic,

i.e., captures all DB-co-NP queries. The same result obviously holds for the whole

hlI@lage DATALOGCIRC. This result holds both if we assume Z = 0 and if we make use

of varying predicates (the difference being that if we impose Z = 8 we need a slightly

more complex form of queries).

It is well known from seminal papers such as [14,26,8,9,39] that expressive power

of a query language is upper bounded by its data complexity. As a consequence

the price we pay for the high expressiveness of NRDATALOG~*~~ (as well as that of

DATALOG~'~~) is that the d t a a complexity - i.e., the complexity of querying as mea-

sured when the program defining the query is considered fixed and the input database

varies - is co-NP-complete. We remind that the data complexity of DATALOG is poly-

nomial, and that there are polynomial-time expressible queries that are not captured by

that language [lo].

We also study the combined complexity of DATALOG~'~~, the complexity measure

where both the database and the program defining the query are considered part of the

input. We show that, under combined complexity, the task of querying NRDATALOG~[~~

(and DATALOG~'~~) programs is in general hard for co-NE, and is complete for co-NE

when the database domain has a bounded cardinality.

1.4. Related work

The expressive power of relational database query languages has been studied for

many years (cf. [22, 11). In this subsection we mainly review papers presenting results

on non-monotonic query languages.

Building on classical works about complexity and expressive power of query lan-

guages [9,39,21], in [lo] Chandra and Hare1 study the expressive power of DATALOG

under least models semantics and of stratified DATALOG~, i.e., the language obtained

by allowing negation to occur in rule bodies, under iterated fixpoint semantics (which

is the same as perfect or stable model semantics in this case). They show that the

data complexity of both languages is polynomial-time, whereas their expressive power

is not enough to express all polynomial-time queries. An analogous result holds for

DATALOG- with well-founded semantics [41].

In [23], Kolaitis and Papadimitriou study the expressive power of DATALOG- under

fixpoint semantics. They show that, under this semantics, DATALOG- captures DB-NP.

Furthermore, they show that the data complexity for this language is NP-complete

and its combined complexity is hard for co-NE. Finally, they consider an alternative

polynomial-time semantics for DATALOG~ programs based on inj7ationary fixpoints [20].

Under inflationary fixpoint semantics, DATALOG- is shown to capture some, but not all

polynomial-time queries (in fact, it has the same expressive power as DATALOG~ under

the well-founded model semantics, cf. e.g., [l]).

220 A4. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

Schlipf studies in [35] the expressive power of DATALOG- under total stable model

semantics, and shows that the skeptical version of the language captures DB-co-NP

(whereas the brave version captures DB-NP). Saccl studies further the expressive

power Of DATALOG- under stable model semantics [31], by considering various vari-

ants of partial stable models. He shows that some of these variants actually increase

the expressive power of DATALOG~, inducing languages whose skeptical (resp., brave)

versions are capable of capturing DB-II; (resp., DB-Cc).

An obvious difference between the languages studied in papers considered above and

our approach is that we do not use negation. The semantics we propose is purely syntax-

independent. This fact allows a fully declarative programming style to be maintained

for DATALOG~‘~~. This can be contrasted against the full operational nature of DATALOG~

under fixpoint semantics of [23] and also against the (in some sense, mild form of)

operationality embedded in the definition of stable model (used in [35,31]). Also, stable

and fixpoint programs are syntax-dependent, in the sense that it is not the same to have

a positive literal in the head or its negation in the body. Furthermore, note that with

circumscriptive semantics DB-co-NP is already captured by the recursion-free fragment

of our language, whereas recursion is obviously needed for the languages discussed in

[23,35,31] to be fully expressive.

Eiter et al. [12] studied the complexity and the expressive power of DATALOG- with

disjunction in the heads. They show that, under brave stable model semantics, dis-

junctive DATALOG- captures DB-Cc. Analogous results are obtained by Cadoli et al.,

who define in [6] a query language based on the formalism of default logic and

by Bonatti and Eiter [4] who study the expressive power of several non-monotonic

formalisms for querying positive disjunctive databases, i.e., sets of positive clauses.

Eiter et al. [13] proceed one step further by considering disjunctive DATALOG~ queries

evaluated under several variants of partial stable model semantics. Their work shows

that, also in this case, the use of partial models can increase the expressive power

of the language up to capturing the classes DB-Cc and its complementary class

DB-II; .

The languages discussed above are therefore more powerful than DATALOG~‘~~ (un-

less the polynomial hierarchy collapses at a sufficiently low level) - the same holds for

DATALOG~ under L-stable semantics [31]. However, this high expressivity needs either

further logical constructs to be included in the language or a complex semantics based

on partial models to be employed. DATALOG~‘~~ vice-versa, achieves a good expressive

power while featuring a quite simple syntactic and semantic structure.

It is interesting to note that the negation-free version of the language presented in

[12] does not capture DB-Cc, as some polynomial-time queries are not expressible

through it. The full expressive power is gained by adding the predicate “#” to the

query language. In DATALOG ‘IRc it is possible to “simulate” both “=” and “#“, as it

will be shown in what follows, and DB-co-NP is captured with no additional predicate.

Finally, the computational complexity of the propositional version of circumscrip-

tion has been studied in [11,7], and the expressive power of circumscription over the

integers has been investigated in [34,36].

M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244 221

1.5. Structure of the paper

The structure of the paper is the following. In Section 2 we present our formal

framework of reference. In Section 3, we give formal definition of DATALOG~'~~, study

its data complexity and show some examples of its use. In Section 4 the main result

about expressive power of DATALOG clRc is proved. In Section 5 we study the combined

complexity of querying relational databases through DATALOG~*~~ programs. Finally, in

Section 6 we discuss polynomial-time sub-cases and draw conclusions.

2. Preliminaries

As for syntax, we denote variables with upper case letters (e.g., X), constant symbols

with lower-case letters (e.g., c), predicate symbols with strings starting with a lower-

case letter (e.g., edge). Lists of variables or constant symbols are denoted in bold face

(e.g., K c).
Herbrand interpretations and models will be denoted as sets of ground atoms (those

that belong to the extensions of predicates). Interpretations and models of propositional

formulae are denoted as sets of letters (those which are mapped into true).

In the following, we use some syntactically restricted first-order formulae, which are

defined as follows.

Definition 2.1 (Restricted clauses). A restricted clause is a first-order formula of the

kind

(3X)dI(X) V.. . V d,(X) V e (4)

where each Aj (16 1 <n) is a predicate symbol, and e is a 0-ary predicate symbol,

i.e., a propositional letter.

We note that formula (4) can be equivalently written as

In what follows, queries to DATALOG~'~~ programs will be defined either using re-

stricted clauses or using simple literals.

2.1. Relational databases and queries

We define queries as Boolean transformations defined on relational databases:

Let U be some countable “universal” domain of constants. A relational database is

a structure D of the form (D, RI, . . . , Rk) where D C U is a finite set of domain constants

and Ri is a relation of arity ai over D for some ai (i.e., Ri C Da1). D is said to be of

type a=(ai,...,ak) [8].

222 M. Cad&, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

Definition 2.2 (Chandra and Hare1 [S]). A (Boolean) computable query of’ type a+
Boo1 is a mapping

Q : {D 1 D is of type a} + { True,FaZse}

satisfying the following constraints:

1. Q is partial recursive;

2. Q is generic, i.e., for each bijection p over D, Q(D) =&I(D)) (in other words,

constants are uninterpreted).

Having defined Boolean queries, we draw our attention to their complexity. Each

query Q defines a family of databases DBQ as follows:

DBQ = {D (Q(D) = True}.

The expressive power of queries is related to database complexity classes, which are

defined next. Let D be a set of databases of type a. Let V be a Turing complexity

class (e.g., NP). Then the family D is said %-recognizable if the problem of deciding

if a given database D belongs to D is in %7. The database complexity class DB-V is

the set of all %‘-recognizable database families. Equivalently, we say that a query Q is

in DB-W if DBQ belongs to DB-%?. Then we say that a query language 2 captures
a database complexity class DB-%? if for each database family D in DB-%? there is an

expression & of 5? which defines D.

As for the complexity of queries, this can be measured according to two measures,

namely, data and combined complexity, which have been defined in [39]. Let 5&’ be

a query language. Let & be an expression of _Y defining a query Qc. Let D be an

input database for Qn. Then the data complexity amounts to measuring the complexity

of evaluating QB as a function of the size of D, while G is fixed. The combined

complexity is given by measuring the complexity of evaluating QJ as a function of

the size D and the size of &. The expression complexity, which will not be used in

the present paper, amounts to measuring the complexity of evaluating QR as a function

of the size of G, while D is fixed.

2.2. DATALOG

A DATALOG program [38] is a finite set of universally quantified function-free first-

order definite formulae T, i.e., sentences of one of the forms reported below.

a(X) +- h(&),.. .,bSL)

a(c) +

where n >/ 0, a(X), bi(Xi) (1 <i <n), and a(c) are atoms. In the former clause, the list

of atoms appearing on the right of the implication sign is called body of the clause.

The atom appearing on the left is called head of the clause. A clause of the latter kind

is called a fact.

M. Cadoli, L. Palopolii Theoretical Computer Science 193 (1998) 215-244 223

An atom is ground if no variables occur in it. A ground instance of a clause in T

is constructed by consistently substituting the variables of the clause with constants

occurring in T. The set of clauses occurring in T is then naturally partitioned in

a subset D of facts which constitute the input database, and a subset rr of non-ground

or non-atomic formulae. We assume that no constants appear in rr. A DATALOG program

is said non-recursive if for no predicate symbol p we have p + p, where for any two

(not necessarily distinct) predicate symbols p and p’, p + p’ if either there is a clause

where p’ appears in the body and p appears in the head, or there is a predicate

symbol p” such that p+p” and p” +p’. Such programs will be called NRDATALOG

programs.

Note that any relational database D naturally corresponds to a set of facts FD, as

follows:

Fo = {a(c) + 1 a is a relation in D and c E a}

or equivalently, as also described in Section 1, to a conjunction of all the ground

atomic formulae a(c) such that a is a relation in D and c ED.

Next, we discuss the semantics of DATALOG programs. A (Herbrand) model M of

a DATALOG program T is a set of ground atomic formulae such that for each ground

instance clause C constructible from T either the head of C is in A4 or at least one

atom in the body of C does not belong to M. The intersection of all the Herbrand

models of a DATALOG program T is itself a model for T [40,38]. This model, denoted

LMT, is called the least or minimum model of T.

The semantics of a DATALOG program relies on its least model, as specified by the

following definition.

Definition 2.3 (Boolean queries to a DATALOG program). Given a fact-free DATALOG

program n, an input database D and a ground clause y, we say that y follows from the

least model semantics of n and D (written rc,D k y) if y is true in LA~,“F~.

Therefore, any fact-free DATALOG program and clause y define a Boolean query on

relational databases under the least model semantics.

The expressivity of a formalism for querying finite structures under a given semantics

is given by the set of queries it defines. As already specified, interesting classes of

queries for classifying the expressive power of query languages are those defined by

database complexity classes.

The expressive power of DATALOG under the least model semantics is then defined

by the class of queries it allows to express. It is known that DATALOG programs define

a strict subset of DB-P, the class of polynomial-time queries [lo]. For instance, the euen

query, i.e., to tell whether the cardinality of the set of constants in the input database

is even or odd, cannot be expressed using a DATALOG program under the least model

semantics [lo]. The non-recursive fragment of the language is even weaker. Indeed,

224 A4. Cadoli, L. PalopolilTheoretical Computer Science 193 (1998) 215-244

the transitive closure query’ is expressible using DATALOG but is not expressible with

NRDATALOG [3].

2.3. Minimal models

Let T be a function-free first-order theory and (P; Q;Z) a partition of its predicates.

A preorder among the Herbrand models of T is defined as follows.

Definition 2.4 ((P; Q; Z)-minimal models, Lzfichitz [24]). Let M, N be two Herbrand

models of a formula T. We write A4 <(p;&:z) N if:

1. predicates in Q have the same extension in N and M;

2. for each predicate p E P, the extension of p in A4 is a subset - possibly not proper
_ of the extension of p in N.

An Herbrand model M is called (P; Q;Z)-minimal for T if there is no Herbrand

model N of T such that N <(p;e;z)M and IV<,,,~;~, N.

Restriction to Herbrand models such as in the above definition is not necessary,

as long as only models with the same universe of interpretation are compared.

Syntactically, the circumscription of a first-order formula T is defined as a second-

order formula (cf. [24] for details). In the same work it is proven that the models

of such a formula are exactly the set of (P; Q; Z)-minimal models of T. So, for in-

stance, the unique model of the circumscription of the formula Tmike that we saw in

Section 1 (with P= {abnormal}, Q= {student}, Z = {young}) is Mi = {student(mike),
young(mike)}.

3. The language and its data complexity

In the present section, we will give a formal definition of the DATALOG~'~~ query

language and show, by means of some examples, how to use it for querying. Moreover,

we will address the issue of data complexity of the language.

As already described, in order to construct a circumscriptive semantics of a pro-

gram rc, the set of predicate symbols occurring in rr is partitioned into three subsets

(P; Q; Z). Predicates in P are those that we want to minimize; predicates in Q are

those that we want to keep jixed; predicates in Z are those we want to vary. We call

a 4-tuple (7~; P; Q; Z) of this kind a DATALOG~'~~ program. In the specific case that

rt is non-recursive, (7~; P; Q; 2) will be called a NRDATALOG~'~~ program. For the sake

of clarity, we will explicitly substitute the symbol 0 in the 4-tuple if one of the sets P,
Q or Z is empty. Like in the plain DATALOG case, we consider only fact-free programs.

The semantics of a DATALOG~'~~ program relies on its Herbrand (P; Q;Z)-minimal

models, as specified by the following definition.

’ I.e., given a directed graph G encoded in a relation edge in the obvious way, and a tuple (a,b), tell if

(a,b) is an edge belonging to the transitive closure of G.

M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244 225

Definition 3.1 (Boolean queries to a DATALOG~'~~ program). Let (rc; P; Q; Z) be a

fact-free DATALOG~'~~ program, D be an input database and y be either a restricted

clause or a literal. Then we say that y follows from the circumscriptive semantics

of (7~; P; Q;Z) and D (written n,D b=(p;e;z)y) if y is true in all Herbrand (P; Q; Z)-

minimal models of 7c A D.

It can be easily seen that DATALOG~'~~ constitutes a generalization of n4rALoo:

A DATALOG program rt is just a DATALOG~'~~ program (n; P; 0; 0) in which both the set

Q of fixed predicates and the set Z of varying predicates are empty.

In this paper the case of DATALOG 'IRc in which the set Z is empty, will have special

importance.

We now see some examples of how we can use DATALOG~'~~ programs for doing

useful computations, starting from the 3-colorability problem mentioned in Section 1.

We present the formalization of the problem in DATALOG~I~~ in two steps: In the

former, we won’t make use of Z predicates, while in the latter we will.

Example 3.1 (3-colorability of a graph). An instance of the 3-colorability problem

(3COL) [151 is as follows. The input is a graph G = (V, E). The question is: Is it

possible to assign to each node in V one out of three colors, say red, blue and green,

such that for each edge e E E, the vertices of e have different colors?

Now, consider the following NRDATALOG~'~~ program (rt,,sco~; P; Q; 0) (note that

the first three rules are exactly rules (l)-(3) shown in Section 1):

non-3_co1 t edge(X, Y), red(X), red(Y).

non-3_col+ edge(X, Y), blue(X), bZue(Y).

non-3_colt edge(X, Y), green(X), green(Y).

hascolor + red(X).

hascolor +-- blue(X).

hascolor c green(X).

Here P = {hascolor, non3_col, edge}, Q = {red, green, blue}, and Z = 0. The input

database D is constituted by ground atomic instances of edge, which is a symmet-

ric extensional predicate encoding the set E of edges of the input graph G in the

obvious way. Consider next the query y defined by the following restricted clause:

((‘vX)hascoZor(X)) -+ non_3_col.

The intended meaning of the last three rules of 71,,3co~ is to force each node to be

colored in some way. The intended meaning of the antecedent of the query y is that

we are interested in (P; Q; @)-minimal models of rc,,3co~ AD which assign a color to

each node. As a matter of fact, we don’t care if a node is assigned more than one

226 A4. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

color: If no conflict arises with such an overloading, then we can select in an arbitrary

way a color for a node among those which the node is associated with.

As it can be easily verified, I~~~~coL, D FCp;Q;o, ‘J if and only if the input graph G is

3-colorable.

In the above example the relevant property of the input graph, i.e., its 3-colorability,

is captured because of the special form of the query, in which quantifiers are used.

It is possible to simplify the syntactic form of the query, at the expense of allowing

varying predicates.

Example 3.2 (3-colorability of a graph, continued). The NRDATALOG~~~~ program

(&coL; P’; Q; Z) contains all the rules of (71,,3~0~; P; Q; B), plus the rules

hascolor + z.

p t z, non3xol.

(5)

(6)

where P’ = P U {p}, and Z = {z}. The input database is the same as before, while the

query y’ is defined by the literal:

The intended meaning of rule (5) is to force each node to have at least one color.

We claim that XL,,,,, D FCp,; e;z, y ’ if and only if the input graph G is 3-colorable.

A proof of the claim follows.

Proof (only if‘part). Let us assume that 7c&3CoL,D~C(p,;~;zjy’; then there is a (P’;Q;
Z)-minimal model M of rr&.oL AD which is not a model of y’, i.e., M kz. By rule

(5), this implies that M k (VX)hascolor(X).

We assume that A4 + non3_col, and show that a contradiction arises. Because of

rule (6), it follows that M k p. We build a Herbrand interpretation N of rc$3coL AD

such that

. Nk=z,

l N~=P,

and the extension of all other predicates is the same as in M. Since N is a model of

rules (5) and (6), and predicates z, p occur only in such rules, it follows that N is

a model of rc$3coL AD. Since N b(pt;~;z) A4 and M&,,Q;zjN, it follows that M is

not a (P’; Q; Z)-minimal model of rc~Oo3coL AD, hence a contradiction arises.

At this point we know that M k non3_col. It is easy to see that M allows a

3-coloring of G (if a node has several colors, drop all but one).

Proof (if part). Let us assume that G is 3-colorable and let C be a 3-coloring. Let

A4 be an Herbrand interpretation built as follows:

l for each pair of constant symbols c, d:

M. Cadoli, L. PalopoliITheoretical Computer Science 193 (1998) 215-244 221

_ M k edge(c, d) if and only if there is an edge in G between nodes corresponding

to c and d;
- M + red(c) if and only if node corresponding to c is colored in red by C;
_ M + blue(c) if and only if node corresponding to c is colored in blue by C;
_ M k green(c) if and only if node corresponding to c is colored in green by C;
_ M b hascolor(

l M /= Tnon_3_col AZ A up.
Clearly M is a model of $Oo3cOL AD and is not a model of 7’. All we have to prove

is that M is (P’; Q;Z)-minimal. Let us assume that there is a model N of rc,&OL AD

such that Nd(pf;p;z~M and MdC,,;Q;z,N. This means that the extension of some

predicate in P’ must decrease in N w.r.t. M. Since non-3_co1 and p are already false

in M and edge cannot decrease its extension (otherwise D is not true any more),

the only possibility is to decrease the extension of hascolor. This in turn implies that

the extension of one of the three predicates red, blue or green decreases, but this is

impossible, as they are fixed. Therefore such a model N does not exist, and M is

(P’; Q; Z)-minimal.

Taking into account that problem 3~0~ is NP-complete [151, the above example shows

us something about the complexity of answering Boolean queries to a NRDATALOG~'~~

program. As in Example 3.1 only the input database D depends on the input graph

G, while both the NRDATALOG~'~~ program 71,,3co~ and the query y are indepen-

dent on it, we infer that the data complexity of deciding whether rc, D /=Cp;Q;gjy -

(n,P;Q;@) being a NRDATALOG~'~~ program and y being a restricted clause inde-

pendent on the input - is co-NP-hard. From Example 3.2, we infer that the data

complexity of deciding whether rc, D kCp.g.zJ 1 - (n, P; Q; Z) being a NRDATALOG~'~~

program and 1 being a literal - is co-NPihard. The same hardness result obviously

holds for the full DATALOG~I~~. It is interesting to note that the data complexity when

no varying predicates are allowed and the query is just a literal, is polynomial. This

can be proven using the results on complexity of propositional circumscription shown

in [7]. Intuitively, varying predicates give the possibility of stating properties of sets

of models, and this accounts for the higher data complexity when the query is just

a literal.

Moreover we can prove that data complexity for the problem of deciding whether

7~, D /==,p; p;zj 6 - (TC, P; Q; Z) being a DATALOG 'IRc program and 6 being either a literal

or a restricted clause - is in co-NP by using the following argument. It is possible to

generate, in non-deterministic polynomial time, an Herbrand model M of rr A D. The

answer to the Boolean query will be “yes” if and only if for all models M generated

in this way, there is none that is both a (P; Q; Z)-minimal model of rc AD and is not

a model of 6. It is well known that checking whether M is a model of 6 can be

done in polynomial time in the size of D (remember 6 is not part of the input). Also

checking whether M is a (P; Q; Z)-minimal model of rc AD can be done in polynomial

time in the size of D (cf. [5]). The same argument can be obviously applied for

NRDATALOGCIRC.

228 M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

The above considerations give us the first computational result on DATALOG~'~~.

Theorem 3.1. Let n be a NFCDATALOG~'~~ (resp., DATALOG~*~~) program. The data

complexity of deciding whether n, D +=(p.Q.Oj y, where the input is D and y is a 3 3
restricted clause, is co-NP-complete.

The data complexity is co-NP-complete also for deciding whether 71, D +(p;g;zI 1,

where 1 is a literal.

A second aspect that we learn from Examples 3.1 and 3.2 is that DATALOG~'~~

programs can be used for computing output relations. In fact if there is a formula y

such that n, D kCp;e;zjy, we know that there is a Herbrand (P; Q; Z)-minimal model M

of rt AD such that y is false in M. A model of this kind constitutes an extension for

each non-input relation. In Example 3.2 (cf. only if part), such a model provides

a 3-coloring of the input graph.

We give a second example of a co-NP-complete problem solved using DATALOG~'~~.

Example 3.3 (Set splitting). We consider the so-called set splitting (3SP) [15]. An

instance of 3SP is as follows. The input is a collection C of subsets of a given set S.

Each element of C has cardinality 3. The question is: Is there a partition of S into two

subsets Si and S, such that no subset in C is entirely contained in either Si or &?

The input database D stores ground atomic formulae defining the extensional predicate

c with arity 3 encoding the collection C: c(x, y,z) holds if and only if {x, y,z} E C.

The program (rc,,ssp; P; Q; 8) is as follows:

nonsplitabletc(X, Y,Z),SI(X),SI(Y),SI(Z).

nonsplitable t c(X, Y,Z),SZ(X),S~(Y),S~(Z).

chosen(X) t q(X).

chosen(X) t sz(X).

where P = {chosen, nonsplitable, c}, Q = { s~,sz}, and Z = 0. The first and the second

rule of 7rc03sp disallow a generic triplet in C to be entirely included in either S1 or S2.

Let y denote the following restricted clause:

((VX)chosen(X)) -+ nonsplitable.

Then: rc c03sp, D k(p;Q;Oj y if and only if the input instance, encoded in D, is indeed

a yes-instance for the 3SP.

Also in this case we can simplify the query by adding some extra rules and varying

predicates, as we do in the following. The DATALOG~'~~ program (rc&ssp; P’; Q; Z)

contains all the rules of (7r,,3sp; P; Q; 0), plus the rules

chosen(X) + z.

p t z, nonsplitable.

M. Cadoli, L. PalopoliITheoretical Computer Science 193 (1998) 215-244 229

Here P’=PU{p}, and Z = {z}. The input database is the same as before, while the

query y’ is defined by the literal:

Then: ~$03sp, D pCp,;g;zjy’ if and only if the input instance is a yes-instance for

the 3SP.

In this section we saw two examples of computation of co-NP-complete properties

of an input database. The last example we are presenting next computes the classical

polynomial-time computable “even” query. Before presenting this example, some con-

siderations about partition of the set of predicates into minimized/fixed/varying is in

order. In the above examples there is a common pattern: Predicates that belong to the

set Q are always in the body of a rule, and are used for “guessing” some property

(the color a node is assigned to, in Example 3.1, the set where an element is placed,

in Example 3.3). This is the general usage that we propose for such special predi-

cates, as the semantics of circumscription basically considers all possible extensions for

them.

In principle, every property that is to be “guessed” should be modeled as a fixed

predicate. A further, informal, example of this can be found in the DATALOG~'~= pro-

gram solving the “even” query reported in the example below. A way to solve such

a problem is to “guess” a binary relation pair over the database domain having some

specific properties, which are imposed by appropriate axioms. All other predicates, both

the input ones and the ones which are needed for specifying axioms (e.g., hascolor in

Example 3.1), should be put in the set P, with the exception of the letter z, which is

instrumental for having simple queries, and must be put in Z.

The even query mentioned above deserves some further comment. It is known that,

for expressing it, a second-order formula with alternation of existential and universal

first-order quantifiers, plus predicates for denoting equality and inequality, can be used.

The following example shows how quantifier alternation as well as an appropriate

treatment of equality can be obtained in DATALOG"~~. In the next section we prove

that DATALOG~‘~’ has the general capability of defining equality and of expressing

quantifier alternation of that form.

Example 3.4 (Even). An instance of EVEN is as follows. The input is a domain C

of objects. The question is: Is the cardinality of C even? The input database D stores

ground atomic formulae defining the extensional predicate dam/l encoding the do-

main C: dam(X) holds if and only if X E C.

The rationale of the following DATALOG”~~ program2 is to “guess” a relation pair/2

such that each constant appears in at most one tuple of pair. In other words, each tuple

2 The authors gratefully acknowledge one of the anonymous referees for having suggested the adoption

of the following program for solving the even query in the place of the (much more involved) one included

in the original version of this paper.

230 M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

in pair represents a subset of the domain having cardinality two, all the subsets being

disjoint with one another. The answer to the even query is then affirmative if and only

if the subsets encoded in pair actually form a partition of the domain C.

For doing this, we will make use of several predicates, whose intended meaning is

briefly summarized in the following:

eq(X, Y): X and Y are equal

eg(X, Y): X and Y are not equal

$X, Y): make sure that either X and Y are equal or they are not

pair(X, Y): X and Y are the two elements forming one of the subsets in which the

domain is tentatively partitioned

impair(X): X belongs to some of the subsets encoded in pair

fail: something wrong happened (to make sure to select only relevant models)

&m(X): X is in the domain

We need several rules, each one with a specific purpose, to make sure that the

intended meaning of the query is correctly captured.

1. RULES FOR EQUALITY AND INEQUALITY

(a) eq(XX).

(b) 8X, Y) + eq(X, Y).
(c) Z$X, Y) + eq(X, Y).

(d) fail + eq(X, Y),F&X, Y). /* make eq and q disjoint */

2. RELATION pair PARTITIONS THE DOMAIN INTO SUBSETS OF CARDINAL-

ITY 2

(a) fail -p&(X, Y),puir(X, Z), F& Y, Z).

(b) fail +puir(X, Y),puir(Z, Y),q(X,Z).
(c) fail +-puir(X, Y),puir(Y,Z).

(d) fail tpuir(X,X).
3. COVERING RULES (make sure that all domain constants are put in some tuple of

pair)
(a) in-pair(X) tpuir(X, Y).

(b) kpuir(Y) tpuir(X, Y).

The predicates are partitioned in the following way. The set e is {@,puir}, as they

are to be “guessed”. Everything else is minimized, i.e., in P, and there are no varying

predicates. The query y is the restricted clause

((VX)in_puir(X)) -+ fail.

It is then easily seen that x,,,,, D ~cp;Q;oj~ 1 if and only if the number of distinct symbols

in the input database D is even.

As in the previous cases, we can simplify the query by using extra rules and vary-

ing predicates, as we do in the following. The DATALOG 'IRc program (T&,~; P’; Q; Z)

M. Cadoli, L. Palopoli I Theoretical Computer Science 193 (1998) 215-244

contains all the rules

in_pair(X) t-z.

eq(X,Y)cz.

p t z, fail.

of (%en; P; Q; @I), plus the rules

231

Here P’ = P u {p}, and Z = {z}. The input database is the same as before, while the

query y’ is defined by the literal:

Then: rrz even, D ~(p,;Q;zJy’ if and only if the number of distinct symbols in the input

database D is even.

In Example 3.4 we needed a special treatment for equality. We remark that we

are able to “simulate” inequality by means of minimization and fixed predicates. The

technique that we used is completely general, and will be employed in the next section

for our main result on expressiveness of n4rALooC1RC.

4. The expressive power of DATALOG~'~'

In Section 3 we proved that the data complexity of NRDATALOG~'~~ and DATALOG~'~~

is co-NP-complete. In this section we prove the main result about the expressiveness

of NRDATALOG~'~~ and DATALOG~~~~ by showing that they capture exactly DB-co-NP,

or equivalently (cf. [14]) SOv queries.

Even if co-NP-completeness of querying DATALOG~'~~ programs under the data com-

plexity measure have been already established in the previous section, the result we

present retains full interest. In fact, the expressive power of a language is not nec-

essarily the same as its complexity. Several languages with this property are known,

cf. [2, 121. As an example, a language which does not capture NP - even if it has an

underlying NP-complete problem - has been shown by Stewart in [37].

In the following, g denotes a fixed set of relational symbols not including equality

“=‘I and S denotes a list of variables ranging over relational symbols distinct from those

in B. By Fagin’s theorem [14] any NP-recognizable collection D of finite databases

over CJ is defined by a second-order existential formula.

In particular, we deal with second-order formulae of the following kind:

(3S)(VX)(3Y)(&(X,Y) v ‘. v 4cm>Y)), (7)

where %I,..., Ok are conjunctions of literals involving relational symbols in 0 and S,

plus relational symbol “=“. Each conjunction 0i contains the occurrence of some vari-

ables among X, Y. (The reason why we can restrict our attention to second-order formu-

lae in the above normal form is explained in [23]). As usual, “=” is always interpreted

232 M. Cadoli, L. PalopolilTheoretical Computer Science 193 (1998) 2X5-244

as “identity”. The set of uninterpreted relational symbols occurring in formula (7) -

i.e., BUS - will be denoted either by LZ or by {al,. . . ,a~}.

We illustrate a method that transforms a formula $ of the kind (7) into a

NRDATALOGCfRC prOgKit-Il (7C,#;@8) and a query y, The transformation is compli-

cated partly because of the special treatment necessary for equality. Both 7c$ and y use

an enlarged set of relational symbols 2’ which is built as follows:

l each relational symbol a E L? is in 2’;

l for each relational symbol a E _CZ there are two relational symbols si and zi with the

same arity as a in Y’;
--.

l there are three binary relational symbols eq, eq, eq m 2’;

l there is a relational symbol t with the same arity as X in 2’;

l there is a 0-ary relational symbol e in Ip’.

The NRDATALOG~~~~ program (Q,; P; Q; 8) is built as follows:

1. for each conjunct

(1 <i<k) in $ there is the rule

in xe, where

0 U, (16idn) is
_ q, if Wi is = ,
_ ig, otherwise;

0 V,+i (l<i<m) is
_ eq, if Wn+i is =,

- w,,+~, otherwise.

We refer to the body of rule (8) as &(X,Y).

2. for each a E 9 there are three rules in x$:

Z(X) + a(X),

Z(X) +-Z(X), and

e t a(X),Z(X)

3. there are four additional rules in xb:

edX,X).

3X, Y> + eq(X, 0

(9)

(10)

(11)

(12)

(13)

(14)

(15)

q(X, Y) t F&X, Y), and

e+eq(X Y),eg(X Y>.

M. Cadoli, L. Palopolii Theoretical Computer Science 193 (1998) 215-244 233

Relational symbols in 9’ are partitioned in the sets P, Q and Z in the following

way:

0 P={Et/aE~}U{u/uE.}U{eq,eq,t,e};

: ~~~~lU’~}U{aloES}U{eq};

Finally, we define as query y for the NRDATALOG~'~~ program TC~ the restricted clause:

((VX)t(X)r\?QX)r\ ... AZ(X)Acy(X)) -+ e.

We are now ready for the main result about expressive power of NFLDATALOG~~~~.

Theorem 4.1. For any NP-recognizable collection D of$nite databases over o ~ char-
acterized by a formula Ic/ of the kind (7) - the NRDATALOG~~~~ program (n$; P; Q; 0)
built according to the above rules is such that a database D is in D if and only if

WD I+~P;g;O)Y.

Proof (only ifpart). We assume that database D is in D and prove that TC$, D FCp;&;fljy.
According to Fagin’s theorem [14], the database D being in D implies that there is

a list of relations Z (matching the list of relational variables S) such that

(D,E) j=(VX)@Y)(&(X,Y) V ... v &(X,Y)). (16)

Using D and 3 we build an interpretation N of all relational symbols of 3’ such that

(M) N is a model of 7c$ AD;

(p) N is a (P; Q; 8)- minimal model of TC$ AD;

(Y) N~K
thus proving the claim.

N is built as follows:

(i: interpretation of a symbols) for each relational symbol a of _%’ and each tuple t,

N + u(t) if and only if (D, E) b u(t);

(ii: interpretation of 5 symbols) for each relational symbol a of 3 and each tuple t,

N b Z(t) if and only if N p u(t);

(iii: interpretation of z symbols) for each relational symbol a of LT and each tuple t,

N b %);

(iv: interpretation of eq,q, y) for each pair of constant symbols c, d:
l A4 b eq(c, d) if and only if c = d;
l M k@(c,d) if and only if c # d;

l M + q(c,w;
(v: interpretation of t) for each tuple t, N + t(t);

(vi: interpretation of e) N Fe.

Proof. (a) N is a model of D because of clause (i) above. As for rules of IQ, of the

kind (8), they are satisfied by N because of clause (v). Rules of the kind (9) or (10)

are satisfied because of clause (iii). Rules of the kind (11) are satisfied because of

clauses (i), (ii). Rules (12)-(15) are satisfied because of clause (iv).

234 M. Cadoli, L. PalopolilTheoretical Computer Science 193 (1998) 215-244

Proof. (p) First, note that the extensions of predicates in D cannot be decreased be-

cause, otherwise, D would not be satisfied any longer. Since the extension of relation

e is already empty (cf. clause (vi)) and since extensions of predicates from D cannot

be decreased, the only possibility for building a model of rc$ with an extension of

relations in P smaller than that of N is to eliminate some tuple t from the extension

of a relation ir for at least an i (1 did I), or from relations eq, eq, t.

As for z relations, clause (ii) implies that N k (VX)(ai(X) V q(X)) for all i (1 <i

<I). For decreasing the extension of z it would be necessary - because of rules of

kind (9) and (10) - to decrease the extension of ai or q, which is impossible because

ai is in Q and ai is either in Q or belongs to D.
As for eq, it is impossible to decrease its extension because of rule (12).

As for 3 - because of rule (14) and of the above consideration - for decreasing its

extension it would be necessary to decrease the extension of q, which is impossible
_.

because eq IS a predicate in Q.

As for t, we reason as follows. For each tuple X there must be a tuple Y such that

relation (16) is satisfied. By rules (i), (ii) and (iv), for each tuple X there must exist

a conjunct t?i and a tuple Y such that the body of the corresponding clause of the

kind (8) is satisfied by N. As such a body is constituted by relations whose extension

cannot be decreased - either because they are in Q or because they are eq or because

they are in D - the above argument applies.

Proof. (y) This follows from clauses (iii), (iv), (v) and (vi).

Proof (ifput). We assume that there is a (P; Q; 0)-minimal model N of n$ AD such

that N F y and build a list of relations E (matching the list of relational variables S)

such that

CD, E”) b V’X)W)(~I(X, Y> v . v ‘%KY)),

i.e., we prove that database D is in D.

Fact 1. Since N F y, it holds that N k (VX)ir;(X) for all i (1 <id I)), N + (VX)

(G(X) A t(X)), and N Fe.

Fact 2. Since N is (P; Q; @)-minimal and q only occurs in rules (13) and (14) it

follows that N /= (Vx, Y)(eq(X, Y) V Z&Y, Y)). Since N k e, and considering rule (15)

it follows that N F (Ur, Y)eq(X, Y) A@(X, Y), i.e., N k (Vx, Y)leq(X, Y) V +j(X, Y),

which, taking into account the above result, implies N + (Vx, Y)eq(X, Y) $ E&f, Y).

In other words - taking into account rule (12) - in N eq is “genuine equality” and q

is “genuine inequality”.

Fact 3. Since t is a minimized predicate, for each tuple X there must be a conjunct

Bi such that N /= (gY)%(X,Y).

M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244 235

Fact 4. Since N is (P; Q; @)-minimal and a predicates only occur in rules of the kind

(9) or (lo), it follows that N k (VX)(ai(X) V q(X)) for all i (1 <i < 1).

We now build an interpretation A4 of all relational symbols of _Y (remind that “=”

is already interpreted).

(i) for each relational symbol a of $P and each tuple t, if N k u(t) then M k u(t);

(ii) for each relational symbol a of _Y and each tuple t, if N kiT(t) then M k x(t).

Using Fact 4, clauses (i) and (ii), we can see that M is a complete interpretation of

all relational symbols in 5?.

Since N k D, and because of clause (i), M b D. As a consequence, since relations

in the input database D are minimized in N, M can be denoted as (D, E), where E is

obtained by restriction of M to relational symbols of S.

Using Fact 3, clauses (i) and (ii), we see that for each tuple X there must be a

conjunct Bi such that (D,S)~(EiY)Oi(X,Y), i.e., (D,E)~(VX)(ilY)(81(X,Y)V ... V

@AX, Y)). 0

In the previous section we saw that in specific cases it is possible to “simplify”

the syntactic form of the query, at the expense of allowing varying predicates. Ap-

plying the same technique to the general case presented in this section, we obtain the

NFCDATALOGC'RC PI-O@-im (?'C$P'; Q;Z), which is built on the set of relational symbols

2’ U {p, z}, and contains all the rules of (rr$; P; Q; 0), plus the rules

t(X)cz

@(Jr, Y)+-z

Z(X)cz (1 <iGl)

p + z, e.

Where P’=PU{p}, and 2 = {z}. The query y’ is defined by the literal:

TZ.

The following corollary is easy to prove, using the same argument shown in

Example 3.2.

Corollary 4.2. For any NP-recognizable collection D of jinite databases over B -

characterized by a formula $ of the kind (7) - the NRDATALOG~'~~ program (7~;; P’;
Q; Z) built according to the above rules is such that a database D is in D if and only

if +D l+t(p’;g;zj~‘.

Remark. The results presented in Theorem 4.1 and Corollary 4.2 obviously hold for

the full language DATALOG=I~~.

236 M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

5. Combined complexity

In this section we establish combined complexity of NRDATALOG~‘~~ and

DATALOG~‘~~. Under combined complexity, both the database and the program are part

of the input. We will show that, in this case, to determine if a restricted clause (or

literal) y follows from a given NRDATALOG~‘~~ (DATALOG~‘~~) program (7~; P; Q; Z) and

database D is hard for co-NE. We remind that NE = lJc,l NTIME (2’“) (cf. [28]),

i.e., NE is the set of all problems solvable by a non-deterministic machine in time

bounded by 2’“, where n is a measure of the size of the input and c is an arbitrary

constant.

To prove our result, we use a technique shown in [23]. We begin by recalling the

definition of succinct 3-colorability of a graph. Assume the nodes of the input graph

are individuated by elements of (0, l}“. Then, instead of presenting the input using an

explicit edge relation, we are given a Boolean circuit with 2n inputs that outputs 1 if the

two n-tuples given as its input denote two nodes connected by an edge, and outputs 0,

otherwise. A Boolean circuit is a finite set of triplets {(ai, bi, ci) 1 1 ,< i < k} such that ai

is the gate type, taken from the set {OR, AND, NOT, IN}, and bi and c, are indexes

less than i, denoting the inputs of the gate. If ai = NOT then bi = ci (as NOT is

a unary operator). If ai = IN, then we assume bi = Ci = 0, as in this case the input

of the gate is not another gate but comes from outside. Triplet (ak, bk, ck) represents

the output gate. The succinct 3-coloring problem (Succ3COL) is the following. The

input is one such Boolean circuit with 2n inputs and one output encoding a graph.

The question is: Is the graph thus presented 3-colorable? To prove our next result, we

construct a reduction of Succ3COL to the problem of determining whether a clause

fOllOWS from a given NRDATALOGCtRC program or not, and then use the following result

from [23].

Theorem 5.1 (Kolaitis and Papadimitriou [23, Lemma 21). Succ3COL is NE-camp-

lete.

Let X, Y, e and d denote the n-tuples (Xl,. . ,X,), (Y,, , Y,), (cl,. ,c,,) and

(el,..., e,), respectively. The reduction is as follows. Intuitively, given a Boolean circuit

G = {(ai, bi,Ci) 1 1 <i <k} we construct from it a program XC as follows: For each

triplet gi = (ai, bi, Ci) E G, we define, in the program 716, a predicate gl(X, Y) that will

hold true on every 2n-tuple (e,d) that makes the gate gr output 1. Therefore gk(e,d)
_ the predicate corresponding to the output gate of the circuit - will hold true if and

only if (e,d) denotes an edge of the input graph G. 7~ is defined as follows. For each

i, 1 <id k, if ai = AND then nG will contain the clause:

SAX, y, + !Jb, (X Y>> Sc, (X Y>.

Otherwise, if a, = OR then 716 will contain the clauses:

M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244 237

If ai = NOT then rco will contain the clause:

gi(X Y> + gb,cx, y).

If ai = IN and gi is the jth input of the circuit according to the order implied by the

2n-tuple (X, Y), then rc~ will contain the clause:

gi(Zl,...,Zj-l~l,Zj+I,...,Z2,)cd

where d is a propositional letter. Moreover, for each i, 1 <i <k, 7~6 contains the fol-

lowing three clauses:

Z(X, Y) + gicx, y); tcx> y, tsi(x, y,

?ZOiL3_COZ + gi(X,Y),gi(X,Y).

Now let 7c&.0L be the following program:

non-3_cof +- gk(X, Y), blue(X), blue(Y)

non-3_co1 t gk(X, Y), red(X), red(Y)

non3_col +--gk(X,Y),green(X),green(Y)

hascolor + blue(X)

hascoZor(X) t red(X)

hascoZor(X) + green(X)

where blue(X) means that node identified by n-tuple X is colored in blue, and analo-

gously for predicates red, green. hascolor means that the node has been assigned at

least one color. Let r&c = 716 u r&coL. Let the input database D store only one ground

atomic formula, namely, d. Moreover, let the query y be defined as the following

restricted clause:

((VX, Y)E(X,Y) A . . . A z(X, Y) A hascoZor(X)) --+ non-3x01.

Let P={gl,...,gk,S,..., z, hascolor, non_3_col, d} and Q = {E, . . . , gk}.

We are then in the position to state the following result regarding the combined

COmpkXity Of NRDATALOG =IRC.

Theorem 5.2. Under combined complexity, the problem of determining, given a
NRDATALOG ‘lRC p~Og?Ylm (7C; P; Q; 8)) a database D and a restricted clause y, iJ’ z,
D kp;&;oy is hard for co-NE.

Proof. Consider the construction above. We next show that rrcc, D &c’p;e; *y if and only

if the graph represented by the circuit is 3-colorable.

Only if part. Let us assume that rrcc, D Fp. Q.Oy; then there is a (P; Q; @)-minimal

model M of rc,, AD which is not a model of ;, i.e., (i) M +(VX,Y)(!(X,Y), . . ,

238 M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

5(X, Y>> and ~4 k WV@ ascolor(and (ii) M ~non_3_col. Since hascolor is a

minimized predicate, it follows from (i) above that A4 b (VX)(red(X) v blue(X) v

green(X)), i.e., each node has at least one color. Similarly, for all i, (1 <i <k), as

A4 + (VX, Y)g(X, Y) and since for all i, (16 i <k), z is a minimized predicate, it fol-

lows from (i) above that for all i, (l<i<k), Mk(VX,Y)(gi(X,Y)Vgi(X,Y)). We

next show that:

(z) for each 2n-tuple (e, d), M k gi(e, d) if and only if the gate g; = (ai, b;, ci) outputs 1

when the 2n-tuple (e,d) is presented as the input to the circuit; in particular,

M b gk(e, d) if and only if the nodes e and d are connected by an edge.

Indeed, if (M) turns out to be true, then it would follow from the rules above that (iii)

all nodes are colored, and, (iv) since M k non3_col the nodes connected by an edge

are not colored using the same color. In turn, (iii) and (iv) would immediately imply

that the input graph is 3-colorable.

Proof. (a). First of all note that, since M b (VX,Y)(gi(X, Y) Va(X,Y)) and M F

non3_col, it follows that (v) M k gi(e,d) if and only if M pz(e,d). We now proceed

by induction on i.

Base, i= 1. Clearly, al =ZN. Therefore, rc~ contains the rule

Sl(Zl,...,Z,-l,1,Zj+l,...,Z,)td

where j is the position of the input gate gi according to the arrangements of the inputs

in the 2n-tuple given as the input to the circuit. Since A4 is a model for rccc AD, it

follows that A4 k d. Therefore, since gi is a minimized predicate, we have: M b g1 (e, d)

if and only if the jth bit of (e,d) is set to 1 if and only if the gate gi outputs 1 when

the 2n-tuple (e,d) is presented as the input to the circuit.

Induction. Assume the statement holds for each j < i. We proceed by case analysis.

Case 1: ai =ZN. The same reasoning as above applies.

Case 2: ai = AND. In this case, rt,, contains the rule:

Then we have: A4 l= gi(e,d) if and only if (as gi is minimized) M b gb,(e,d) and

M k g=,(e, d) if and only if (by induction, as both bi and ci are less than i) both gb,

and gc, outputs 1 when the Zn-tuple (e,d) is presented to the circuit as the input if and

only if gi outputs 1 when the 2n-tuple (e,d) is presented to the circuit as the input.

Case 3: ai = OR. In this case, rc,, contains the rules:

gicx, y> + gb,cX, y>, YiV, Y> + Sc,K Y).

Then we have: A4 b gi(e,d) if and only if (as gi is minimized) A4 k gb,(e,d) or

M b gc,(e,d) if and only if (by induction, as both bi and ci are less than i) either

gb, or gc, outputs 1 when the 2n-tuple (e,d) is presented to the circuit as the input

if and only if gi outputs 1 when the 2n-tuple (e,d) is presented to the circuit as the

input.

M. Cadoli, L. F’alopoliITheoretical Computer Science 193 (1998) 215-244 239

Case 4: ai = NOT. In this case, rrncc contains the rule:

sim Y) + gb,(X Y).

Then we have: M /= gi(e, d) if and only if (as gi is minimized) M k&(e,d) if and

only if (because of (v) above) M p gb,(e, d) if and only if (by induction, as bi is less

than i) gb, outputs 0 when the 2n-tuple (e,d) is presented to the circuit as the input

if and only if gi outputs 1 when the 2n-tuple (e,d) is presented to the circuit as the

input.

Zf part. Let us assume that the graph G encoded in the circuit is 3-colorable and

let C be a 3-coloring. Let M be an Herbrand interpretation built as follows:

l for each pair of n-bit strings e and d:
_ for each i (1 < i <k), M b gi(e, d) if and only if the gate gi of the circuit outputs

1 when the 2n-tuple (e,d) is presented as the input to the circuit; in particular,

M /= gk(e, d) if and only if there is an edge in G between nodes corresponding

to e and d;

_ M + red(e) if and only if node corresponding to e is colored in red by C;
_ M b blue(e) if and only if node corresponding to e is colored in blue by C;
_ M /= green(e) if and only if node corresponding to e is colored in green by C;

_ A4 t= hascolor(
_ for each i (1 <idk), M/=Oz(e,d);

~ for each i (1 <i<k), M +z(e,d) if and only if M kgi(e,d);

. Mbd

0 M k non3_col.
Clearly M is a model of ncc AD and is not a model of y. All we have to prove is

that A4 is (P; Q; 0)-minimal. Let us assume that there is a model N of ncc AD such

that N < (p~~;OjM and M $(P;Q;O) N. This means that the extension of some predicate in

P must decrease in N w.r.t. M. Since non-3_co1 is already false in M, and d cannot

have its extension decreased (otherwise D would not be satisfied any longer), the only

possibilities are to decrease either the extension of gi or the extension oft, for some i

(1 <i <k), or the extension of hascolor. However, as the extension of one of the

three predicates red, blue or green cannot decrease, as they are fixed, to decrease the

extension of hascolor cannot take place. So, we consider the predicates gi and z. As

for each i (1 <i <k), z is fixed, it cannot have its extension decreased in N w.r.t. M.
Therefore it follows that the extension of t can decrease in N w.r.t. M, for some i,
if and only if the extension of gi decreases for the same i. Next, we will show that

the extension of gi cannot decrease either. We proceed by induction on i.
Base, i = 1. Clearly, ai =ZN. The rule associated to gi has its body (the atom d)

satisfied in M. As the extension of d cannot be decreased in N w.r.t. M (see above),

and since gi is minimized, it follows that the extension of g1 cannot be decreased either,

otherwise N would not be a model for x,, AD (recall that the extension of gi in M

240 M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

consists of all 2n-tuples (e,d) that have their jth bit set to 1, where j is the position

of the input gate gi in the arrangements of inputs in (e,d)).
Induction. Assume that the extension of gi cannot be decreased in N w.r.t. M for

each j < i. We proceed by case analysis.

Case 1: ai = IN. The same reasoning as before applies.

Case 2: ai =AND. As gi is minimized, it follows from the rules for gi in rccc that

gi can be decreased in N w.r.t. M only if either gb, or gc, can be decreased. However,

both bi and Ci are less than i. Therefore, by induction, it is possible to decrease neither

the extension of gb, nor the extension of gc,. Therefore the extension of gi cannot be

decreased as well.

Case 3: ai = OR. Analogous to Case 2.

Case 4: a; = NOT. As gi is minimized, it follows from the rules for g1 in rrncc that

g; can be decreased in N w.r.t. M only if sb, can be decreased. But sb, is a fixed

predicate, and therefore cannot be decreased.

Therefore, such a model N does not exist, and M is (P; Q; @)-minimal.

This concludes the proof. 0

Since DATALOG~'~~ is more general than NRDATALOG~'~~, we immediately obtain the

same hardness result for DATALOG~'~~.

The above results can be strengthened if we restrict our attention to databases with

at most two constant symbols. In such a case we can guess the extension of a predicate

of arity n in non-deterministic time 2”. Therefore the combined complexity of deter-

mining if a restricted clause follows from a given DATALOG~'~~ program (rc; P; Q; 0)
and database D is in co-NE. The same argument applies to Herbrand Universes whose

cardinality is bounded by a constant. Therefore we can state the following corollary.

Corollary 5.3. Let k be a jixed constant. Under combined complexity, the problem
of determining, given a NRDATALOG~]~~ (resp., DATALOG~I~~) program (rc; P; Q; 0),
a database D whose domain has cardinality less than k and a restricted clause y, if

n, D +‘p;&;B y is complete for co-NE.

Similarly to the results presented in previous sections, we can simplify the form of

the query to be a simple ground literal by using extra rules and varying predicates,

as we do in the following. The NRDATALOG~'~' program (TC$; P’; Q; 2) contains all the

rules of (rc,,; P; Q; 0), plus the rules:

has-color(X) + z.

gx, Y) + z.

p + z,non_3_col.

M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244 241

where P’ = P U {p}, and 2 = (2). The input database is the same as before, while the

query y’ is defined by the literal:

TZ.

The following corollary is easy to prove, using the same argument shown in

Example 3.2.

Corollary 5.4. Under combined complexity, the problem of determining, given a
NRDATALO~~I~~ (resp., DATALOG~'~~) program (IT; P; Q; Z), a database D whose do-

main has cardinality less than k and a literal I, if x,0 kptQiz 1 is hard for co-NE.

Moreover, if the cardinality of the input database D is bound by a given constant k
then the problem above is in co-NE.

6. Discussion and conclusions

This paper defines DATALOG 'IRc, the language obtained from ascribing semantics to

DATALOG programs using general circumscription and demonstrates its use in solving

complex queries to relational databases by means of several examples.

We have studied both data and combined complexity and the expressive power of

querying relational databases through DATALOG~'~~ programs: We have showed that

querying through DATALOG~'~~ programs is co-NP-complete under the data complexity

measure and hard for co-NE under the combined complexity measure; furthermore,

the main result presented in this paper proves that all queries in DB-co-NP can be

expressed using DATALOG~'~~ programs.

It is interesting to know whether we can isolate polynomial sub-cases for data com-

plexity by means of some syntactic restrictions on DATALOG~'~~ programs. Two such

restrictions are now briefly mentioned. In both cases, polynomiality is shown first by

“projecting” the DATALOG~*~~ program on a suitable propositional formula. The for-

mula is the conjunction of all possible ground instances of the rules of the program

(clearly, a sufficient number of propositional letters must be used, minimized predicates

generate letters in P, and so on). The rationale for such a translation is that the size of

the propositional formula is polynomial in the size of the input database. As a conse-

quence, if we end up with a class of propositional formulae for which circumscriptive

inference is polynomial, then we have proven a polynomial case for data complexity

in DATALOGCIRC.

Example 3.1 showed that data complexity is co-NP-complete if there are no varying

predicates and the maximum arity of fixed predicates is 1. If we “project”

a DATALOG~'~~ program without varying predicates and whose fixed predicates have

arity 0, we obtain a propositional formula and a partition (P; Q; 0) of its alphabet

such that the size of Q is bounded by a constant, i.e., exactly as many as the fixed

predicates in the original formula. It is possible to show that in such a case inference

242 M. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

in propositional circumscription is polynomial, which implies that data complexity is

polynomial.

Data complexity is also polynomial if there is at most one literal in the body of each

rule, even if there are varying predicates. This can be proven by taking advantage of

the complexity analysis of inference in propositional circumscription that is performed

in [7].

Efficient implementation of DATALOG 'lRC queries (is it possible to design ad hoc

optimization techniques to speed up evaluation of DATALOG~*~~ queries?) will be the

subject of future research.

Acknowledgements

Thanks to Thomas Eiter for his precious comments on the drafts of this

paper. Anonymous referees’ comments and suggestions led to substantial improve-

ments in the quality of this paper. The work of the first author has been supported

by AS1 (Italian Space Agency), MURST (Italian Ministry for University and Sci-

entific and Technological Research) and CNR (Italian Research Council) under the

SARI project. The work of the second author has been supported by EC under the

EC-NSF joint project “Deus ex machina: non-determinism for deductive databases”

and by MURST under the project “Sistemi formali e strumenti per basi di dati

evolute”.

References

[l] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, Reading, MA, 1995.

[2] S. Abiteboul, V. Vianu, Expressive power of query languages, in: J.D. Ullman (Ed.), Theoretical Studies

in Computer Science, Academic Press, New York, 1992.

[3] A. Aho, J.D. Ullman, Universality of data retrieval languages, in: Proc. 6th ACM Symp. on

Principles of Programming Languages, ACM Press, New York, Addison-Wesley, Reading, MA, 1979,

pp. 110~117.

[4] P. Bonatti, T. Eiter, Querying disjunctive databases through non-monotonic logics, Theoret. Comput.

Sci. 160 (1996) 321-363.

[5] M. Cadoli, The complexity of model checking for circumscriptive formulae, Inform. Process. Lett.

44 (1992) 113-118.

[6] M. Cadoli, T. Eiter, G. Gottlob, Default logic as a query language, in: Proc. 4th Intemat. Conf. on the

Principles of Knowledge Representation and Reasoning (KR-94), 1994, pp. 99-108, Extended version

to appear in IEEE Trans. Knowledge Data Eng.

[7] M. Cadoli, M. Lenzerini, The complexity of propositional closed world reasoning and circumscription,

J. Comput. System Sci. 48 (1994) 255-310.

[8] A. Chandra, D. Harel, Computable queries for relational databases, J. Comput. System Sci. 21 (1980)

156-178.

[9] A. Chandra, D. Harel, Structure and complexity of relational queries, J. Comput. System Sci. 25 (1982)

99-128.

[IO] A. Chandra, D. Harel, Horn clause queries and generalizations, J. Logic Programming 1 (1985) l-15.

[ll] T. Eiter, G. Gottlob, Propositional circumscription and extended closed world reasoning are IIf-

complete, Theoret. Comput. Sci. 114 (1993) 231-245.

M. Cadoli, L. PalopoliITheoretical Computer Science 193 (1998) 215-244 243

[12] T. Eiter, G. Gottlob, H. Mannila, Adding disjunction to datalog, in: Proc. 13th ACM SIGACT SIGMOD

SIGART Symp. on Principles of Database Systems (PODS-94), 1994, pp. 267-278; Extended version

to appear on ACM Trans. Database Systems.

[131 T. Eiter, N. Leone, D. Sac&, The expressive power of partial models in disjunctive deductive databases,

in: Logic in Databases, Lecture Notes in Computer Science, vol. 1154, Springer, New York, 1996,

pp. 245-264.

[141 R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in: R.M. Karp (Ed.),

Complexity of Computation, AMS, New York, 1974, pp. 43-74.

[15] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness,

Freeman, San Francisco, CA, 1979.
[161 M. Gelfond, V. Lifschitz, Compiling circumscriptive theories into logic programs: Preliminary report,

in: Proc 7th National Conf. on Artificial Intelligence (AAAI-88) 1988, pp. 455-459.

[171 M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: Proc. 5th Logic

Programming Symp., The MIT Press, Cambridge, MA, 1988, pp. 1070-1080.

[181 M. Gelfond, H. Przymusinska, Negation as failure: careful closure procedure, Artif. Intell. J. 30 (1986)

273-287.

[19] M. Gelfond, H. Przymusinska, T. Przymusinsky, On the relationship between circumscription and

negation as failure, Artif. Intell. J. 38 (1989) 49-73.

[20] Y. Gurevich, S. Shelah, Fixed-point extension of first-order logic, Ann. Pure Appl. Logics

32 (1986) 265-280.

[21] N. Immerman, Relational queries computable in polynomial time, Inform. and Control 68 (1986)

86-104.

[22] P. Kanellakis, Elements of relational database theory, in: J. van Leeuwen (Ed.), Handbook of Theoretical

Computer Science, vol. B, Elsevier, Amsterdam, 1990, ch. 17.

[23] P.G. Kolaitis, C.H. Papadimitriou, Why not negation by fixpoint?, J. Comput. System Sci. 43 (1991)
1255144.

[24] V. Lifschitz, Computing circumscription, in: Proc. 9th Internat. Joint Conf. on Artificial Intelligence

(IJCAI-85) 1985, pp. 121-127.

[25] V. Lifschitz, On the declarative semantics of logic programs with negation, in: J. Minker (Ed,),

Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, 1988,

pp. 177-192.

[26] J.F. Lynch, Complexity classes and theories of finite models, Math. Systems Theory I5 (I 982) 127-I 44.

[27] J. McCarthy, Circumscription - a form of non-monotonic reasoning, Artif. Intell. J. 13 (1980) 27-39.

[28] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.

[29] T. Przymusinski, On the declarative semantics of stratified deductive databases and logic programs,

in: J. Minker (Ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann,

Los Altos, 1988, pp. 193-216.

[30] R. Reiter, Circumscription implies predicate completion (sometimes), in: Proc. 2nd National Conf. on

Artificial Intelligence (AAAI-82), 1982, pp. 418-420.

[31] D. Sac&, Multiple stable models are definitely needed to solve unique solution problems, Inform.

Process. Lett. 58 (1996) 249-254.

[32] Y. Sagiv, Optimizing datalog programs, in: J. Minker (Ed.), Foundations of Deductive Databases and

Logic Programming, Morgan Kaufmann, Los Altos, 1988, pp. 659-698.

[33] C. Sakama, K. moue, Embedding circumscriptive theories in general disjunctive programs, in: Proc.

3rd Internat. Workshop on Logic Programming and Non-monotonic Reasoning (LPNMR-95) Lecture

Notes in Computer Science, vol. 928, Springer, New York, 1995, pp. 344-357.

[34] J.S. Schlipf, Decidability and definability with circumscription, Ann. Pure Appl. Logic. 35 (1987)

173-191.

[35] J.S. Schlipf, The expressive powers of the logic programming semantics, J. Comput. System Sci.

51 (1995) 64-86.

[36] J.S. Schlipf, A survey of complexity and undecidability results for logic programming, Ann. Math. Artif.

Intell. 15 (1995) 257-288.

[37] IStewart, Comparing the expressibility of languages formed using NP-complete operators, J. Logic

Comput. 1 (3) (1991) 305-330.

[38] J.D. Ullman, Principles of Database and Knowledge Base Systems, vol. I, Computer Science Press,

Rockville, MD, 1988.

244 A4. Cadoli, L. Palopolil Theoretical Computer Science 193 (1998) 215-244

[39] M.Y. Vardi, The complexity of relational query languages, in: Proc. 14th ACM SIGACT Symp. on

Theory of Computing (STOC-82), 1982, pp. 137-146.

[40] M.H. van Emden, R.A. Kowalski, The semantics of predicate logic as a programming language,

J. ACM. 23 (4) (1976) 733-742.

[41] A. van Gelder, The alternating fixpoint of logic programs with negation, in: Proc. 8th ACM SIGACT

SIGMOD SIGART Symp. on Principles of Database Systems (PODS-89), 1989, pp. I-10.

