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Abstract In this paper, the problem of parameter estimation of the combined radar signal adopting

chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be

widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the ini-

tial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity

of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition

interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simu-

lations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is

theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio

(SNR) is less than �4 dB, it can still estimate the intra-pulse parameters well. When SNR = �3 dB,
a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even

only 100 training samples.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

The combined chaotic pulse position modulation linear fre-
quency modulation (CPPM-LFM) signal has attracted signifi-
cant attention recently. It has been widely applied to stealth

radar, sonar and communication systems because of its good
performance of target detection, low probability of intercept
(LPI)1 and superior resolution. It is followed that this signal

has two characteristics. On the one hand, the carrier frequency
61830432.

Tang).

orial Committee of CJA.

g by Elsevier

ing by Elsevier Ltd. on behalf of C

08
of the intra-pulse varies linearly. On the other hand, the pulse

position is modulated by chaotic sequence. Due to the aperi-
odic interval, this signal is difficult to be observed by the recon-
naissance system. The literatures for the contemporary study
focus on the LFM signal and CPPM signal. So far, there are

few detection and estimation schemes for this combined signal.
In this paper, the CPPM-LFM signal is analyzed with re-

spect to its structural property. It is easily found that the intra

pulse parameters can be estimated through the conventional
estimation algorithms2–4 in the presence of one intercepted
pulse. However, the estimates are relatively dispersed with a

large variance via the cycle placidity method3 when signal to
noise (SNR) is low. In view of the fact that the key attractive
attributes of Hough transform (HT) are the capability of

extracting signal feature as well as the good performance of
anti-noise interference, we proposed a parameter estimation
approach for CPPM-LFM intra pulse signal on the basis of
cyclic autocorrelation-Hough transform (CHT).
SAA & BUAA. Open access under CC BY-NC-ND license.
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In addition, under the conditions of equal pulse width, the
main idea underlying CPPM is to modulate a pulse train by
alteration of pulse repetition interval (PRI) with respect to a

chaotic discrete sequence. It leads to the result that the com-
bined signal is easily mistaken as LFM signals of multiple
radars by the reconnaissance receiver. The conventional rec-

ognition and sorting algorithms are no more applicable.
Therefore, the pulse position prediction of this signal is still
an open problem. However, in the existent literature, scholars

pay significant attention to the analysis of the superior prop-
erties of CPPM signal and the basic design principles for
chaotic-pulse generator.1,5,6 In this paper, according to the
nonlinear generation mechanism and short-term predictability

of the chaotic signal, it can be modeled as nonlinear architec-
ture to predict the following pulse position. There are mainly
two nonlinear schemes: neural networks and Volterra series

expansion. Compared with the neural networks in computa-
tional burden, the Volterra filter has the advantage and can
deal with a class of nonlinear systems7. From a practical view-

point of radar reconnaissance receiver, the second-order
zVolterra (SOV)8,9 and the third-order Volterra (TOV)10,11

prediction filters are analyzed and established as prediction

architectures for PRI. Note that the output of Volterra system
is linearly dependent upon its kernel coefficients, least mean
square (LMS)-based kernel identification algorithm is sug-
gested. The feasibility and effectiveness of the algorithms

are demonstrated by theoretical analysis and simulation
results.
2. Signal model

In fact, the CPPM-LFM radar signal can be modeled as

sðtÞ ¼ 1ffiffiffiffi
L
p

XL�1
l¼0

uðt� cl þ elÞxðtÞ ð1Þ

where uðtÞ ¼ 1=
ffiffiffiffiffiffi
TL

p
; 0 6 t < TL

0; otherwise

�
is the subpulse with the

pulse width TL, L the pulse number. xðtÞ ¼ Aej½2pðf0tþ
1
2Kt

2Þþu0 �,
A is the signal amplitude, f0 the initial frequency, K the chirp

rate, u0 the initial phase. cl, chaotic sequence, is the position
of the lth pulse, under the conditions of the equal pulse width,
PRI, i.e., ðclþ1 � clÞ is also the chaotic sequence. el is the error
sequence of pulse position modulation, without loss of gener-
ality, we assume el = 0.

For ease of analysis and comment, the combined signal sðtÞ
can be decomposed as intra and inter pulse parts. Aimed at the

cyclic property of the signal, the intra pulse in one cycle can be
expressed as

xsðtÞ ¼ xðtÞ þ nðtÞ ð2Þ

where nðtÞ is a zero-mean white Gaussian noise that is indepen-

dent of xðtÞ. Therefore, the parameter estimation algorithm
will be concentrated on a LFM signal, and high precision in
low SNR is of interest.

The inter-pulse part consists of the PRI sequence. Pulse po-
sition prediction derived from the PRI prediction is detailed in
Section 4, which is essential to further signal sorting and

tracking.
3. Initial frequency and chirp rate estimation based on the CHT

method

3.1. Cyclic autocorrelation algorithm

From Eq. (2), the single pulse signal is a LFM signal, which

has been proven to be cyclostationary, and its time-varying
autocorrelation function is given by

Rsðt� s=2; tþ s=2Þ ¼ Efxsðt� s=2Þx�s ðtþ s=2Þg
¼ A2e�j2pðf0sþKtsÞ þ R0nðsÞ ð3Þ

where E{�} is the expectation operator, and R0nðsÞ the noise
after the autocorrelation process. When the number of sample
points is large enough, it can be considered as complex Gauss-

ian noise according to the central limit theorem.
Since Rs(t � s/2, t+ s/2) is periodic, it admits a Fourier

series representation,

Ra
s ðsÞ ¼ lim

T!1

1

T

Z þT=2

�T=2
Rsðt� s=2; tþ s=2Þe�j2patdt

¼ 2pA2e�j2pf0sdð2paþ 2pKsÞ þ 2pR0nðsÞdð2paÞ ð4Þ

where a is the cyclic frequency. We can get its modulus

jRa
s ðsÞj ¼

2pjA2e�j2pf0s þ R0nðsÞj; a ¼ 0; s ¼ 0

0; a–0; s ¼ 0

2pjR0nðsÞj; a ¼ 0; s–0

2pA2dð2paþ 2pKsÞ; a–0; s–0

8>>><>>>: ð5Þ

It is shown from Eq. (5) that the local a is determined by

dividing the peak value by the lag s. For the non-zero lag,
i.e., s–0, these maxima corresponding to the signal energy
and Gaussian white noise energy occur at the cyclic frequency

a ¼ �Ks and a ¼ 0, respectively. The conventional estimation
method for the chirp rate involves searching the maximum of
the cyclic autocorrelation function for a family of discrete val-

ues of s and generates a sequence of a values, which suffers a
large amount of calculation.

From Ref.12, we know that the selection of a lag s could af-
fect the performance of the rate estimation of combined signal.

When s! N=ð2fsÞ, the estimation scheme delivers a better per-
formance, where N is the total sampling points, and fs the sam-
pling frequency. The optimal performance of estimation

appears at s ¼ N=ð2fsÞ. Unfortunately, the phase ambiguity
would emerge unless it meets jb2j 6 jp=ð2s0Þj,3 where
b2 ¼ pK=f2s , s0 ¼ sfs. Then the inequality becomes

jKj 6 fs
2s

ð6Þ

Substituting s ¼ N=ð2fsÞ and K ¼ B=ðN=fsÞ into Eq. (6),

where B is the bandwidth, then we can rewrite Eq. (6) as
B 6 fs, which meets the band-pass Nyquist sampling theorem
undoubtedly. It is evident to suggest that there is no phase

ambiguity under general sampling when we make the optimal
lag s ¼ N=ð2fsÞ. Then, the chirp rate is obtained according to
one-dimensional peak search with respect to the cyclic fre-
quency, i.e., a. For an optimal, select non-zero lag s and

non-zero a of Eq. (5), and the rate of the CPPM-LFM can
be obtained bybK ¼ �a=s ð7Þ



Fig. 1 Comparison of chirp rate estimates with different values

of s.
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The following example shows the mean square error (MSE)

of chirp rate estimation under the conditions of different values
of s in Fig. 1. 500 Monte Carlo trials were performed on the
observed intra-pulse signal. The initial frequency
f0 = 20 MHz, fs = 100 MHz, N = 2000, SNR= �5 dB,

K= 0.25 · 1012 Hz/s. The proposed method deteriorates as
the lag grows apart from N=ð2fsÞ, i.e., 10 ls as shown in
Fig. 1. Simulation result assesses the effect of the lag election

as expected. Take s ¼ N=ð2fsÞ as an example to illustrate our
Eq. (5), and the peak of the signal energy in the correlation
domain locates at a = �2.49 MHz, as presented in Fig. 2. The

satisfied estimate of the chirp rate, bK = 0.249 · 1012 Hz/s, is
derived from Eq. (7).

Having the estimated bK, the received radar signal can be
demodulated

ysðtÞ ¼ xsðtÞe�jp
bKt2 ¼ ej2pf0tþjpðK�

bKÞt2 þ n0ðtÞ ð8Þ

where n0ðtÞ ¼ nðtÞe�jpbKt2 . It can be seen that the demodulation

signal is nearly a tone, when the estimation of bK is precise.

ysðtÞ can be expressed in a discrete-time signal form as

ysðn1Þ ¼ ej2pf0n1=fsþjpðK�
bKÞn2

1
=f2s þ n0ðn1Þ, n1 ¼ 1; 2; . . . ;N. We

make Fourier coefficients interpolation of ysðn1Þ to get the
initial frequency estimation. The process is as follows:

Firstly, getting the Fourier transform of demodulation sig-
nal, Yðn1Þ, we search for the index l ¼ argmaxn1fYðn1Þg. The

true frequency can be expressed as f ¼ ðlþ dÞ
N

fs, where d is a
Fig. 2 Signal energy in correlation when s ¼ N=ð2fsÞ.
residual in the interval ½�0:5;þ0:5�. The estimate of d is given

by d̂ ¼ hðdÞ ¼ 1

2
Re

Sþ0:5 þ S�0:5
Sþ0:5 � S�0:5

� �
, and the specific procedure

can be seen in Ref.13.
The parameters of CPPM-LFM intra-pulse signal are ex-

tracted by the above mentioned methods. Unfortunately, the
cyclic autocorrelation approach is not stable in low SNR. Sim-
ulations demonstrate this phenomenon. In this paper, a mod-

ified CHT estimation algorithm implementing HT is proposed.

3.2. HT method

HT, in essence, maps different points of a straight line in

Cartesian coordinate to a family of sinusoids in 2D parameter
space14. The straight line equation in the inclined cutting form
is expressed as

y ¼ axþ b ð9Þ

where a is the slope of the line, b the y-intercept. Cartesian
coordinate transform is

q ¼ x cos hþ y sin h; q P 0; 0 6 h 6 2p ð10Þ

where q is the perpendicular distance from the origin to the
line and h the angle between line and x axis. The features of
the line are mapped into parameter space using Eq. (10). Each

point ðx; yÞ will generate a different surface in the parameter
space, but all surfaces generated by the points of a line will
intersect at the common point which can describe the features

of the line. Therefore, through an intelligence collection sys-
tem, we can collect the parameter estimates of multiple pulses.
A majority of the estimates are approximately equal and can

be considered as a straight line paralleling to the x-axis, while
the estimates with great error stand apart from the line. Thus,
the outliers are removed through HT and the modified esti-

mate which is nearly equal to the majority is achieved. The spe-
cific procedures of estimate modification via HT are as follows:

Step 1. The parameter space is composed of p · q basic

units, where p is the equal interval number of h, and q is
the equal interval number of q Set an accumulator Qp�q .

Step 2. Set ði; yiÞ as a point in the image space, where i is the
ith pulse, and yi the corresponding parameter estimate.
Make Cartesian coordinate transform through Eq. (9)

and calculate q with cells of this quantized space and then
increase a counter connected with this cell,
Qði1; i2Þ ¼ Qði1; i2Þ þ 1.

Step 3. When all the estimates are calculated after Step 2,
through finding the maximum number of counts of accu-
mulator cells, we can get the point ðhopt; qoptÞ which is inter-

sected at. Substituting Eq. (10) into Eq. (9) leads to
a ¼ � cos hopt= sin hopt

b ¼ qopt= sin hopt

(
ð11Þ

Fitting the straight line where the vast majority of estimates
are, we could get the value of b, i.e., the modified estimate.

Here, HT is used to remove the outliers of the estimates of
K and f0.
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4. Prediction of PRI based on Volterra adaptive filter

For the CPPM signal, the information is contained in the
intervals between the pulses, which are determined by chaotic

dynamics of a pulse generator1. The pulse occurrence time of
CPPM-LFM signal can be obtained via many standard meth-
ods, such as energy detection algorithm.15 In view of the fact

that the PRI sequence of CPPM-LFM signal is highly nonlin-
ear, the PRI prediction becomes a nonlinear prediction prob-
lem. These approaches which are able to capture the
nonlinear reactor behavior mainly fall into two categories:

neural networks and Volterra series expansion. For the neural
networks, the huge computational loads are prohibitive for
practical applications on electronic counter measures (ECM).

Hence, the low-order Volterra filter, which offers reduction
in the computational burden and approximate nonlinear sys-
tems efficiently, is applied to the PRI prediction of CPPM-

LFM signal.
Firstly, normalize the detected PRI sequence, denoted by

PRIðnÞ; n ¼ 1; 2; � � � ;N� 1. The quantization does not affect

the desirable properties of the sequence. Secondly, we recon-
struct the state space that is the fundamental to describe a dy-
namic system,16 and make N0 ¼ n� ðm� 1Þs0, where m is the
embedding dimension and s0 the time lag. The vector based on

the state space reconstruction is expressed as

Wðl1Þ ¼ ½PRIðl1Þ PRIðl1 þ s0Þ � � �PRIðl1 þ ðm� 1Þs0Þ�
l1 ¼ 1; 2; � � � ;L� ðm� 1Þs0 � 1 ð12Þ

Where W is the state vector. Find the center vector of the
reconstructed phase space, specifically

WðN0Þ¼ ½PRIðN0ÞPRIðN0þ s0Þ� � �PRIðN0þðm�1Þs0Þ�
¼ ½PRIðn�ðm�1Þs0Þ PRIðn�ðm�2Þs0Þ � � �PRIðnÞ�ð13Þ

Suppose the observation sequence of radar receiver is

W1ðnÞ ¼ ½PRIðnÞ PRIðn� 1Þ � � � PRIðn�Nþ 1Þ�. The Volter-
ra series expansion of the chaotic system can be written in the
form

PRIðnþ 1Þ ¼ FðW1ðnÞÞ ¼ h0 þ
XP
p¼1

XS�1
t1¼0

XS�1
t2¼0

. . .

XS�1
tp¼0

hpðt1; t2; � � � ; tpÞ
Yp
i¼1

PRIðn� tiÞ ð14Þ

where F(Æ) is the prediction model evolved from the original
system, P the model order and S the memory length with the
filter. The Volterra model kernel refers to hpðt1; t2; . . . ; tpÞ.
The expansion is represented as a function of inputs PRIðnÞ,
which have an effect on the current output PRIðnþ 1Þ.

One common difficulty involving the determination of the
Volterra kernels encounters, when we want to apply the Vol-

terra functional representation to nonlinear problem. The ma-
jor shortcoming of this structure is that the number of
parameters increases largely as the model order increases. Con-

sidering that the pulse position modulation (PPM) of radar
signal is generally a chaotic set in a low dimension, the SOV
and TOV models can characterize the inherent physical rela-

tionships of the chaotic PRI sequence. In addition, Ref.17

points out that a high kurtosis and variance sequence could ex-
cite the third-order off-diagonal term selectively. Also, it can
compensate the effects of the second-order off-diagonal terms
relatively insignificant. However, the TOV model suffers more
computational complexity. With a comprehensive consider-
ation, it is worthwhile to analyze and compare both of them

through the prediction achievement. Takens’ embedding theo-
rem16 says that the dynamic system behavior can be described
completely when m P 2D2 þ 1; where D2 is the dynamic

dimension. Therefore, we can set S ¼ m ¼ 2D2 þ 1.
The expansion of the SOV series in Ref.7 is expressed as

PRIðnþ1Þ¼h0þ
XS�1
i3¼0

h1ði3ÞPRIðn� i3Þþ
XS�1
i3¼0

XS�1
i4¼0

h2ði3; i4ÞPRIðn� i3ÞPRIðn� i4Þ

¼HT
2 ðnÞU2ðnÞ ð15Þ

where U2(n) = [1 PRI(n) . . . PRI(n � S + 1) PRI2(n) PRI(n)Æ
PRI(n � 1) . . . PRI2(n � S + 1)]T is the input vector of Volter-
ra adaptive filter, and the corresponding coefficient vector re-
fers to H2ðnÞ ¼ ½h0 h1ð0Þ h1ð1Þ � � � h1(S � 1) h2(0,0) h2(0,1)

� � � h2(S � 1, S � 1)]T.
In Ref.18, when the nonlinear systems are predicted by the

third-order architecture, a portion of the filter vector parame-

ters converges to zero approximately, and these could be ne-
glected. Consequently, the nonlinear models which predict
the chaotic sequence can be taken as a sparse Volterra series
expansion. The sparse TOV series are obtained as follows:

PRIðnþ 1Þ ¼ h0 þ
XS�1
i3¼0

h1ði3ÞPRIðn� i3Þ

þ
XS�1
i3¼0

XS�1
i4¼0

h2ði3; i4ÞPRIðn� i3ÞPRIðn� i4Þ

þ
XS�1
i3¼0

h3ð0; i3ÞPRI3ðn� i3Þ

þ
XS�1
i3¼1

h3ð1; i3ÞPRI2ðnÞPRIðn� i3Þ

þ
XS�1
i3¼1

h3ð2; i3ÞPRIðnÞPRI2ðn� i3Þ

¼ HT
3 ðnÞU3ðnÞ ð16Þ

where U3ðnÞ and H3ðnÞ represent the input vector and the cor-
responding coefficient vector of the TOV filter, respectively.

Finally, the kernels of the SOV and TOV model can be

identified using LMS algorithm,19 which modifies the esti-
mated coefficients of the filter adaptively using the information
contained in new data samples to update the old estimates in
the training process. Obtain the coefficients of linear adaptive

finite impulse response (FIR) filter eventually. The iterative
formula is given by

PRIðnÞ ¼ HTðn� 1ÞUðn� 1Þ
HðnÞ ¼ Hðn� 1Þ þ leðn� 1ÞUðn� 1Þ
eðnÞ ¼ PRIðnÞ � PR̂IðnÞ

8><>: ð17Þ

where l is the step size, and PR̂IðnÞ the predictive value.

Based on the prediction information, the next pulse posi-
tion of CPPM-LFM signal can be obtained as

cl ¼
Xl�1
l0¼1

PRIðl0Þ ð18Þ

which is beneficial to further signal sorting of radar reconnais-
sance system.



Fig. 4 MSE for initial frequency estimation.

Table 1 MSE summary of SOV adaptive prediction (10�3).

SNR(dB) Chaotic sequence of the PPM (10�3)

Logistic Henon Lorenz

�6 202.3 150.4 143.4

�3 0.4122 0.2482 0.1834

�1 0.2861 0.1766 0.1469

1 0.2369 0.1381 0.1165

3 0.1978 0.1149 0.0967

5 0.1721 0.0923 0.0679

7 0.1471 0.0809 0.0579

9 0.1405 0.0764 0.0529

11 0.1352 0.0721 0.0506

Table 2 MSE summary of TOV adaptive prediction (10�3).

SNR(dB) Chaotic sequence of the PPM (10�3)

Logistic Henon Lorenz

�6 204.4 150.2 150.2

�3 0.3917 0.5943 0.08424

�1 0.2813 0.1970 0.05812

1 0.2311 0.1456 0.05147

3 0.1920 0.1221 0.04040

5 0.1596 0.1059 0.03048

7 0.1374 0.0971 0.02534

9 0.1230 0.0806 0.02029
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5. Simulation results and discussion

The following simulation experiments are used to assess the
validity of the proposed methods. In the experiment, nðtÞ is a
zero-mean white Gaussian noise, the initial frequency of
CPPM-LFM signal f0 = 20 MHz, K= 0.25 · 1012 Hz/s,
N= 2000, fs = 100 MHz, p = 180 and q = 1000 in HT, 100

Monte Carlo runs. The Logistic, Lorenz and Henon map are
taken as the chaotic sequences of PPM, the pulse number
L = 101.

The experiments are realized under the SNR values ranging

from �6 dB to 11 dB. The MSEs of K and f0 estimation are
shown in Figs. 3 and 4, respectively. In Figs. 3 and 4, ‘‘C cor-
relation’’ represents the cyclic autocorrelation approach3, ‘‘Q

dechirp’’ is the quick dechirp method2 by means of delay con-
jugate multiplication, and ‘‘CHT’’ the proposed cyclic auto-
correlation HT algorithm.

Fig. 3 presents that when SNR is less than �4 dB, for the
slope K estimation, the presented CHT algorithm delivers
about 60 dB MSE improvement upon quick dechirp method.

Whereas, about 10 dB worse when SNR P �4 dB. Compared
with the cyclic autocorrelation method, CHT has the equal
estimation ability. In fact, the parameter estimation of LFM
signal using HT achieves good performance in low SNR (more

than �12 dB). Considering the application of the pulse posi-
tion prediction, much lower SNR region is not discussed in
the paper. Fig. 4 shows that the proposed CHT method for

f0 estimation has 8 dB higher precision than cyclic autocorrela-
tion method in the case of SNR P �6 dB. In contrast with the
quick dechirp method, CHT delivers a superior MSE improve-

ment (about 50 dB) when SNR = �6 dB. Note that there is
still 5 dB promotion in more than �6 dB SNR region due to
the Fourier coefficients interpolation. The simulation results

illustrate that the proposed approach has a certain anti-noise
performance by means of the realizations to efficiently remove
the outliers of the estimates by HT.

Subsequently, the PRI sequence of CPPM-LFM radar sig-

nal is predicted by the SOV and TOV adaptive filters. The for-
mer normalized 100 PRI data are used as the training samples.
In order to illustrate the stability of the proposed methods, we

consider the performance comparison of two predictive mod-
els, as shown in Tables 1 and 2. One phenomenon in the sim-
ulation results is that the prediction schemes deteriorate when

SNR is less than �3 dB, mainly because chaotic signal is
Fig. 3 MSE for slope estimation.

11 0.1195 0.0792 0.02011
sensitive with the initial values corrupted with noise. When
SNR P �1 dB, the prediction errors of three chaotic signals

change only a little In addition, it is interesting to note that
the MSE of Logistic and Henon map via the SOV prediction
architecture is superior to that obtained by the TOV model,

since the Logistic and Henon map have lower dimensional lin-
ear degrees and complexity cost compared with the Lorenz
map. Nevertheless, such condition inverses for the Lorenz
map. In reality, the Volterra series expansion based on sec-

ond-order statistics is able to describe Lorenz architecture
although not as accurately as the TOV method, whereas, con-
sidering the low cost, they are definitely a bargain. Note that

there is no prior knowledge for a radar reconnaissance system,
thus, the SOV adaptive prediction scheme predetermined to



Fig. 5 Prediction of PRI via TOV adaptive filter.

Fig. 6 Prediction of PRI via SOV adaptive filter.
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forecast the chaotic PPM signal’s position is an optimal
process.

For ease of observation and comment, Lorenz and He-
non map PPM signal are taken as examples to illustrate
the proposed methods. Fig. 5 provides an illustrate depiction

of the PRI predictive effect of the Lorenz map PPM signal
via the TOV adaptive filter (s0 = 3, S= 3). Fig. 6 portrays
the predictive effect of PRI employing the SOV adaptive fil-

ter while the pulse position is modulated by the Henon map
(s0 = 1, S = 2). Where ‘‘ + ’’ denotes the real values, and
‘‘O’’ the predictive values. The simulation environment
SNR = 0 dB. It is observed that the low-order Volterra

adaptive filter does an efficient job of the PRI prediction
of CPPM-LFM signal corrupted by white Gaussian noise.
Finally, the pulse position cl could be estimated according

to Eq. (18).
6. Conclusions

(1) The proposed CHT algorithm is used to estimate the

intra-pulse parameters of the combined CPPM-LFM
signal in the low SNR.

(2) Model-based predictive algorithm by means of Volterra

adaptive filter for three chaotic PRI sequences can pre-
dict well when SNR P �3 dB.
(3) The key properties obtained from the employment of the
Volterra model in the chaotic system is the fact that the
SOV and TOV adaptive filters make comprehensive uti-
lization of the linear and nonlinear factors and the high-

order moment information.
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