ELSEVIER

On the Jordan block structure of images of some unipotent elements in modular irreducible representations of the classical algebraic groups ${ }^{\pi}$

A.A. Osinovskaya and I.D. Suprunenko *
Institute of Mathematics, National Academy of Sciences of Belarus, Surganova 11, Minsk, 220072, Belarus

Received 8 January 2003
Communicated by Gordon James

Abstract

Images of root elements in p-restricted irreducible representations of the classical algebraic groups over a field of characteristic $p>0$ and images of regular unipotent elements of naturally embedded subgroups of type A_{2} in such representations of groups of type A_{n} with $n>2$ and $p>2$ are investigated. Let $\omega=\sum_{i=1}^{n} m_{i} \omega_{i}$ be the highest weight of a representation under consideration. If ω is locally small with respect to p in a certain sense, the sizes of all Jordan blocks (without multiplicities) in the images of root elements are found, except the case of the groups of type B_{n} and C_{2} and short roots where all such sizes congruent to $m_{i}+1$ modulo 2 are determined with the i th simple root being short; for $p>2$ and $n>3$, all odd dimensions of such blocks for groups of type A_{n} and regular unipotent elements of naturally embedded subgroups of type A_{2} are found. Here the class of locally small weights with respect to p depends upon the type of a group and upon elements considered. For root elements in a group of type A_{n}, the weight ω is locally small if $m_{i}+m_{i+1}<p-1$ for some i. For root elements in other classical groups, the definitions of the relevant classes are more complicated and depend upon the root length; however, in all these cases locally small weights are determined in terms of certain linear functions of their values on two simple roots linked at the Dynkin diagram of a group. For groups of type A_{n} with $n>3$ and regular unipotent elements of naturally embedded A_{2}-subgroups, the weight ω is locally small if $m_{i}+m_{i+1}+m_{i+2}+m_{i+3}<p-2$ for some i with $i<n-2$. For arbitrary p-restricted

[^0]0021-8693/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2003.06.001
representations, the presence of blocks of certain sizes in the images of elements indicated above is established.
© 2004 Elsevier Inc. All rights reserved.
Keywords: Classical algebraic groups; Representations; Unipotent elements; Jordan blocks

1. Introduction

Let G be a classical simply connected algebraic group of rank $n>1$ over an algebraically closed field K of characteristic $p>0$. Denote by $\omega_{i}, 1 \leqslant i \leqslant n$, the fundamental weights of G labeled as in Bourbaki's book [1]. For a unipotent element $u \in G$ and a rational representation ϕ of G denote by $\mathrm{J}_{\phi}(u)$ the set of sizes of blocks (without their multiplicities) of the canonical Jordan form of $\phi(u)$. In what follows, Irr_{p} is the set of irreducible p-restricted representations of $G, \omega(\phi)$ is the highest weight of ϕ.

For an irreducible representation ϕ of G with p-restricted $\omega(\phi)=\sum_{i=1}^{n} m_{i} \omega_{i}$ locally small with respect to p in a certain sense, the sets $\mathrm{J}_{\phi}(u)$ are completely determined for root elements u except the case of the groups of types B_{n} and C_{2} and short roots α_{i} where all elements in $\mathrm{J}_{\phi}(u)$ congruent to $m_{i}+1$ modulo 2 are found; for $p>2, n>3$, $G=A_{n}(K)$, a regular unipotent element u in a naturally embedded subgroup of type A_{2}, and a p-restricted representation ϕ with a locally small highest weight, all odd block sizes in $\mathbf{J}_{\phi}(u)$ are determined. Recall that a dominant weight $\sum_{i=1}^{n} m_{i} \omega_{i}$ is p-restricted if all $m_{i}<p$. Root elements are assumed to be nonunity elements of root subgroups. Such elements are called long or short if they are associated with long or short roots, respectively. The notion of a locally small weight depends upon G and a problem considered (root elements or regular unipotent elements in a subgroup of type A_{2}) and will be precisely defined later. In the majority of cases considered, it occurs that $\mathrm{J}_{\phi}(u)$ contains all a priori possible blocks.

In characteristic 0 , each unipotent element is contained in a Zariski closed subgroup of type A_{1}. So, the complete reducibility of representations of semisimple groups and wellknown properties of A_{1}-modules imply that $\mathrm{J}_{\phi}(u)$ coincides with the set of the composition factor dimensions for the restriction of a representation ϕ to an A_{1}-subgroup containing u. For the classical groups and naturally embedded subgroups of type A_{1}, these factors can be deduced from the classical branching rules, this yields $\mathrm{J}_{\phi}(u)$ for a representation ϕ and root elements u (see [9, Theorem 1] for details). In [7,8] the sets $\mathrm{J}_{\phi}(u)$ were found for any unipotent elements of groups of type A_{2}, A_{3}, and C_{2}. In principle, these sets are determined by the weight multiplicities of ϕ and the labeled Dynkin diagram of u. However, for arbitrary classical groups and unipotent elements, we see no approach to an explicit description of $\mathrm{J}_{\phi}(u)$ even in characteristic 0 . For regular unipotent elements, this problem is equivalent to a strong refinement of well-known Dynkin's theorem [5] on the spindle property of the weight systems of irreducible representations. Namely, one needs to find out which of the inequalities for the sums of the weight multiplicities at fixed levels given by Dynkin's theorem are strict and which of them are in fact equalities.

In the case of characteristic p the situation is still more complicated. Here only elements of order p can be embedded into subgroups of type A_{1}, and restrictions of
irreducible representations of G to such subgroups are in general not completely reducible. Hence the composition factors of these restrictions do not determine the Jordan block structure. Moreover, it is substantially more difficult to find these factors since the weight multiplicities are unknown. So only partial results on the Jordan block structure can be expected. Naturally, for a unipotent element u the degree of the minimal polynomial of $\phi(u)$ is equal to the size of the biggest block in $\mathrm{J}_{\phi}(u)$. In [15] the minimal polynomials of unipotent elements of order p in irreducible representations of semisimple algebraic groups in characteristic p were found. Tiep and Zalesskii in [17, Theorem 2.20] described the irreducible representations ϕ of the simple algebraic groups in characteristic $p>3$ where $\mathrm{J}_{\phi}(u) \subseteq\{1, p-1, p\}$ for root elements u. If ϕ is a p-restricted representation with this property, $p>5$ or $G \neq G_{2}(K)$, then ϕ is the basic Steinberg representation with highest weight $\sum_{i=1}^{n}(p-1) \omega_{i}$. This description is crucial for the classification of the irreducible complex representations of finite groups of Lie type in characteristic p unramified above p and remaining irreducible after the reduction modulo p obtained in [17, Theorem 1.2]. Some results on the presence of specific blocks in $\mathrm{J}_{\phi}(u)$ for root elements u and $n=2$ were obtained in [17, Section 2.3] as well. Information on the Jordan block structure of unipotent elements in representations of algebraic groups can be useful for investigating recognition problems for representations and linear groups and constructing recognition algorithms for these purposes. Such results can be easily transferred to finite groups of Lie type (in particular, this was done in [17]) which extends the field of their potential applications.

We need some more notation to state the principal results. Denote by $\langle\omega, \beta\rangle$ the value of a weight ω on a root β. Throughout the text, \mathbb{N} is the set of nonnegative integers. If $u=x_{\alpha}(t)$ is a root element, then $\alpha_{m, u}$ is the maximal root of the same length as α. It follows from [1, Tables I-IV] that

$$
\left\langle\omega, \alpha_{m, u}\right\rangle= \begin{cases}\sum_{i=1}^{n} m_{i}, & G=A_{n}(K) \text { or } G=C_{n}(K) \text { and } \alpha \text { is long; } \\ m_{1}+m_{n}+\sum_{i=2}^{n-1} 2 m_{i}, & G=B_{n}(K) \text { and } \alpha \text { is long; } \\ m_{n}+\sum_{i=1}^{n-1} 2 m_{i}, & G=B_{n}(K) \text { and } \alpha \text { is short; } \\ m_{1}+\sum_{i=2}^{n} 2 m_{i}, & G=C_{n}(K) \text { and } \alpha \text { is short; } \\ m_{1}+m_{n-1}+m_{n}+\sum_{i=2}^{n-2} 2 m_{i}, & G=D_{n}(K)\end{cases}
$$

For $\phi \in \operatorname{Irr}_{p}$, set $m_{\phi}(u)=\min \left(\left\langle\omega(\phi), \alpha_{m, u}\right\rangle+1, p\right)$, for nonnegative integers a and b with $a \leqslant b$, put $\mathbb{N}_{a}^{b}=\{i \in \mathbb{N} \mid a \leqslant i \leqslant b\}$. In what follows we assume that $p>2$ and $n>2$ if $G=B_{n}(K)$ and that $n>3$ for $G=D_{n}(K)$.

Definition 1. Let $n>1$ and $\omega=\sum_{i=1}^{n} m_{i} \omega_{i}$ be a dominant p-restricted weight of G. For $G=A_{n}(K)$ or $D_{n}(K)$, the weight ω is locally p-small if $m_{i}+m_{i+1}<p-1$ for some i with $i<n-1$, or $G=A_{n}(K)$ and $m_{n-1}+m_{n}<p-1$, or $G=D_{n}(K)$ and $m_{n-2}+m_{n}<$ $p-1$. The weight ω is locally p-small of type I if $G=B_{n}(K)$ and either $m_{i}+m_{i+1}<p-1$ for some $i<n-1$, or $2 m_{n-1}+m_{n}<p-2$, or $G=C_{n}(K)$ and $m_{n-1}+2 m_{n}<p-2$, and ω is locally p-small of type II if $G=B_{n}(K)$ and $2 m_{n-1}+m_{n}<p$ or $G=C_{n}(K)$ and either $m_{i}+m_{i+1}<p-1$ for some $i<n-1$, or $m_{n-1}+2 m_{n}<p-1$.

Throughout the text we assume that $\phi \in \operatorname{Irr}_{p}$ and $\omega=\omega(\phi)=\sum_{i=1}^{n} m_{i} \omega_{i}$. The following theorem holds.

Theorem 2. Let $n>2, \phi \in \operatorname{Irr}_{p}$, and $u \in G$ be a root element. Assume that ω is locally p-small for $G=A_{n}(K)$ or $D_{n}(K)$. For $G=B_{n}(K)$ or $C_{n}(K)$ assume that ω is locally p-small of type I if u is long and ω is locally p-small of type II if u is short. Then $\mathrm{J}_{\phi}(u)=\mathbb{N}_{1}^{m_{\phi}(u)}$, except the case where $G=B_{n}(K)$ and u is short. In the exceptional case, the set

$$
\begin{gathered}
J=\left\{k \mid 1 \leqslant k \leqslant m_{\phi}(u), k \equiv m_{n}+1(\bmod 2)\right\} \subseteq \mathrm{J}_{\phi}(u) \\
\mathrm{J}_{\phi}(u)=J \quad \text { if } m_{\phi}(u)=\left\langle\omega, \alpha_{m, u}\right\rangle+1, \quad \text { and } \quad p \in \mathrm{~J}_{\phi}(u) \quad \text { if } m_{\phi}(u)=p
\end{gathered}
$$

For $n=2$, Definition 1 seems somewhat inappropriate, but the picture is similar. It is more convenient to consider this case separately. This is done in Proposition 3.

Proposition 3. Let $n=2$. Assume that $u=x_{i}(t)$ with $t \neq 0$. Set $m=\left\langle\omega, \alpha_{m, u}\right\rangle$. Then the following holds.
(i) For $G=A_{2}(K)$, we have $\mathbf{J}_{\phi}(u)=\mathbb{N}_{1}^{m+1}$ if $m_{1}+m_{2}<p-1$, or $m_{1}+m_{2}=p-1$ and $m_{1} m_{2}=0$, and $\mathbf{J}_{\phi}(u)=\mathbb{N}_{\min \left(p-m_{1}, p-m_{2}\right)}^{p}$ if $m_{1}, m_{2}<p-1=m_{1}+m_{2}$.
(ii) For $G=C_{2}(K)$ and $i=2$, we have $\mathrm{J}_{\phi}(u)=\mathbb{N}_{1}^{m+1}$ if $m_{1}+2 m_{2}<p-2$, or $m_{1}+m_{2}=p-2$, or $m_{1}+m_{2}=p-1$ and $p>2 ; \mathrm{J}_{\phi}(u)=\mathbb{N}_{p-m_{1}-m_{2}-1}^{m+1}$ if $m_{1}+m_{2}+3 \leqslant p<m_{1}+2 m_{2}+3$; and $\mathbf{J}_{\phi}(u)=\{2\}$ if $m_{1}=0, m_{2}=1, p=2$.
(iii) For $G=C_{2}(K)$ and $i=1$, we have $\mathrm{J}_{\phi}(u)=\left\{j \in \mathbb{N}_{1}^{m+1} \mid j \equiv m_{1}+1(\bmod 2)\right\}$ if $m_{1}+2 m_{2}<p$.

In the cases (i)-(iii), if the relevant assumptions hold, then V_{ω} is a completely reducible module and $\operatorname{Irr}_{H(j)} \omega=\left\{a \mid a+1 \in \mathrm{~J}_{\phi}(u)\right\}$. In case (ii), if $m_{1}+2 m_{2}<p-2$, and in case (iii), we have $\operatorname{Irr}_{H(i)} \omega=\operatorname{Irr}\left(W_{\omega} \mid H(i)\right)$ (here W_{ω} is the Weyl module, see Section 2).

In all cases, one can guarantee that certain integers belong to $\mathrm{J}_{\phi}(u)$.
Proposition 4. Let $n>1$. For a root element $u=x_{\alpha}(t)$, set

$$
c_{\phi}(u)=\min \left(m_{i} \mid \alpha_{i} \text { and } \alpha \text { are of the same length }\right) .
$$

Then $\mathbb{N}_{c_{\phi}(u)+1}^{m_{\phi}(u)} \subseteq \mathrm{J}_{\phi}(u)$, except the case where $G=B_{n}(K)$ or $C_{2}(K)$ and α is short. In the exceptional case, $\mathrm{J}_{\phi}(u)$ contains all $a \in \mathbb{N}$ with $a \equiv m_{i}+1(\bmod 2)$ for the short root α_{i} and $p \in \mathrm{~J}_{\phi}(u)$ if $m_{\phi}(u)=p$.

The following example shows that for $G=C_{n}(K)$ and long roots the assumptions in Theorem 2 cannot be weakened. Assume that $G=C_{n}(K), p>2, \omega=\omega_{n-1}+\frac{p-3}{2} \omega_{n}$ or $\frac{p-1}{2} \omega_{n}$, and u is a long root element. Then it is actually proved in [18] that

$$
\mathrm{J}_{\phi}(u)=\left\{\frac{p-1}{2}, \frac{p+1}{2}\right\} .
$$

Proposition 3 yields that these assumptions cannot be weakened and for $G=A_{2}(K)$.
For $G=A_{n}(K), p>2$, and $n>3$, another class of unipotent elements has been considered as well.

Theorem 5. Let $n>3, p>2$, and $G=A_{n}(K)$. Assume that u is a regular unipotent element of a naturally embedded subgroup of type A_{2}. Set $g=\min \left(2 m_{1}+\cdots+2 m_{n}+1, p\right)$ and $I=\left\{k \in \mathbb{N}_{1}^{g} \mid k \equiv 1(\bmod 2)\right\}$. If $m_{i}+m_{i+1}+m_{i+2}+m_{i+3}<p-2$ for some $i<n-2$, then $I \subseteq \mathrm{~J}_{\phi}(u) \subseteq \mathbb{N}_{1}^{g}$. Furthermore, if in this situation $2 m_{1}+\cdots+2 m_{n}+1 \leqslant p$, then $\mathrm{J}_{\phi}(u)=I$.

For $G=A_{n}(K), n>2$, and a wide class of representations $\phi \in \operatorname{Irr}_{p}$, one can show the presence of certain integers in $\mathrm{J}_{\phi}(u)$.

Proposition 6. Let $G=A_{n}(K), p$ and u be as in Theorem 5. Assume that $m_{i}+m_{i+1} \leqslant$ $(p-1) / 2$ for some i. Set $m=\min _{i}\left(m_{i}+m_{i+1}\right)$ and $M=\min \left((p-1) / 2, \sum_{j=1}^{n} m_{j}\right)$. Then $2 k+1 \in \mathbf{J}_{\phi}(u)$ for $k \in \mathbb{N}_{m}^{M}$.

It is well known that $\mathrm{J}_{\phi}(u)=\{p\}$ for every element x of order p if ϕ is a basic Steinberg representation since in this case the restriction of ϕ to the relevant nontwisted Chevalley group G_{p} over the field of order p is a projective representation and the conjugacy class of x in G meets G_{p} (see, for instance, [17, Lemma 2.32]).

1.1. On the proofs of the main results

The general plan is as follows. First root elements in groups of rank 2 are handled (Proposition 3). Here the arguments are based on the description of the composition factors in the restrictions of relevant representations to naturally embedded subgroups of type A_{1} [9, Theorem 2]. It occurs that for locally p-small weights these restrictions are completely reducible. We apply results of [15] on the minimal polynomials of elements of order p in irreducible representations of the classical groups and well-known facts on representations of the group $A_{1}(K)$ to get an upper bound for $\mathrm{J}_{\phi}(u)$. For Theorem 2 , the following principal scheme is used. Fix i and j such that α_{i} and α_{j} are adjoint roots on the Dynkin diagram of G and the coefficients m_{i} and m_{j} satisfy the relevant assumptions in Definition 1.

Assume that the root α_{i} has the same length as the root with which a root element under consideration is associated. Denote by H the subgroup generated by the root subgroups associated with the roots α_{i} and $-\alpha_{i}$ and by S the subgroup generated by such subgroups associated with the roots $\alpha_{i},-\alpha_{i}, \alpha_{j}$, and $-\alpha_{j}$. We have $S \cong A_{2}(K)$ or $C_{2}(K)$. Then, for a module V affording a representation considered, a decomposition

$$
\begin{equation*}
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{l-1} \oplus V_{l} \tag{2}
\end{equation*}
$$

with some special properties is constructed. Here all V_{j} are sums of weight subspaces of V and are KH -modules as well, and V_{1} is the S-module generated by a highest weight vector. It occurs that V_{j} are completely reducible p-restricted H-modules for $j<l$. Using Smith' theorem (see Proposition 7) and Proposition 3, we conclude that for our root element u the set $\mathrm{J}_{V_{1}}(u)$ consists of all integers in some interval starting with 1 or all such integers of a fixed parity. Then we analyze the weight structure of H-modules V_{j} and use well-known facts on the representations of the group $A_{1}(K)$ to show that the restrictions of u to V_{j} with $2 \leqslant j<l$ yield other required block sizes. In some cases, for groups of types B, C, and D, we can simplify the general scheme applying Smith' theorem and results proven for type A.

For Theorem 5, the approach is quite similar, but here we fix a quadruple $i, i+1$, $i+2, i+3$ with $m_{i}+m_{i+1}+m_{i+2}+m_{i+3}<p-2$, replace S with the subgroup S_{1} of type A_{4} generated by the root subgroups associated with the roots $\pm \alpha_{k}, i \leqslant k \leqslant i+3$, and H by a subgroup H_{1} of type A_{2} in S_{1} generated by certain root subgroups. Next, a decomposition similar to the decomposition (2) is constructed. In this case, results on the composition factors of restrictions of certain representations to naturally embedded subgroups of type A_{2} [11, Theorem 1.3] are applied to find the Jordan block structure of u on V_{1}. Here we get all odd integers from some interval as the block sizes. An element u is embedded into a subgroup Π of type A_{1} that lies in H_{1}. The restriction of weights from a maximal torus of H_{1} to that of Π is considered. All V_{j} with $j<l$ are completely reducible Π-modules with p-restricted irreducible components of odd dimensions.

The proofs of Propositions 4 and 6 are similar to those of Theorems 2 and 5, respectively, but easier. Here one does not try to find small block sizes and hence there is no necessity to consider a bigger subgroup S or S_{1}.

2. Notation and preliminary results

In what follows \mathbb{Z} is the set of all integers, \mathbb{C} is the field of complex numbers, $L(\Gamma)$, $\mathfrak{X}(\Gamma), W(\Gamma)$, and $R(\Gamma)$ are the Lie algebra, the weight system, the Weyl group, and the root system of a simple algebraic group Γ, respectively. We fix a base $\alpha_{1}, \ldots, \alpha_{n}$ in $R(G)$ and consider the fundamental weights with respect to this base. All modules considered are assumed to be rational and finite-dimensional. For a G-module V and a Zariski closed semisimple subgroup $S \subseteq G$ the symbols $\mathfrak{X}(V), V^{\mu}, \mu_{S}, V \mid S$, and $\operatorname{Irr} V \mid S$ denote the set of all weights of V, the weight subspace of a weight $\mu \in \mathfrak{X}(G)$ in V, the restriction of a weight μ to S, the restriction of V to S, and the set of composition factors of $V \mid S$ (without multiplicities), respectively. The set of weights of the group $A_{1}(K)$ is
canonically identified with \mathbb{Z} and that of dominant weights with \mathbb{N}. If $S=A_{1}(K)$, we identify $V_{i} \in \operatorname{Irr} V \mid S$ with i and write $\operatorname{Irr} V \mid S \subseteq \mathbb{N}$. Set $\operatorname{Irr}_{S} \lambda=\operatorname{Irr} V_{\lambda} \mid S$. For $\alpha \in R(G)$, $t \in K, k \in \mathbb{N}$, the symbols $x_{\alpha}(t), X_{\alpha}, \mathcal{X}_{\alpha}$, and $X_{\alpha, k}$ denote the root elements of G and $L(G)$, the root subgroup of G associated with α, and the element of the hyperalgebra of $L(G)$ associated with the pair (α, k), respectively. For $k<p$ one has $X_{\alpha, k}=\left(X_{\alpha}\right)^{k} / k!$. If $\alpha= \pm \alpha_{i}$, we write $x_{ \pm i}(t), X_{ \pm i}, \mathcal{X}_{ \pm i}$, and $X_{ \pm i, k}$. For positive roots $\beta_{1}, \ldots, \beta_{j}$ of G, let $H\left(\beta_{1}, \ldots, \beta_{j}\right)$ be the subgroup generated by the groups $\mathcal{X}_{\beta_{1}}, \ldots, \mathcal{X}_{\beta_{j}}$ and $\mathcal{X}_{-\beta_{1}}, \ldots, \mathcal{X}_{-\beta_{j}}$. In all cases where subgroups of this form are considered, the roots $\beta_{1}, \ldots, \beta_{j}$ are chosen such that they constitute a base of the root system of $H\left(\beta_{1}, \ldots, \beta_{j}\right)$. In this situation, the fundamental weights of $H\left(\beta_{1}, \ldots, \beta_{j}\right)$ are determined with respect to this base. Set $H\left(i_{1}, \ldots, i_{k}\right)=H\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{k}}\right)$. For a G-module V, the set $\mathrm{J}_{V}(u)$ is defined such as $\mathrm{J}_{\phi}(u)$. For a dominant weight $\mu \in \mathfrak{X}(\Gamma)$, let V_{μ} and W_{μ} be the irreducible and Weyl modules with highest weight μ, respectively. It is always clear from the context what group is meant. For any $\mu \in \mathfrak{X}\left(V_{\omega}\right)$, we have $\mu=\omega-\sum_{i=1}^{n} b_{i} \alpha_{i}, b_{i} \in \mathbb{N}$ [16, Theorem 39]; in this situation, set $b_{i}(\mu)=b_{i}$. If an irreducible G-module is fixed, the symbol v^{+}is used to denote a fixed nonzero highest weight vector in V.

The following facts are heavily used in the proofs of the main results.
Proposition 7 (Smith [14]). Let $S=H\left(i_{1}, \ldots, i_{k}\right) \subseteq G$, then $K S v^{+} \subseteq V_{\lambda}$ is an irreducible S-module with highest weight λ_{S} and a direct summand of the S-module V_{λ}.

Lemma 8 (Seitz [13, 1.5]). Let V be a G-module and $v \in V \backslash\{0\}$ be a vector of weight λ. Assume that $\langle\lambda, \alpha\rangle=m<p$ for a root α of G and that \mathcal{X}_{α} fixes v. Then $X_{-\alpha, k} v \neq 0$ for $0 \leqslant k \leqslant m$.

Lemma 9. Let V be an $A_{1}(K)$-module and $|a|<p$ for all $a \in \mathfrak{X}(V)$. Then V is completely reducible.

Proof. Recall that in this case the Weyl modules W_{a} are irreducible for nonnegative $a \in(X)(V)$ (see, for instance, [6, Chapter II, 2.16]). Now the lemma follows from [6, Chapter II, Proposition 2.14].

Lemma 10. Let $\Gamma=A_{1}(K), a<p$, and V_{a} be an irreducible Γ-module. Then $\mathrm{J}_{V_{a}}(u)=$ $\{a+1\}$ for a nonunity unipotent element $u \in \Gamma$.

Proof. This follows immediately from the well-known description of p-restricted Γ-modules (see, for instance, Steinberg [16, §12]).

Proposition 11. For a root unipotent element $u \in G$, the degree of the minimal polynomial of $\phi(u)$ is equal to $m_{\phi}(u)$.

Proof. The proposition follows from the formulae for the minimal polynomials of elements of order p [15, Theorem 1.1, Proposition 1.3, and Algorithm 1.4].

Lemma 12. Let Δ be a group, $u \in \Delta$, and $V=U_{1} \oplus \cdots \oplus U_{t}$ be a direct sum of Δ-modules. Then $\mathrm{J}_{V}(u)=\bigcup_{l=1}^{t} \mathrm{~J}_{U_{l}}(u)$.

Proof. This is obvious.
Corollary 13. Let $\Gamma=A_{1}(K), u \in \Gamma$ be a nonunity unipotent element, and let V be a Γ-module with the maximal weight $a<p$. Then $a+1 \in \mathrm{~J}_{V}(u) \subseteq \mathbb{N}_{1}^{a+1}$. If $b \equiv a(\bmod 2)$ for all $b \in \mathfrak{X}(V)$, then $x \equiv a+1(\bmod 2)$ for all $x \in \mathrm{~J}_{V}(u)$.

Proof. By Lemma 9, V is completely reducible. Hence $V=V_{a} \oplus V^{\prime}$ and V^{\prime} is a direct sum of irreducible Γ-modules V_{c} with $c \leqslant a$ and $c \in \mathfrak{X}(V)$. By Lemma $10, \mathrm{~J}_{V_{d}}(u)=\{d+1\}$ for $d<p$. It remains to apply Lemma 12 .

Corollary 14. Let V be an irreducible G-module, $S=H\left(i_{1}, \ldots, i_{k}\right)$, and $W=K S v^{+} \subseteq V$. Assume that $u \in S$. Then $\mathrm{J}_{W}(u) \subseteq \mathrm{J}_{V}(u)$.

Proof. By Proposition 7, W is a direct summand of V. Now apply Lemma 12.
Corollary 15. Let $V=V_{\omega}$. Fix i with $1 \leqslant i \leqslant n$. Assume that $\mathfrak{X}(V)=\bigcup_{l=1}^{s} \mathfrak{X}_{l}$ where \mathfrak{X}_{l} are such that for $k \neq l$ and for any $\mu \in \mathfrak{X}_{k}, v \in \mathfrak{X}_{l}$ there exists $j \neq i$ with $b_{j}(\mu) \neq b_{j}(\nu)$. Let $U_{l}=\sum_{\mu \in \mathfrak{X}_{l}} V^{\mu}$. Then U_{l} is an $H(i)$-module and $\mathrm{J}_{V}(u)=\bigcup_{l=1}^{s} \mathrm{~J}_{U_{l}}(u)$ for a root unipotent element $u \in H(i)$.

Proof. To show that U_{l} is an $H(i)$-module, it suffices to prove that $x_{ \pm i}(t) V^{\mu} \subseteq U_{l}$ for $\mu \in \mathfrak{X}_{l}$. Let $v \in V^{\mu}$. By [16, Lemma 72], $x_{i}(t) v=v+\sum_{r=1}^{\infty} t^{r} v_{r}$ with $v_{r} \in V^{\mu+r \alpha_{i}}$. For $j \neq i$, we have $b_{j}\left(\mu+r \alpha_{i}\right)=b_{j}(\mu)$. Hence all $v_{r} \in U_{l}$ and so $x_{i}(t) v \in U_{l}$. Similarly, $x_{-i}(t) v \in U_{l}$. Now the assertion follows from Lemma 12.

Lemma 16. Let $V=V_{\nu}$. Fix $i, j \in \mathbb{N}_{1}^{n}$. Assume that $n>2, \mu_{1}, \ldots, \mu_{k} \in \mathfrak{X}(V), b_{i}\left(\mu_{s}\right)=0$, $\left\langle\mu_{s}, \alpha_{i}\right\rangle \neq\left\langle\mu_{t}, \alpha_{i}\right\rangle$ for $s \neq t$, and that for each s with $1 \leqslant s \leqslant k$ there exists $f \neq j$ such that $b_{f}\left(\mu_{s}\right) \neq 0$. Construct the subsets $\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{k+2} \subseteq \mathfrak{X}(V)$ as follows: $\mathfrak{X}_{1}=\{\lambda \in \mathfrak{X}(V) \mid$ $b_{h}(\lambda)=0$ for $\left.h \neq i, j\right\}, \mathfrak{X}_{l}=\left\{\lambda \in \mathfrak{X}(V) \mid \lambda=\mu_{l-1}-r \alpha_{i}, r \in \mathbb{N}\right\}$ for $2 \leqslant l \leqslant k+1$, and $\mathfrak{X}_{k+2}=\mathfrak{X}(V) \backslash\left(\bigcup_{l=1}^{k+1} \mathfrak{X}_{l}\right)$. Then the subsets $\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{k+2}$ satisfy the assumptions of Corollary 15 with respect to i.

Proof. It is clear that $\mu_{s}+c \alpha_{i} \notin \mathfrak{X}(V)$ for $c>0$. Now one easily observes that $\mathfrak{X}_{l}=\{\lambda \in$ $\mathfrak{X}(V) \mid b_{f}(\lambda)=b_{f}\left(\mu_{l-1}\right)$ for $\left.f \neq i\right\}$ if $2 \leqslant l \leqslant k+1$. Since $\left\langle\mu_{s-1}, \alpha_{i}\right\rangle \neq\left\langle\mu_{t-1}, \alpha_{i}\right\rangle$ for $s \neq t$ with $2 \leqslant s, t \leqslant k+1$, we conclude that for each pair (λ, ν) with $\lambda \in \mathfrak{X}_{s}$ and $v \in \mathfrak{X}_{t}$ there exists $g \neq i$ with $b_{g}(\lambda) \neq b_{g}(v)$. Now the assertion of the lemma follows from the assumptions on μ_{l} and the construction of \mathfrak{X}_{s}.

Corollary 17. In the assumptions of Lemma 16 , suppose that $\left\langle\mu_{l-1}, \alpha_{i}\right\rangle<p$ for $2 \leqslant l \leqslant$ $k+1$. Construct the sets $U_{l}, 1 \leqslant l \leqslant k+2$, as in Corollary 15. Let $u \in H(i)$ be a root element. Then $1+\left\langle\mu_{l}, \alpha_{i}\right\rangle \in \mathrm{J}_{\phi}(u)$ for $2 \leqslant l \leqslant k+1$. In particular, if $\mathbb{N}_{1}^{a} \subseteq \mathrm{~J}_{U_{1}}(u)$ and $\left\langle\mu_{l-1}, \alpha_{i}\right\rangle=a+l-2<p$ for $2 \leqslant l \leqslant k+1$, then $\mathbb{N}_{1}^{a+k} \subseteq \mathrm{~J}_{\phi}(u)$.

Proof. Set $\left\langle\mu_{l-1}, \alpha_{i}\right\rangle=a_{l}$. Observe that $\left\langle\mu, \alpha_{i}\right\rangle \leqslant a_{l}<p$ for all $\mu \in \mathfrak{X}_{l}, 2 \leqslant l \leqslant k+1$. Now apply Lemmas 10 and 12 and Corollary 13.

3. Root elements

Proof of Proposition 3. The composition factors of $V_{\omega} \mid H(i)$ are found in [9, Theorem 2]. Lemma 9 yields the complete reducibility of $V_{\omega} \mid H(i)$. Apply Lemma 10 to complete the proof.

Proof of Theorem 2. Set $V=V_{\omega}$. Recall that all root elements associated with roots of the same length are conjugate in G. Since the maximal integer in $\mathrm{J}_{\phi}(u)$ is equal to the degree of the minimal polynomial of $\phi(u)$, Proposition 11 implies that $\mathrm{J}_{\phi}(u) \subseteq \mathbb{N}_{1}^{m_{\phi}(u)}$. Hence in all cases, where the theorem asserts that $\mathrm{J}_{\phi}(u)=\mathbb{N}_{1}^{m_{\phi}(u)}$, it remains to prove that $\mathbb{N}_{1}^{m_{\phi}(u)} \subseteq \mathrm{J}_{\phi}(u)$.

Until the end of the proof of the theorem, if $S=H\left(i_{1}, \ldots, i_{k}\right)$, we set $W=W_{S}=$ $K S v^{+}$. Put $\mathfrak{X}_{1}=\left\{\mu \in \mathfrak{X}(V) \mid V^{\mu} \subseteq W\right\}$. The proof is based on Results 13-17. We either find a relevant subgroup $S=H\left(i_{1}, \ldots, i_{k}\right)$ containing u and show that $\mathrm{J}_{W}(u)$ contains all required block sizes, or choose such S and weights μ_{1}, \ldots, μ_{k} satisfying the assumptions of Corollary 17 and apply Results 13 and $15-17$. Observe that if $S=H\left(i_{1}, i_{2}\right) \cong A_{2}(K)$, $u \in S$, and $m_{S}=m_{i_{1}}+m_{i_{2}}<p-1$, then Proposition 3(i) and Corollary 14 yield that

$$
\begin{equation*}
\mathbb{N}_{1}^{m_{S}+1} \subseteq \mathrm{~J}_{V}(u) \tag{3}
\end{equation*}
$$

These arguments are used in the relevant cases for all types of groups to obtain relatively small blocks.

Case 1. Let $G=A_{n}(K)$ and $m_{i}+m_{i+1}<p-1$. Set $M=m_{\phi}(u)-m_{i}-m_{i+1}-1$ and $S=H(i, i+1)$. By formula (3), $\mathbb{N}_{1}^{m_{i}+m_{i+1}+1} \subseteq \mathrm{~J}_{V}(u)$. If $\omega=m_{i} \omega_{i}+m_{i+1} \omega_{i+1}$, we are done. Otherwise, $M>0$. If $l \in \mathbb{N}_{1}^{M}$ and $l \leqslant \sum_{j=1}^{i-1} m_{j}$, there exist $s \leqslant i-1$ and $b \leqslant m_{s}$ such that $l=b+\sum_{j=s+1}^{i-1} m_{j}$ (the latter sum is 0 if $s=i-1$). Put $\mu_{l}=\omega-b \alpha_{s}-(b+$ $\left.m_{s+1}\right) \alpha_{s+1}-\cdots-\left(b+m_{s+1}+\cdots+m_{i-1}\right) \alpha_{i-1}-m_{i+1} \alpha_{i+1}$. If $\sum_{j=1}^{i-1} m_{j}<l \leqslant M$, there exist $t>i+1$ and $c \leqslant m_{t}$ such that $l=c+\sum_{j=1}^{i-1} m_{j}+\sum_{j=i+2}^{t-1} m_{j}$ (the first sum is 0 if $i=1$ and the second one is 0 if $t=i+2)$. Now set $\mu_{l}=\omega-c \alpha_{t}-\left(c+m_{t-1}\right) \alpha_{t-1}-$ $\cdots-\left(c+m_{t-1}+\cdots+m_{i+1}\right) \alpha_{i+1}-m_{1} \alpha_{1}-\left(m_{1}+m_{2}\right) \alpha_{2}-\cdots-\left(m_{1}+\cdots+m_{i-1}\right) \alpha_{i-1}$. Observe that in the first case μ_{l} lies in the same $W(G)$-orbit with $\omega-b \alpha_{s}$ and in the second one with $\omega-c \alpha_{t}$. As $\omega-b \alpha_{s}$ and $\omega-c \alpha_{t} \in \mathfrak{X}(V)$ by Lemma $8, \mu_{l} \in \mathfrak{X}(V)$ in all cases. Now construct the subsets $\mathfrak{X}_{2}, \ldots, \mathfrak{X}_{M+1}, \mathfrak{X}_{M+2}$ using the weights μ_{l} as in Corollary 17 and apply that corollary.

Case 2. Let $G=B_{n}(K)$ and u be a long root element. First assume that $m_{1}+m_{2}<p-1$. Set $i=1$ and $S=H(1,2)$ and apply formula (3) to conclude that $\mathbb{N}_{1}^{m_{1}+m_{2}+1} \subseteq \mathrm{~J}_{V}(u)$. If $\omega=m_{1} \omega_{1}$, the required assertion is proved. Otherwise $m_{1}+m_{2}<m_{\phi}(u)-1$. In this case, set $M=m_{\phi}(u)-m_{1}-m_{2}-1$. Formula (1) shows that $M \leqslant m_{2}+2 m_{3}+\cdots+2 m_{n-1}+m_{n}$. By [10, Item (b) of Corollary III.2], for each $k \in \mathbb{N}_{1}^{2 m_{2}+2 m_{3}+\cdots+2 m_{n-1}+m_{n}}$ the set $\mathfrak{X}(V)$ contains a weight μ with $b_{1}(\mu)=0$ and $b_{2}(\mu)=k$. Hence, for each $l \in \mathbb{N}_{1}^{M}$, there exists $\mu_{l} \in \mathfrak{X}(V)$ with $b_{1}\left(\mu_{l}\right)=0$ and $b_{2}\left(\mu_{l}\right)=m_{2}+l$. Observe that $\left\langle\mu_{l}, \alpha_{1}\right\rangle=m_{1}+m_{2}+$
$l<p$. Using the weights μ_{l}, construct the subsets $\mathfrak{X}_{2}, \ldots, \mathfrak{X}_{M+1}, \mathfrak{X}_{M+2} \subseteq \mathfrak{X}(V)$ as in Corollary 17. Now our assertion follows from Corollary 17.

Next, assume that $m_{1}+m_{2} \geqslant p-1$, but $m_{i}+m_{i+1}<p-1$ for some $i<n-1$. Then $\sum_{j=1}^{n-1} m_{j} \geqslant p-1$. Set $S=H(1, \ldots, n-1)$. By Proposition $7, W$ is an irreducible S module with highest weight $\sum_{j=1}^{n-1} m_{j} \omega_{j}$. The arguments of Case 1 yield $\mathrm{J}_{W}(u)=\mathbb{N}_{1}^{p}$. Apply Corollary 14 to complete the proof in this case.

Finally, suppose that $m_{i}+m_{i+1} \geqslant p-1$ for each $i<n-1$ and $2 m_{n-1}+m_{n}<p-2$. Set $S=H(n-1, n), H=H(n-1)$, and assume that $u \in H$. By Proposition 3(ii) and Corollary $14, N_{1}^{m_{n-1}} \subseteq \mathrm{~J}_{W}(u)$. Set $q=p-1-m_{n-1}$. According to our assumptions, $m_{n-2} \geqslant q>0$. Hence, for $l \in \mathbb{N}_{1}^{q}$, the weight $\mu_{l}=\omega-l \alpha_{n-2} \in \mathfrak{X}(V)$ by Lemma 8 . We have $\left\langle\mu_{l}, \alpha_{n-1}\right\rangle \leqslant p-1$. Now Corollary 17 completes the proof.

Case 3. Next, let $G=B_{n}(K)$ and u be a short root element. Set $F=2 m_{n-1}+m_{n}$ and $S=H(n-1, n)$ and assume that $u \in H(n)$. Since $F<p$, by Propositions 3(iii) and 7, W is a completely reducible $H(n)$-module and $\mathrm{J}_{W}(u)=\left\{k \in \mathbb{N}_{1}^{F+1} \mid k \equiv 1+m_{n}(\bmod 2)\right\}$. If $m_{j}=0$, for $j<m_{n-1}$, we have $F=m_{\phi}(u)-1$ and Corollary 14 forces $J \subseteq \mathrm{~J}_{\phi}(u)$. Otherwise, set $M=m_{\phi}(u)-1-F$. Observe that $M>1$. By formula (1), $M \leqslant 2 \sum_{j=1}^{n-2} m_{j}$. By [10, Item (c) of Corollary III.2], for $k \in \mathbb{N}_{1}^{m_{1}+\cdots+m_{n-1}}$ there exists a weight $\lambda \in \mathfrak{X}(V)$ with $b_{n}(\lambda)=0$ and $b_{n-1}(\lambda)=k$. Hence, for even $l \in \mathbb{N}_{1}^{M}$, there exists $\mu_{l} \in \mathfrak{X}(V)$ such that $b_{n}\left(\mu_{l}\right)=0$ and $\left\langle\mu_{l}, \alpha_{n}\right\rangle=2 m_{n-1}+m_{n}+l$. Observe that $b_{n-2}\left(\mu_{l}\right) \neq 0$ and $\left\langle\mu_{l}, \alpha_{n}\right\rangle<p$ for all l considered. Denote by $2 t$ the maximal even $l \in \mathbb{N}_{1}^{M}$. For $2 \leqslant v \leqslant t+1$, set $\mathfrak{X}_{v}=\left\{\lambda \in \mathfrak{X}(V) \mid \lambda=\mu_{2 v-2}-b \alpha_{n}, b \in \mathbb{N}\right\}$. Put $\mathfrak{X}_{t+2}=\mathfrak{X}(V) \backslash\left(\bigcup_{j=1}^{t+1} \mathfrak{X}_{j}\right)$. Now Corollaries 14 and 17 imply that $J \subseteq \mathrm{~J}_{\phi}(u)$. If $\left\langle\omega, \alpha_{m, u}\right\rangle<p, V \mid H(n)$ is completely reducible by Lemma 9. One easily observes that $\left\langle\lambda, \alpha_{n}\right\rangle \equiv m_{n}(\bmod 2)$ for all $\lambda \in \mathfrak{X}(V)$. Hence all block sizes in $\mathrm{J}_{\phi}(u)$ are of the same parity and $\mathrm{J}_{\phi}(u)=J$ by Corollary 13. Otherwise, the degree of the minimal polynomial of $\phi(u)$ is equal to p by Proposition 11. Hence $p \in \mathrm{~J}_{\phi}(u)$. This completes the proof for $G=B_{n}(K)$.

Case 4. Now let $G=C_{n}(K)$ and u be a long root element. We have $m_{n-1}+2 m_{n}<p-2$. Put $H=H(n)$ and $S=H(n-1, n)$ and assume that $u \in H$. By Proposition 3(ii), $\mathbb{N}_{1}^{m_{n-1}+m_{n}+1} \subseteq \mathrm{~J}_{W}(u)$. If $m_{j}=0$ for $j<n-1$, Corollary 14 yields the claim. Otherwise, set $M=m_{\phi}(u)-m_{n-1}-m_{n}-1$ and observe that $M>0$. Formula (1) yields $M \leqslant$ $\sum_{j=1}^{n-2} m_{j}$. By [10, Item (c) of Corollary III.2], for each $b \in \mathbb{N}_{1}^{m_{1}+\cdots+m_{n-1}}$, the set $\mathfrak{X}(V)$ contains a weight μ with $b_{n}(\mu)=0$ and $b_{n-1}(\mu)=b$. Hence, for each $l \in \mathbb{N}_{1}^{M}$, there exists $\mu_{l} \in \mathfrak{X}(V)$ with $b_{n}\left(\mu_{l}\right)=0$ and $b_{n-1}\left(\mu_{l}\right)=m_{n-1}+l$. Considering the orbit of μ_{l} under the action of $W(G)$, one easily concludes that $b_{n-2}\left(\mu_{l}\right) \neq 0$. Observe that $\left\langle\mu_{l}, \alpha_{n}\right\rangle \leqslant m_{\phi}(u)-1<p$. To complete the proof, apply Corollary 17.

Case 5. Next, let $G=C_{n}(K)$ and u be a short root element. If $m_{i}+m_{i+1}<p-1$ for some $i<n-1$, proceed as for long root elements of $B_{n}(K)$ in the similar case. In this situation if $m_{1}+m_{2}<p-1$, the existence of weights $\mu_{l} \in \mathfrak{X}(V)$ with $1 \leqslant l \leqslant m_{\phi}(u)-m_{1}-m_{2}-1$ such that $b_{1}\left(\mu_{l}\right)=0$ and $b_{2}\left(\mu_{l}\right)=m_{2}+l$ is required. This existence follows from [10, Item (d) of Corollary III.2] which asserts that for each $k \leqslant 2 \sum_{j=2}^{n} m_{j}$ the set $\mathfrak{X}(V)$ contains a weight μ with $b_{1}(\mu)=0$ and $b_{2}(\mu)=k$.

Now assume that $m_{i}+m_{i+1} \geqslant p-1$ for all $i<n-1$ and $m_{n-1}+2 m_{n}<p-1$. Set $H=H(n-1)$ and $S=H(n-1, n)$. By Propositions 7 and 3(iii), W is a completely reducible H-module and $\mathrm{J}_{W}(u)=\left\{k \in \mathbb{N}_{1}^{m_{n-1}+2 m_{n}+1} \mid k \equiv m_{n-1}+1(\bmod 2)\right\}$. Since $m_{n-2}+m_{n-1} \geqslant p-1$, we have $m_{n-2} \neq 0$. Therefore $v=X_{-(n-2)} v^{+} \neq 0$ by Lemma 8. Set $W_{1}=K S v$. It is clear that \mathcal{X}_{n-1} and \mathcal{X}_{n} fix v. Hence W_{1} is an indecomposable S module with highest weight $\tau=\left(m_{n-1}+1\right) \omega_{1}+m_{n} \omega_{2}$. By [6, Lemma 2.13(b)], W_{1} is a quotient of W_{τ} and V_{τ} is a quotient of W_{1}. Hence $\operatorname{Irr} V_{\tau}\left|H \subseteq \operatorname{Irr} W_{1}\right| H \subseteq \operatorname{Irr} W_{\tau} \mid H$. Proposition 3(iii) implies that

$$
\begin{equation*}
\operatorname{Irr} V_{\tau}\left|H=\operatorname{Irr} W_{\tau}\right| H=\left\{V_{c} \mid c \in \mathbb{N}_{0}^{m_{n-1}+2 m_{n}+1}, c \equiv m_{n-1}+1(\bmod 2)\right\} \tag{4}
\end{equation*}
$$

Set $\mathfrak{X}_{2}=\left\{\lambda \in \mathfrak{X}(V) \mid b_{n-2}(\lambda)=1, b_{j}(\lambda)=0\right.$ for $\left.j<n-2\right\}$ and $U_{2}=\bigoplus_{\lambda \in \mathfrak{X}_{2}} V^{\lambda}$. Obviously, U_{2} is an S-module. We claim that $\mathfrak{X}_{2}=\left\{\lambda \in \mathfrak{X}(V) \mid V^{\lambda} \cap W_{1} \neq 0\right\}$. It is clear that $\mu \in \mathfrak{X}_{2}$ if $V^{\mu} \cap W_{1} \neq 0$. If $\lambda \in \mathfrak{X}_{2}$, we have $\lambda=\omega-\alpha_{n-2}-b_{n-1}(\lambda) \alpha_{n-1}-b_{n}(\lambda) \alpha_{n}$. It suffices to prove that $\lambda^{\prime}=\tau-b_{n-1}(\lambda) \alpha_{n-1}-b_{n}(\lambda) \alpha_{n} \in \mathscr{X}\left(W_{1}\right)$ (as an S-module). Acting by $W(S)$, we can assume that $\left\langle\lambda^{\prime}, \alpha_{i}\right\rangle \geqslant 0$ for $i=n-1$ and n. By the Premet theorem [12], $\mathfrak{X}\left(V_{\tau}\right)$ coincides with the weight system of the irreducible complex representation of the group $C_{2}(\mathbb{C})$ with highest weight τ. Now [2, Chapter VIII, Proposition 7.5] that concerns the weight systems of complex representations implies that $\lambda^{\prime} \in \mathfrak{X}\left(V_{\tau}\right)=\mathfrak{X}\left(W_{1}\right)$, as desired. Our claim on \mathfrak{X}_{2} just proven yields that $\left\langle\lambda, \alpha_{n-1}\right\rangle \leqslant m_{n-1}+2 m_{n}+1<p$ for $\lambda \in \mathfrak{X}_{2}$ as this holds for $\mu \in \mathfrak{X}\left(V_{\tau}\right)$. Now Lemma 9 forces that U_{2} is a completely reducible H-module. By Proposition 3(i) and formula (4), $\left\{k \in \mathbb{N}_{1}^{m_{n-1}+2 m_{n}+2} \mid k \equiv m_{n-1}\right.$ $(\bmod 2)\} \subseteq \mathrm{J}_{U_{2}}(u)$. If $m_{n-1}+2 m_{n}=p-2$, set $\mathfrak{X}_{3}=\mathfrak{X}(V) \backslash\left(\mathfrak{X}_{1} \cup \mathfrak{X}_{2}\right)$. Otherwise, put $M=p-1-m_{n-1}$ and observe that $M>1$. Since $m_{n-2}+m_{n-1} \geqslant p-1$, we have $m_{n-2} \geqslant M$. Hence, for each $l \in \mathbb{N}_{2}^{M}$, the weight $\mu_{l}=\omega-l \alpha_{n-2} \in \mathfrak{X}(V)$ by Lemma 8. For $l \in \mathbb{N}_{2}^{M}$, set $\mathfrak{X}_{l+1}=\left\{\lambda \in \mathfrak{X}(V) \mid \lambda=\mu_{l}-k \alpha_{n-1}, k \in \mathbb{N}\right\}$. Put $\mathfrak{X}_{M+2}=(V) \backslash\left(\bigcup_{j=1}^{M+1} \mathfrak{X}_{j}\right)$. The construction of the subsets $\mathfrak{X}_{t}, 1 \leqslant t \leqslant M+2$, yields that they satisfy the assumptions of Corollary 15 with respect to $n-1$. Observe that $\left\langle\mu_{l}, \alpha_{n-1}\right\rangle=l+m_{n-1} \leqslant M<p$. Now apply Corollaries 14 and 15 and the arguments of the proof of Corollary 17 to complete the proof for $G=C_{n}(K)$.

Case 6. Finally, let $G=D_{n}(K)$. Using the graph automorphism of G interchanging α_{n-1} and α_{n} if necessary, one can assume that $m_{n-1} \geqslant m_{n}$. First, suppose that $m_{n-2}+m_{n}<$ $p-1$. Put $H=H(n)$ and $S=H(n-2, n)$. By formula (3), $\mathbb{N}_{1}^{m_{n-2}+m_{n}+1} \subseteq \mathrm{~J}_{V}(u)$. If $\omega=m_{n} \omega_{n}$, we are done. Otherwise, set $M=m_{\phi}(u)-m_{n-2}-m_{n}-1$ and observe that $0<M \leqslant m_{1}+2 m_{2}+\cdots+2 m_{n-3}+m_{n-2}+m_{n-1}$. By [10, Item (e) of Corollary III.2], for each $k \leqslant m_{1}+2 m_{2}+\cdots+2 m_{n-2}+m_{n-1}$, the set $\mathfrak{X}(V)$ contains a weight λ with $b_{n}(\lambda)=0$ and $b_{n-2}(\lambda)=k$. Hence, for $l \in \mathbb{N}_{1}^{M}$, there exists $\mu_{l} \in \mathfrak{X}(V)$ with $b_{n}\left(\mu_{l}\right)=0$ and $b_{n-2}\left(\mu_{l}\right)=m_{n-2}+l$. Considering the orbit of μ_{l} under the action of $W(G)$, one easily concludes that $b_{j}\left(\mu_{l}\right) \neq 0$ for some $j \neq n-2$. It is clear that $\left\langle\mu_{l}, \alpha_{n}\right\rangle<p$. Now apply Corollary 17 to complete the proof in this case.

Next, assume that $m_{n-2}+m_{n} \geqslant p-1$. Then $m_{n-2}+m_{n-1} \geqslant p-1$ as well. Therefore our assumptions yield that $m_{i}+m_{i+1}<p-1$ for some $i<n-2$. Set $S=H(1, \ldots, n-1)$. Naturally, $S \cong A_{n-1}(K)$. By Proposition 7, W is an irreducible S-module with highest
weight $\sum_{j=1}^{n-1} m_{j} \omega_{j}$. Observe that $\sum_{j=1}^{n-1} m_{j} \geqslant p-1$. Now the arguments in Case 1 yield that $\mathrm{J}_{W}(u)=\mathbb{N}_{1}^{p}$. It remains to apply Corollary 14 . The theorem is proved.

Proof of Proposition 4. The proof is based on Results 14, 16, and 17 and is quite similar to that of Theorem 2. We emphasize that here n can be equal to 2 . The arguments below include this case as well. Let u be such as in the assertion of the proposition. Fix i with $m_{i}=c_{\phi}(u)$. As before, set $V=V_{\omega}$. If $G=A_{n}(K)$ or $D_{n}(K)$, or $i<n$ with $n>2$, there exists $j \leqslant n$ such that α_{i} and α_{j} are linked on the Dynkin diagram of G and have the same length. If $m_{i}+m_{j}<p-1$, the assertion of the proposition follows from Theorem 2. Hence assume that $m_{i}+m_{j} \geqslant p-1$. Set $M=p-1-m_{i}$. Then $M \leqslant m_{j}$. For $l \in \mathbb{N}_{0}^{M}$, put $\mu_{l}=\omega-l \alpha_{j}$ and $\mathfrak{X}_{l}=\left\{\lambda \in \mathfrak{X}(V) \mid \lambda=\mu_{l}-k \alpha_{i}, k \in \mathbb{N}\right\}$. Set $\mathfrak{X}_{M+2}=\mathfrak{X}(V) \backslash\left(\bigcup_{j=1}^{M+1} \mathfrak{X}_{j}\right)$. Observe that $\left\langle\mu_{l}, \alpha_{i}\right\rangle<p$. Then complete the proof as in Case 1 of Theorem 2 using Lemma 16 and Corollary 17.

Now, let $G=B_{n}(K)$ or $C_{n}(K)$ and $i=n$. Set $\mathfrak{X}_{1}=\left\{\omega-k \alpha_{i} \in \mathfrak{X}(V)\right\}$ and $M=$ $m_{\phi}(u)-m_{i}-1$. If $M=0$ or α_{i} is short and $M=1$, the result follows from Lemma 10 and Corollary 14 . Hence assume that $M>0$ and $M>1$ if α_{i} is short. In the latter case, denote by $2 s$ the maximal even integer in \mathbb{N}_{1}^{M}. Arguing as in Case 3 of the proof of Theorem 2 , for $G=B_{n}(K)$ and every $l \in \mathbb{N}$ construct a weight $\nu_{l} \in \mathfrak{X}(V)$ with $b_{n}\left(v_{l}\right)=0$ and $\left\langle v_{l}, \alpha_{n}\right\rangle=2 l+m_{n}$. Since $M \leqslant 2 m_{2}$ for $G=C_{2}(K)$ and $i=1$, Lemma 8 shows that such weights ν_{l} exist in this case as well. For $G=C_{n}(K)$ and $i=n$, argue as in Case 4 of the proof cited above and for each $l \in \mathbb{N}_{1}^{M}$ construct a weight $\nu_{l} \in \mathfrak{X}(V)$ with $b_{n}\left(\nu_{l}\right)=0$ and $\left\langle\nu_{l}, \alpha_{n}\right\rangle=l+m_{n}$. Then complete the proof for all three cases considered in this paragraph using the schemes proposed in Cases 3 and 4 of the proof of Theorem 2 with the weights v_{l} instead of μ_{l}. In this case, we do not need to consider $b_{n-1}\left(v_{l}\right)$.

4. Regular unipotent elements of a subgroup of type \boldsymbol{A}_{2}

Lemma 18. Let $p>2, \Gamma=A_{2}(K), \mu=a_{1} \omega_{1}+a_{2} \omega_{2}$ be a dominant weight of Γ, and $V=V_{\mu}$. Assume that $\Pi \subseteq \Gamma$ is a Zariski closed simple subgroup of type A_{1} containing a regular unipotent element. Then $2 a_{1}+2 a_{2} \in \operatorname{Irr} V \mid \Pi$. If $a=\lambda_{\Pi}$ for $\lambda \in \mathfrak{X}(V)$, then a is even and $a \leqslant 2 a_{1}+2 a_{2}$.

Proof. The existence of such subgroup Π is well known and follows, for instance, from the construction of the irreducible representation of $A_{1}(K)$ with highest weight 2 . It is also well known (see, for instance, [4, Chapter 5]) that all the labels on the labelled Dynkin diagram of a regular unipotent element are equal to 2 and hence there exist maximal tori $T_{\Pi} \subseteq \Pi$ and $T \subseteq \Gamma$ such that $T_{\Pi} \subseteq T$ and the homomorphism $\tau: \mathfrak{X}(\Gamma) \rightarrow \mathbb{Z}$ determined by the restriction of weights from T to T_{Π} maps α_{1} and α_{2} to 2 . Since $\omega_{1}=\left(2 \alpha_{1}+\alpha_{2}\right) / 3$ and $\omega_{2}=\left(\alpha_{1}+2 \alpha_{2}\right) / 3$ [1, Table I], this forces $\tau\left(\omega_{i}\right)=2$ for $i=1,2$. Therefore $\tau(\lambda)$ is even for any $\lambda \in \mathfrak{X}(V)$ and $\tau(\lambda) \leqslant \tau(\mu)=2 a_{1}+2 a_{2}$. This implies the second part of the assertion of the lemma. Furthermore, one can see that a nonzero vector of V^{μ} generates an indecomposable Π-module with highest weight $2 a_{1}+2 a_{2}$ and therefore $2 a_{1}+2 a_{2} \in \operatorname{Irr} V \mid \Pi$. This completes the proof.

For $\lambda=a_{1} \omega_{1}+a_{2} \omega_{2} \in \mathfrak{X}\left(A_{2}(K)\right)$, set $s(\lambda)=a_{1}+a_{2}$.
Lemma 19. Let $n>3$ and $G=A_{n}(K)$. Assume that $\mu=a_{1} \omega_{1}+\cdots+a_{n} \omega_{n}$ is a dominant weight of G and $a_{1}+\cdots+a_{n}<p-2$. Set $V=V_{\mu}$ and $S=H(i, i+1) \subseteq G$. Then

$$
\operatorname{Irr} V \mid S=\left\{V_{\lambda} \mid \lambda=x_{1} \omega_{1}+x_{2} \omega_{2}, x_{1} \leqslant \sum_{i=1}^{n-1} a_{i}, x_{2} \leqslant \sum_{i=2}^{n} a_{i}, x_{1}+x_{2} \leqslant \sum_{i=1}^{n} a_{i}\right\}
$$

and $V \mid S$ is completely reducible for $n=4$. In any case, $s(\lambda) \leqslant a_{1}+\cdots+a_{n}$ if $V_{\lambda} \in \operatorname{Irr} V \mid S$.
Proof. The factors are described in [11, Theorem 1.3]. The complete reducibility of the restriction for $n=4$ follows from [3, Theorem 6.2].

Proof of Theorem 5. Set $V=V_{\omega}, S=H(i, i+1, i+2, i+3), H=H\left(\alpha_{i}, \alpha_{i+1}+\right.$ $\left.\alpha_{i+2}+\alpha_{i+3}\right), W=K S v^{+}, L=m_{i}+m_{i+1}+m_{i+2}+m_{i+3}$, and $M=\min \left(m_{1}+\cdots+\right.$ $\left.m_{n},(p-1) / 2\right)$.

One can assume that u is a regular unipotent element of H. Let $\Pi \subseteq H$ be a Zariski closed subgroup of type A_{1} containing u (the existence of such subgroup was discussed in the proof of Lemma 18). By Lemma 19, $s(\lambda) \leqslant m_{1}+\cdots+m_{n}$ if $V_{\lambda} \in \operatorname{Irr} V \mid H$. Now Lemma 18 implies that $a \leqslant 2 \sum_{j=1}^{n} m_{j}$ for each $a \in \operatorname{Irr} V \mid \Pi$. Since $|u|=p$, this forces $\mathrm{J}_{V}(u) \subseteq \mathbb{N}_{1}^{g}$. Furthermore, by Proposition 7 and Lemma $19, W$ is a completely reducible H-module with irreducible components V_{λ} with highest weights $\lambda=a_{1} \omega_{1}+a_{2} \omega_{2}$, where $\left(a_{1}, a_{2}\right)$ runs over all pairs of integers with $a_{1} \leqslant m_{i}+m_{i+1}+m_{i+2}, a_{2} \leqslant m_{i+1}+m_{i+2}+$ m_{i+3}, and $a_{1}+a_{2} \leqslant L$. Hence, for each $a \in \mathbb{N}_{0}^{L}$, the set $\operatorname{Irr} W \mid H$ contains a factor V_{λ} with $s(\lambda)=a$. By Lemma $18,2 a \in \operatorname{Irr}\left(V_{\lambda} \mid \Pi\right)$ and $b \leqslant 2 a$ for each $b \in \mathfrak{X}\left(V_{\lambda} \mid \Pi\right)$. Now Lemma 9 implies that V_{λ} is a completely reducible Π-module if $s(\lambda) \leqslant(p-1) / 2$. Set $L_{1}=\min (L,(p-1) / 2)$. Corollary 13 and Lemma 12 yield that $2 j+1 \in \mathrm{~J}_{W}(u)$ for $j \in \mathbb{N}_{0}^{L_{1}}$. If $M \leqslant L$, Corollary 14 forces that $I \subseteq \mathrm{~J}_{V}(u)$. Now assume that $M>L$. Set $\mathfrak{X}_{1}=$ $\left\{\lambda \in \mathfrak{X}(V) \mid V^{\lambda} \subseteq W\right\}$ and $M^{\prime}=M-L$. Let $l \in \mathbb{N}_{1}^{M^{\prime}}$. First suppose that $l \leqslant \sum_{j=1}^{i-1} m_{j}$. Then there exist $s<i$ and $b \leqslant m_{s}$ such that $l=b+\sum_{j=s+1}^{i-1} m_{j}$ (the latter sum is 0 if $s=i-1)$. Set $\mu_{l}=\omega-b \alpha_{s}-\left(b+m_{s+1}\right) \alpha_{s+1}-\cdots-\left(b+m_{s+1}+\cdots+m_{i-1}\right) \alpha_{i-1}$. Now assume that $\sum_{j=1}^{i-1} m_{j}<l \leqslant M^{\prime}$. Then there exist $t>i+3$ and $c \leqslant m_{t}$ such that $l=c+\sum_{j=1}^{i-1} m_{j}+\sum_{j=i+4}^{t-1} m_{j}$ (the first sum is 0 if $i=1$ and the second one is 0 if $t=i+4)$. In this case, put $\mu_{l}=\omega-c \alpha_{t}-\left(c+m_{t-1}\right) \alpha_{t-1}-\cdots-\left(c+m_{t-1}+\cdots+\right.$ $\left.m_{i+4}\right) \alpha_{i+4}-m_{1} \alpha_{1}-\left(m_{1}+m_{2}\right) \alpha_{2}-\cdots-\left(m_{1}+\cdots+m_{i-1}\right) \alpha_{i-1}$ (if $i=1$, the last term in this formula is $k \alpha_{5}$ with $k \in \mathbb{N}$). Using Lemma 8 and arguing as in Case 1 of the proof of Theorem 2, one can deduce that $\mu_{l} \in \mathfrak{X}(V)$ for all $l \in \mathbb{N}_{1}^{M^{\prime}}$. Now set $\mathfrak{X}_{l+1}=\{\lambda \in \mathfrak{X}(V) \mid$ $\left.\lambda=\mu_{l}-\sum_{j=i}^{i+3} b_{j} \alpha_{j}\right\}$ for $l \in \mathbb{N}_{1}^{M^{\prime}}, \mathfrak{X}_{M^{\prime}+2}=\mathfrak{X}(V) \backslash\left(\bigcup_{k=1}^{M^{\prime}+1} \mathfrak{X}_{k}\right)$, and $U_{k}=\sum_{\mu \in \mathfrak{X}_{k}} V^{\mu}$. Arguing as in the proof of Corollary 15, one easily observes that $V=\bigoplus_{k=1}^{M^{\prime}+2} U_{k}, U_{k}$ are S-modules and hence H-modules and Π-modules. We claim that $s\left(\mu_{H}\right) \leqslant L+l \leqslant$ $(p-1) / 2$ for each $\mu \in \mathfrak{X}\left(U_{l+1}\right)$ (the weight system of the S-module $\left.U_{l+1}\right), 1 \leqslant l \leqslant M^{\prime}$. Indeed, set $\nu=\alpha_{i}+\alpha_{i+1}+\alpha_{i+2}+\alpha_{i+3}$ and observe that v is a root of H and that $s\left(\mu_{H}\right)=\langle\mu, \nu\rangle$. Since $\left\langle\alpha_{j}, \nu\right\rangle \geqslant 0$ for all $i \leqslant j \leqslant i+3$, we have $\langle\mu, \nu\rangle \leqslant\left\langle\mu_{l}, v\right\rangle=L+l$,
which yields the claim. As $\left\langle\mu_{l}, \nu\right\rangle=L+l$, we have $s\left(\left(\mu_{l}\right)_{H}\right)=L+l$. Now Lemma 18 and Corollary 13 imply that $d<p$ for all $d \in \operatorname{Irr}\left(U_{k} \mid \Pi\right), 2(L+l) \in \operatorname{Irr}\left(U_{l+1} \mid \Pi\right)$, and $2(L+l)+1 \in \mathrm{~J}_{U_{l+1}}(u)$. Now apply Lemma 12 and conclude that $I \subseteq \mathrm{~J}_{V}(u)$.

If $\sum_{j=1}^{n} m_{j} \leqslant(p-1) / 2$, we have $\langle\mu, \nu\rangle \leqslant(p-1) / 2$ for each $\mu \in \mathfrak{X}(V)$ since $\langle\mu, \alpha\rangle \leqslant\left\langle\omega, \alpha_{m, u}\right\rangle=\sum_{j=1}^{n} m_{j}$ for each root α. Hence $s\left(\mu_{H}\right) \leqslant(p-1) / 2$ for all such μ. Now Lemma 18 yields that $a \leqslant p-1$ for all $a \in \mathfrak{X}(V \mid \Pi)$ and that in our case all weights of $V \mid \Pi$ are even integers $\leqslant 2 \sum_{j=1}^{n} m_{j}$. It remains to apply Corollary 13. The theorem is proved.

Proof of Proposition 6. The proof is similar to that of Theorem 5. Keep the notation V and U_{l}. Fix i with $m_{i}+m_{i+1}=m$. Set $S=H(i, i+1)$ and $U_{1}=K S v^{+}$. Then $S \cong A_{2}(K)$. We can assume that $u \in S$. Fix an A_{1}-subgroup Π containing u as in Theorem 5. For $\lambda \in \mathfrak{X}(S)$, define $s(\lambda)$ as before. By Proposition 7, U_{1} is an irreducible S-module with highest weight $m_{i} \omega_{1}+m_{i+1} \omega_{2}$. Now Lemmas 9 and 18 imply that U_{1} is a completely reducible Π-module and has an irreducible Π-component with highest weight $2 m$. Therefore $2 m+1 \in \mathrm{~J}_{U_{1}}(u)$ by Lemma 10 . If $m=M$, we are done. Hence assume that $M>m$ and put $M_{1}=M-m$. Set $\alpha=\alpha_{i}+\alpha_{i+1}$. One easily observes that $\left\langle\mu, \alpha_{i}\right\rangle+\left\langle\mu, \alpha_{i+1}\right\rangle=\langle\mu, \alpha\rangle=s\left(\mu_{S}\right)$ for $\mu \in \mathfrak{X}(V)$. Arguing as in the proof of Theorem 5, for each $l \in \mathbb{N}_{1}^{M_{1}}$ we construct a weight $\mu_{l} \in \mathfrak{X}(V)$ such that $b_{i}\left(\mu_{l}\right)=b_{i+1}\left(\mu_{l}\right)=0$ and $\left\langle\mu_{l}, \alpha\right\rangle=m+l$.

Next, set

$$
\mathfrak{X}_{1}=\left\{\lambda \in \mathfrak{X}(V) \mid V^{\lambda} \subseteq U_{1}\right\}, \quad \mathfrak{X}_{k}=\left\{\lambda \in \mathfrak{X}(V) \mid \lambda=\mu_{k-1}-c \alpha_{i}-d \alpha_{i+1}\right\}
$$

for $2 \leqslant k \leqslant M_{1}+1$, and $\mathfrak{X}_{M_{1}+2}=\mathfrak{X}(V) \backslash\left(\bigcup_{j=1}^{M_{1}+1} \mathfrak{X}_{j}\right)$. For $2 \leqslant k \leqslant M_{1}+2$ put $U_{k}=\sum_{\mu \in \mathfrak{X}_{k}} V^{\mu}$. Arguing as in the proof of Corollary 15, we can conclude that U_{k} is an S-module and $V=\bigoplus_{j=1}^{M_{1}+2} U_{k}$. If $\lambda \in \mathfrak{X}_{k}$ with $2 \leqslant k \leqslant M_{1}+1$, we have $\langle\lambda, \alpha\rangle \leqslant$ $\left\langle\mu_{k-1}, \alpha\right\rangle=m+k-1 \leqslant(p-1) / 2$. Hence $s\left(\lambda_{S}\right) \leqslant(p-1) / 2$ and $\lambda_{\Pi} \leqslant p$ by Lemma 18. Now Lemmas 9 and 18 and Corollary 13 imply that U_{k} is a completely reducible Π-module with the maximal weight $2(m+k-1)$ and hence $1+2(m+k-1) \in \mathrm{J}_{U_{k}}(u)$. Lemma 12 completes the proof.

References

[1] N. Bourbaki, Groupes et algèbres de Lie, Chapitres IV-VI, Hermann, Paris, 1968.
[2] N. Bourbaki, Groupes et algèbres de Lie, Chapitres VII-VIII, Hermann, Paris, 1975.
[3] J. Brundan, A. Kleshchev, I.D. Suprunenko, Semisimple restrictions from $G L(n)$ to $G L(n-1)$, J. reine angew. Math. 500 (1998) 83-112.
[4] R.W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley, Chichester, 1985.
[5] E.B. Dynkin, Some properties of the weight system of a linear representation of a semisimple Lie group (in Russian), Dokl. Akad. Nauk SSSR 71 (2) (1950) 221-224.
[6] J.C. Jantzen, Representations of Algebraic Groups, Academic Press, Orlando, 1987.
[7] A.A. Osinovskaya, Nilpotent elements in irreducible representations of simple Lie algebras of small rank, Preprint 5(554), Inst. Math. Nat. Acad. Sci. Belarus, Minsk, 1999.
[8] A.A. Osinovskaya, Restrictions of irreducible representations of the Lie algebra $\mathfrak{s l}_{3}$ to $\mathfrak{s l}_{2}$-subalgebras and the Jordan block structure of nilpotent elements (in Russian), Vestsī Akad. Navuk Belarusī, Ser. Fiz.-Mat. Navuk (2) (2000) 52-55.
[9] A.A. Osinovskaya, Restrictions of irreducible representations of classical algebraic groups to root A_{1} subgroups (in Russian), Dokl. Nats. Akad. Nauk Belarusī 45 (4) (2001) 31-33.
[10] A.A. Osinovskaya, Restrictions of irreducible representations of classical algebraic groups to root A_{1} subgroups, Comm. Algebra 31 (5) (2003).
[11] A.A. Osinovskaya, On the restrictions of modular irreducible representations of algebraic groups of type A_{n} to naturally embedded A_{2}-subgroups, J. Group Theory, in press.
[12] A.A. Premet, Weights of infinitesimally irreducible representations of Chevalley groups over a field of prime characteristic, Math. USSR Sb. 61 (1) (1988) 167-183.
[13] G.M. Seitz, The maximal subgroups of classical algebraic groups, Mem. Amer. Math. Soc. 365 (1987) 1286.
[14] S. Smith, Irreducible modules and parabolic subgroups, J. Algebra 75 (1982) 286-289.
[15] I.D. Suprunenko, Minimal polynomials of elements of order p in irreducible representations of Chevalley groups over fields of characteristic p, Siberian Adv. Math. 6 (4) (1996) 97-150.
[16] R. Steinberg, Lectures on Chevalley groups, mimeographed lecture notes, Yale Univ. Math. Dept., New Haven, CT, 1968.
[17] P.H. Tiep, A.E. Zalesskii, Mod p reducibility of unramified representations of finite groups of Lie type, Proc. London Math. Soc. 84 (3) (2002) 439-472.
[18] A.E. Zalesskii, I.D. Suprunenko, Representations of dimensions ($p^{n} \pm 1$) of a symplectic group of degree $2 n$ over a finite field (in Russian), Vestsi AN BSSR, Ser. Fiz.-Mat. Navuk (6) (1987) 9-15.

[^0]: * This research was supported by the Institute of Mathematics of the National Academy of Sciences of Belarus in the framework of the State Basic Research Programme "Mathematical Structures" and partially supported by the Belarus Basic Research Foundation, project N F01-153. The authors are thankful to the referee for comments helpful for improving the text.
 * Corresponding author.

 E-mail addresses: anna@im.bas-net.by (A.A. Osinovskaya), suprunenko@im.bas-net.by (I.D. Suprunenko).

