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Abstract

Images of root elements jm-restricted irreducible representations of the classical algebraic groups
over a field of characteristip > 0 and images of regular unipotent elements of naturally embedded
subgroups of typed, in such representations of groups of tyag with n > 2 andp > 2 are
investigated. Leto = )" ;m;w; be the highest weight of a representation under consideration.
If w is locally small with respect tg in a certain sense, the sizes of all Jordan blocks (without
multiplicities) in the images of root elements are found, except the case of the groups of type
B, and C2 and short roots where all such sizes congruenizfo+ 1 modulo 2 are determined
with the ith simple root being short; fop > 2 andrn > 3, all odd dimensions of such blocks for
groups of typeA, and regular unipotent elements of naturally embedded subgroups ofAtype
are found. Here the class of locally small weights with respeqt epends upon the type of a
group and upon elements considered. For root elements in a group ofAfypine weightw is
locally small if m; +m; 1 < p — 1 for somei. For root elements in other classical groups, the
definitions of the relevant classes are more complicated and depend upon the root length; however,
in all these cases locally small weights are determined in terms of certain linear functions of their
values on two simple roots linked at the Dynkin diagram of a group. For groups ofAypeith
n > 3 and regular unipotent elements of naturally embedéigdubgroups, the weighs is locally
small if m; +m; 1 +mj12+m;y3 < p — 2 for somei with i <n — 2. For arbitraryp-restricted
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representations, the presence of blocks of certain sizes in the images of elements indicated above is
established.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a classical simply connected algebraic group of rank 1 over an
algebraically closed fieldk of characteristicp > 0. Denote byw;, 1 < i < n, the
fundamental weights of; labeled as in Bourbaki's book [1]. For a unipotent element
u € G and a rational representatignof G denote byJ,(u) the set of sizes of blocks
(without their multiplicities) of the canonical Jordan formgafi.). In what follows, Irr, is
the set of irreducible-restricted representations 6f w(¢) is the highest weight ap.

For an irreducible representatignof G with p-restrictedw(¢) = >/ m;w; locally
small with respect t in a certain sense, the sels(u) are completely determined for
root elements: except the case of the groups of typBs and C> and short rootsy;
where all elements igs(#) congruent ton; + 1 modulo 2 are found; fop > 2, n > 3,

G = A,(K), aregular unipotent elementin a naturally embedded subgroup of type,

and ap-restricted representatignwith a locally small highest weight, all odd block sizes

in J;(u) are determined. Recall that a dominant weidfit_, m;w; is p-restricted if all

m; < p. Root elements are assumed to be nonunity elements of root subgroups. Such
elements are called long or short if they are associated with long or short roots, respectively.
The notion of a locally small weight depends up6nand a problem considered (root
elements or regular unipotent elements in a subgroup of Aj)eand will be precisely
defined later. In the majority of cases considered, it occursijia contains all a priori
possible blocks.

In characteristic 0, each unipotent element is contained in a Zariski closed subgroup of
type A1. So, the complete reducibility of representations of semisimple groups and well-
known properties ofA1-modules imply thafy (z) coincides with the set of the composition
factor dimensions for the restriction of a representafida an A-subgroup containing.

For the classical groups and naturally embedded subgroups ofAtybese factors can

be deduced from the classical branching rules, this yiglds) for a representatiogp

and root elements (see [9, Theorem 1] for details). In [7,8] the sgjsu) were found

for any unipotent elements of groups of tyde, Az, andCo. In principle, these sets

are determined by the weight multiplicities @fand the labeled Dynkin diagram af
However, for arbitrary classical groups and unipotent elements, we see no approach to an
explicit description ofl, (1) even in characteristic 0. For regular unipotent elements, this
problem is equivalent to a strong refinement of well-known Dynkin’s theorem [5] on the
spindle property of the weight systems of irreducible representations. Namely, one needs
to find out which of the inequalities for the sums of the weight multiplicities at fixed levels
given by Dynkin’s theorem are strict and which of them are in fact equalities.

In the case of characteristip the situation is still more complicated. Here only
elements of ordep can be embedded into subgroups of type and restrictions of
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irreducible representations 6fto such subgroups are in general not completely reducible.
Hence the composition factors of these restrictions do not determine the Jordan block
structure. Moreover, it is substantially more difficult to find these factors since the weight
multiplicities are unknown. So only partial results on the Jordan block structure can be
expected. Naturally, for a unipotent elementhe degree of the minimal polynomial of
¢ (u) is equal to the size of the biggest blocklj(«). In [15] the minimal polynomials of
unipotent elements of orderin irreducible representations of semisimple algebraic groups
in characteristicy were found. Tiep and Zalesskii in [17, Theorem 2.20] described the
irreducible representatiogsof the simple algebraic groups in characterigtis 3 where
Jp(u) € {1, p — 1, p} for root elements:. If ¢ is a p-restricted representation with this
property,p > 5 or G # G2(K), theng is the basic Steinberg representation with highest
weight)""_;(p — Dw;. This description is crucial for the classification of the irreducible
complex representations of finite groups of Lie type in charactenistioramified above
p and remaining irreducible after the reduction modplobtained in [17, Theorem 1.2].
Some results on the presence of specific block®;im) for root elements: andn = 2
were obtained in [17, Section 2.3] as well. Information on the Jordan block structure of
unipotent elements in representations of algebraic groups can be useful for investigating
recognition problems for representations and linear groups and constructing recognition
algorithms for these purposes. Such results can be easily transferred to finite groups of
Lie type (in particular, this was done in [17]) which extends the field of their potential
applications.

We need some more notation to state the principal results. Dendte, I8y the value
of a weightw on a roots. Throughout the textN is the set of nonnegative integers. If
u = x4(t) is a root element, thea,, , is the maximal root of the same length aslt
follows from [1, Tables I-I1V] that

n
Zm,», G = A,(K) or G = C,(K) andu is long
i=1
n—1
m1+mn+22m,', G = B,(K) andu is long
i=2
n—1
(@, mu) = m, + Z 2m;, G = B,(K) and is short (1)
ijl
my+ 22’""’ G = C,(K) ande is short
j =2
l n—2
m1+mn—l+mn+22mi’ G=Dn(K)
i=2

For¢ e lrry,, setmg(u) = min({w($), am,.) + 1, p), for nonnegative integersandd with
a < b, putNl = {i e N |a <i <b}. In what follows we assume that> 2 andn > 2 if
G = B,(K) and that: > 3forG = D, (K).
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Definition 1. Letn > 1 andw = ) 7_; m;w; be a dominanp-restricted weight of5. For
G = A,(K) or D, (K), the weightw is locally p-small if m; + m; 1 < p — 1 for somei
withi <n—1,0rG=A,(K)andm,_1+m, <p—1,0rG= D, (K) andm,_2 +m, <
p—1. The weightv is locally p-small of type | ifG = B, (K) and eithem; +m;11 < p—1
forsomei <n—1,0r 2n,_1+m, <p—2,0rG =Cy(K) andmy,_1 +2m, < p — 2,
andw is locally p-small of type Il if G = B, (K) and 2n,,_1 +m, < porG = C,(K) and
eitherm; + m;jy1 < p—1forsome& <n —1,0rm,_1+2m, < p—1.

Throughout the text we assume thate Irr, and w = w(¢) = Y ;_1m;w;. The
following theorem holds.

Theorem 2. Letn > 2, ¢ e Itr,, andu € G be a root element. Assume thatis locally
p-small forG = A,(K) or D,(K). For G = B,(K) or C,(K) assume thab is locally
p-small of type | ifu is long andw is locally p-small of type Il ifu is short. Then
Jp () = N’I"”("), except the case whe@= B, (K) andu is short. In the exceptional case,

the set

J={k|1<k<mgu), k=my, +1(mod 2} C Js(u),
Jpw)=J iftmgw)=(w,on,)+1, and pelyw) ifmyu)=p.

Forn = 2, Definition 1 seems somewhat inappropriate, but the picture is similar. It is
more convenient to consider this case separately. This is done in Proposition 3.

Proposition 3. Letn = 2. Assume thai = x; (r) with t # 0. Setm = (w, &, ). Then the
following holds.

(i) For G = A2(K), we havely(u) :N'{H'l ifmi+mo<p—L1orm+me=p-—1
andmymp =0, andJy(u) = Nﬁ]in(p—ml,p—mg) if mqy,mo<p—21=m1+mo.

(i) For G = C2(K) and i = 2, we havels(u) = N7 if mq + 2mp < p — 2, or
mi+mp=p—2,0rm+my=p—1and P> 2; Jp(u) = Nﬁjil—nzz—l if
mi+mo+3<p<mi+2mp+3;andy(u) ={2}if my=0,mp=1,p=2.

(i) For G = C2(K) andi = 1, we havel,(u) = {j € NI | j =mq + 1 (mod 2} if
m1+ 2mp < p.

In the casegi)—(iii) , if the relevant assumptions hold, th&p is a completely reducible

module andirryjyw ={a | a + 1€ Jy(u)}. In case(ii), if m1 4+ 2m < p — 2, and in

case(iii) , we havdrr gy w = Irr(W,|H (i)) (hereW,, is the Weyl module, see Sect@n
In all cases, one can guarantee that certain integers beldgg4p

Proposition 4. Letn > 1. For a root element: = x, (), set

cg(u) = min(m; | o; anda are of the same length
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ThenNZ:j(Ef;)Jrl C Js(u), except the case whe€e= B, (K) or C2(K) and« is short. In the
exceptional casel, (1) contains alla € N with a = m; + 1 (mod 2 for the short rooty;

andp € Jy(u) if mg(u) = p.

The following example shows that f@¥ = C,,(K) and long roots the assumptions in
Theorem 2 cannot be weakened. Assume ¢hat C,,(K), p > 2, w = wy—1 + ”T_swn or
”T_lwn, andu is a long root element. Then it is actually proved in [18] that

_|p-1p+1
) = { 2 2 }

Proposition 3 yields that these assumptions cannot be weakened ane=fdn (K).
For G = A,(K), p > 2, andn > 3, another class of unipotent elements has been
considered as well.

Theorem 5. Letn > 3, p > 2, and G = A,(K). Assume thak is a regular unipotent
element of a naturally embedded subgroup of peSetg = min(2m1+---+2m, + 1, p)
and! = {k e N§ | k=1 (mod 2}.If m; +mj1+mii2+mis3 < p—2forsome <n—2,
then’ C Jy(u) < Ni’. Furthermore, if in this situatio®m1 + --- + 2m, + 1 < p, then
Jp(u) =1.

ForG = A,(K), n > 2, and a wide class of representatigns Irr,, one can show the
presence of certain integersjp(u).

Proposition 6. Let G = A,(K), p andu be as in Theorerb. Assume that:; + m; 1 <
(p —1)/2 for somei. Setm = min;(m; + m;+1) and M = min((p — 1)/2, Zf}zlmj).
Then2k + 1 € Jy(u) for k e NM.

Itis well known thatly («) = { p} for every element of orderp if ¢ is a basic Steinberg
representation since in this case the restrictiop ¢6 the relevant nontwisted Chevalley
groupG , over the field of ordep is a projective representation and the conjugacy class of
x in G meetsG, (see, for instance, [17, Lemma 2.32]).

1.1. On the proofs of the main results

The general plan is as follows. First root elements in groups of rank 2 are handled
(Proposition 3). Here the arguments are based on the description of the composition factors
in the restrictions of relevant representations to naturally embedded subgroups afitype
[9, Theorem 2]. It occurs that for locally-small weights these restrictions are completely
reducible. We apply results of [15] on the minimal polynomials of elements of grder
irreducible representations of the classical groups and well-known facts on representations
of the groupA1(K) to get an upper bound f@g (1). For Theorem 2, the following principal
scheme is used. Fixand j such that; anda; are adjoint roots on the Dynkin diagram
of G and the coefficients:; andm; satisfy the relevant assumptions in Definition 1.
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Assume that the roat; has the same length as the root with which a root element under
consideration is associated. Denote Bythe subgroup generated by the root subgroups
associated with the rootg and—«; and byS the subgroup generated by such subgroups
associated with the rootg, —«;, «;, and—a« ;. We haveS = A»(K) or C2(K). Then, for

a moduleV affording a representation considered, a decomposition

V=V1®oVo®---®Vi_10V, (2

with some special properties is constructed. Her& alire sums of weight subspaceslof
and arek H-modules as well, ant; is theS-module generated by a highest weight vector.
It occurs thatV; are completely reducible-restrictedH -modules forj < /. Using Smith’
theorem (see Proposition 7) and Proposition 3, we conclude that for our root elethent
setJy, (u) consists of all integers in some interval starting with 1 or all such integers of a
fixed parity. Then we analyze the weight structurgbimodulesV; and use well-known
facts on the representations of the grotiK) to show that the restrictions aof to V;
with 2 < j <1 yield other required block sizes. In some cases, for groups of tBp€3s
and D, we can simplify the general scheme applying Smith’ theorem and results proven
for type A.

For Theorem 5, the approach is quite similar, but here we fix a quadiuple- 1,
i+2,i +3withm; +m;s1+mis2+mir3 < p — 2, replaceS with the subgrougs; of
type A4 generated by the root subgroups associated with the toetsi < k <i + 3,
and H by a subgroupH; of type Az in S1 generated by certain root subgroups. Next,
a decomposition similar to the decomposition (2) is constructed. In this case, results on
the composition factors of restrictions of certain representations to naturally embedded
subgroups of typel, [11, Theorem 1.3] are applied to find the Jordan block structure of
on V1. Here we get all odd integers from some interval as the block sizes. An elengnt
embedded into a subgroup of type A1 that lies inH;. The restriction of weights from a
maximal torus off; to that of T is considered. AlV; with j < are completely reducible
IT-modules withp-restricted irreducible components of odd dimensions.

The proofs of Propositions 4 and 6 are similar to those of Theorems 2 and 5,
respectively, but easier. Here one does not try to find small block sizes and hence there
is no necessity to consider a bigger subgrSugy S;.

2. Notation and preliminary results

In what followsZ is the set of all integers is the field of complex numberg,(I"),
X(I"), W(I'), and R(I") are the Lie algebra, the weight system, the Weyl group, and
the root system of a simple algebraic grofip respectively. We fix a basey, ..., a,
in R(G) and consider the fundamental weights with respect to this base. All modules
considered are assumed to be rational and finite-dimensional. GemaduleV and a
Zariski closed semisimple subgro§pc G the symbolst(V), V#, ug, VIS, and IrrV|S
denote the set of all weights &f, the weight subspace of a weighte X(G) in V, the
restriction of a weighi to S, the restriction of¥ to S, and the set of composition factors
of V|S (without multiplicities), respectively. The set of weights of the grougK) is
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canonically identified withZ and that of dominant weights witN. If S = A1(K), we
identify V; € Irr V| S with i and write IrrV|S C N. Set Irg A = Irr V4 |S. Fora € R(G),
t € K, k € N, the symbolsy, (¢), X«, Xy, and X, denote the root elements 6f and
L(G), the root subgroup of; associated witkx, and the element of the hyperalgebra of
L(G) associated with the pait( k), respectively. Fok < p one hasX, ; = (X,)/k!.
If @ =4a;, we writex; (1), X+;, Xy, andX+; . For positive rootgs, ..., ; of G, let
H(p1, ..., Bj) be the subgroup generated by the grodips ..., Xp, andA_g,, ..., X_p;.
In all cases where subgroups of this form are considered, the ggats., 8; are chosen
such that they constitute a base of the root systen® 081, ..., 8;). In this situation,
the fundamental weights df (81, ..., ;) are determined with respect to this base. Set
H(i1,...,ix) = H(a, ..., «;). ForaG-moduleV, the sety (u) is defined such a3 (u).
For a dominantweight € X(I"), letV, andW,, be the irreducible and Weyl modules with
highest weighj., respectively. It is always clear from the context what group is meant. For
anyu € X(V,), we haveu = w — Y _7_; bija;, b € N [16, Theorem 39]; in this situation,
setb; (1) = b;. If an irreducibleG-module is fixed, the symbei™ is used to denote a fixed
nonzero highest weight vector in.

The following facts are heavily used in the proofs of the main results.

Proposition 7 (Smith [14]).LetS = H (i1, ..., i) € G, thenK Sv™ C V, is anirreducible
S-module with highest weights and a direct summand of tifemoduleV,.

Lemma 8 (Seitz [13, 1.5])Let V be aG-module andy € V \ {0} be a vector of weight.
Assume thatir, o) = m < p for aroota of G and thatx,, fixesv. ThenX_, v # O for
0<k<m.

Lemma9. LetV be anA1(K)-module anda| < p forall a € X(V). ThenV is completely
reducible.

Proof. Recall that in this case the Weyl modul®s, are irreducible for nonnegative
a € (X)(V) (see, for instance, [6, Chapter II, 2.16]). Now the lemma follows from [6,
Chapter II, Proposition 2.14]. O

Lemma 10. Let I' = A1(K), a < p, andV, be an irreduciblel"-module. Thery, (1) =
{a + 1} for a nonunity unipotent elemente I'.

Proof. This follows immediately from the well-known descriptionpfrestricted"-mod-
ules (see, for instance, Steinberg [16, 812]n

Proposition 11. For a root unipotent element € G, the degree of the minimal polynomial
of ¢ (u) is equal tomy ().

Proof. The proposition follows from the formulae for the minimal polynomials of
elements of ordep [15, Theorem 1.1, Proposition 1.3, and Algorithm 1.4%

Lemmal2. LetA beagroupu € A,andV = U1 ®--- @ U, be adirect sum afA-modules.
Thendy (u) = Uj_, Ju, ().
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Proof. This is obvious. O

Corollary 13. Let I' = A1(K), u € I' be a nonunity unipotent element, and 1éthe a
I'-module with the maximal weight< p. Thena + 1 € Jy (u) C N‘{*l. If b=a (mod 2
forall b € X(V), thenx =a + 1 (mod 2 for all x € Jy (u).

Proof. By Lemma 9,V is completely reducible. Hendé =V, ® V' andV’ is a direct sum
of irreducibleI"-modulesV, with ¢ < a andc € X(V). By Lemma 10y, (u) = {d + 1}
ford < p. It remains to apply Lemma 12.00

Corollary 14. LetV be anirreducibleG-moduleS = H(iy, ..., i;),andW = KSvT C V.
Assume that € S. Thendw (u) C Jv (u).

Proof. By Proposition 7W is a direct summand df . Now apply Lemma 12. O

Corollary 15. Let V = V,,. Fix i with 1 <i < n. Assume tha¥(V) = [J;_; ¥; whereX;
are such that fok # [ and for anyu € Xi, v € X; there existsj # i with b; () # b; (v).
LetUr =) ,cx, V*. ThenU; is an H(i)-module andly (u) = (J;_; Jy, (u) for a root
unipotent element € H (i).

Proof. To show thatU; is an H (i)-module, it suffices to prove thaty; (r) V#* C U; for
w e X;. Letv e V4. By [16, Lemma 72]x; (H)v = v + Y oo, " v, With v, € V#F7%  For
Jj # i, we haveb;(u + ra;) = bj(n). Hence allv, € U; and sox;(¢)v € U;. Similarly,
x_;(H)v € U;. Now the assertion follows from Lemma 120

Lemmal6.LetV =V,.Fixi, j e Nj. Assumethat > 2, ua, ..., ur € X(V), bi(us) =0,
(s, ;) # {us, ;) for s £ ¢, and that for each with 1 < s < k there existy # j such that
br(us) # 0. Construct the subset®y, ..., X2 € X(V) as follows X1 = {1 € X(V) |
bpA)=0for h #i,j}, X1 ={r,eX(V) | A =pw_1—ra;, r e N} for 2< 1 <k + 1,
and X2 = X(V) \ (U25 %)). Then the subset8y, ..., X2 satisfy the assumptions of
Corollary 15with respect ta.

Proof. Itis clear thatu, + ca; ¢ X(V) for ¢ > 0. Now one easily observes tht = {1 €
X(V)1br(W) =bg(u—y) for f#i}if 2 <1 <k+1.Since(us—1,04) # (ur—1, ;) for

s £t with 2 < s, <k + 1, we conclude that for each pdix, v) with A € X; andv € X;
there existgy # i with bg () # b, (v). Now the assertion of the lemma follows from the
assumptions op; and the construction g¢;. O

Corollary 17. In the assumptions of Lemmi#®, suppose thatu;_1, ;) < p for 2<1 <
k + 1. Construct the set&;, 1 <1 < k + 2, as in Corollary15. Letu € H (i) be a root
element. Theld + (i, o) € Jp(u) for 2 <1 <k + 1. In particular, if Ny < Jy, () and
(Wi-1, ) =a+1—2< pfor2<I<k+1,thenNi € gy (u).

Proof. Set(u;—1,a;) = a;. Observe thatu, o;) <ay < pforall pwe X, 2<1 <k +1.
Now apply Lemmas 10 and 12 and Corollary 132
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3. Root elements

Proof of Proposition 3. The composition factors df,|H (i) are found in [9, Theorem 2].
Lemma 9 yields the complete reducibility &f,| H (). Apply Lemma 10 to complete the
proof. O

Proof of Theorem 2. SetV =V,,. Recall that all root elements associated with roots of
the same length are conjugateGh Since the maximal integer ify (1) is equal to the
degree of the minimal polynomial @f(x), Proposition 11 implies thal; (1) € N; e
Hence in all cases, where the theorem assertsljliaj = de’(‘) it remains to prove that
de)(u) c J¢,(u)

Until the end of the proof of the theorem, §f= H (i1, ..., ix), we setW = Wy =
KSvT. PutX; ={u e X(V)| V# C W}. The proof is based on Results 13-17. We either
find a relevant subgroup = H (i1, .. ., ix) containings and show thafy (1) contains all
required block sizes, or choose sugland weightsui, ..., ui satisfying the assumptions
of Corollary 17 and apply Results 13 and 15-17. Observe thatifH (i1, i2) = A2(K),

u €S, andms =m;, +m;, < p— 1, then Proposition 3(i) and Corollary 14 yield that

NyS* S oy ). (3)

These arguments are used in the relevant cases for all types of groups to obtain relatively
small blocks.

Casel. Let G = A,(K) andm; +m;y1 < p — 1. SetM =mgy(u) —m; —m; 41 — 1 and
S=H(,i+1). By formula (3),N}" itmisitl o Jv ). If o =mjw; +m; 1wi41, We are
done. OtherwiseM > 0. If [ € NM and/ < Z] 1mj, there existt <i — 1 andb < my
such that =5 + Z, s11m; (the latter sumis O if =i — 1). Puty; = o — bay — (b +
Ms+1)0s41— -+ — (b+mgy1+---+mj_1)o— 1—m,+1a,+1 If Z'l;llm, <[ < M, there
existr > i + 1 andc < m, such that =c¢ + Z w4 Z] iom; (the first sum is O if
i =1 and the second one is Orit=i + 2). Now setu; =w —coy — (c +my_1)a;_1 —
c—=(ct+mi_1+- o+ mip)oigr —miog — (mi+ma)oez— - — (my+- -+ mi—)o-1.
Observe that in the first cage lies in the saméV (G)-orbit with w — bay and in the second
one withw — ca;. As w — bay andw — ca; € X(V) by Lemma 8u; € X(V) in all cases.

Now construct the subse%, ..., X141, Xp+2 using the weightg; as in Corollary 17
and apply that corollary.

Case 2. Let G = B,(K) andu be along root element. First assume that+ mo> < p — 1.
Seti =1 andS = H(1, 2) and apply formula (3) to conclude thﬁﬁlﬁmﬁl CJvw). If
o = m1w1, the required assertion is proved. Otherwise+ mo < mg (1) — 1. In this case,
setM =mgy(u) —m1—mp— 1. Formula (1) showsthal < ma+2m3+---+2m,_1+m,.
By [10, Item (b) of Corollary I11.2], for eactk € N2"2+2"3tF2m-1tmn the setx(v)
contains a weightt with b1(u) = 0 andb2(u) = k. Hence, for each N{l, there exists
wi € X(V) with b1(u;) = 0 andba(u;) = mo + [. Observe thatu;, a1) = m1 + ma +
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[ < p. Using the weightsy;, construct the subsefsy, ..., Xy41, Xpy4+2 C X(V) as in
Corollary 17. Now our assertion follows from Corollary 17.

Next, assume that1 +m2 > p — 1, butm; + m;11 < p — 1 forsomei <n — 1. Then
Z’}jm, > p—1. SetS=H(,...,n —1). By Proposition 7,W is an irreducibles-

module with highest weighzj;}mjwj. The arguments of Case 1 yiely) (1) = Nf.
Apply Corollary 14 to complete the proof in this case.

Finally, suppose that; + m;41 > p —1foreachi <n—1and 2n,_1+m, < p — 2.
SetS=H(n —1,n), H= H(n — 1), and assume that € H. By Proposition 3(ii) and
Corollary 14,N1"”*l C Jw(u). Setg = p — 1 — my,_1. According to our assumptions,
mu—2 > q > 0. Hence, forl € NZ, the weightu; = w — la,—2 € X(V) by Lemma 8. We
have(u;, a,-1) < p — 1. Now Corollary 17 completes the proof.

Case 3. Next, letG = B, (K) andu be a short root element. Sét= 2m,,_1 + m, and
S=H(@n —1,n) and assume that € H(n). SinceF < p, by Propositions 3(iii) and 7,
W is a completely reducibl#l (n)-module andly (1) = {k € Nf“ | k=1+m, (mod 2}.
If m; =0, for j <m,_1, we haveF =mgy(u) — 1 and Corollary 14 forced < Jy(u).

Otherwise, seM = m(u) —1— F. Observe tha¥ > 1. By formula (1) M <23 "I m;.

By [10, Item (c) of Corollary I11.2], fork € Ny'** "1 there exists a weight € X(V)
with b,,(1) =0 andb,,_1(1) = k. Hence, for eveh e N{l, there existg; € X (V) such that
by () =0 and(u, o) = 2my,_1 + m, + 1. Observe thab, _»(u;) # 0 and{u;, o) < p
for all [ considered. Denote byr Zhe maximal everl € N{l. For 2< v <+ 1, set
Xy =1{ € X(V) | A= p22— bay, b e N} PutX, 2 =2(V)\ (UL X)). Now
Corollaries 14 and 17 imply thal C Jy(u). If (0, 0,.4) < p, VIH(n) is completely
reducible by Lemma 9. One easily observes thaty,,) = m, (mod 2 for all » € X(V).
Hence all block sizes idy(x) are of the same parity ang}(x) = J by Corollary 13.
Otherwise, the degree of the minimal polynomialygi:) is equal top by Proposition 11.
Hencep € J; (). This completes the proof fa¥ = B, (K).

Case4. Now letG = C,,(K) andu be a long root element. We hawg,_1 + 2m, < p — 2.
Put H=H®@®) and S = H(n — 1,n) and assume that € H. By Proposition 3(ii),
N’l""‘1+'""+1 CJIw(u). Ifmj=0for j <n— 1, Corollary 14 yields the claim. Otherwise,
setM = mgy(u) — m,—1 —m, — 1 and observe tha/ > 0. Formula (1) yieldsM <
Z’}jmj. By [10, Item (c) of Corollary I11.2], for eacth € N7 "1 the setx(V)

contains a weighit with b, (1) = 0 andb,_1(1) = b. Hence, for eachi € N{l, there
exists u; € X(V) with b,(u;) =0 andb,_1(u;) = m,—1 + [. Considering the orbit of
w; under the action oW (G), one easily concludes that,_o(u;) # 0. Observe that
(1, an) <mg(u) — 1 < p. To complete the proof, apply Corollary 17.

Case5. Next, letG = C,(K) andu be a short root element.#; +m; 1 < p— 1 for some

i <n—1, proceed as for long root elementsBf( K ) in the similar case. In this situation if
m1+mp < p —1, the existence of weights € X(V) with 1 <! <mg(u) —my1—mp—1
such thatb1(u;) = 0 andba(u;) = m2 + 1 is required. This existence follows from [10,
ltem (d) of Corollary 11.2] which asserts that for eagh< 237 _,m; the setX(V)
contains a weightt with 51(u) = 0 andba () = k.
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Now assume that;; + m;41 > p —1foralli <n — 1 andm,_1 + 2m, < p — 1. Set
H=H®m-—1) andS = H(n — 1,n). By Propositions 7 and 3(iii))})V is a completely
reducible H-module anddy (u) = {k € N" """ *1 | k =, 4 + 1 (mod 2}. Since
my—2 +mu—1> p — 1, we haven,_» # 0. Thereforev = X_(,_2v" # 0 by Lemma 8.
Set W1 = K Sv. It is clear thatX,_1 and &, fix v. HenceW; is an indecomposabl&-
module with highest weight = (m,—1 + D)w1 + m,wz. By [6, Lemma 2.13(b)]W1 is
a quotient of W, and V; is a quotient ofW1. Hence IrtV|H C Irr W1|H C Irr W |H.
Proposition 3(iii) implies that

Irr Ve |H=Irt W |H={V.|ce NB"”*“Z’”"H, c=mu—1+1(mod 2}. (4)

SetXz = {» € X(V) [ ba—2(}) =1, b;(0) =0 for j <n —2} and Uz = @, x, V"
Obviously,Us is anS-module. We claim thak, = {» € X(V) | V* N Wy # 0}. Itis clear
thatu € Xoif VENW1 £0.1f A € X2, we haveh = w —a,—2 — by—1(AM)ay—1 — by (M)ay,. It
suffices to prove that' = t — b,—1(M)ay—1 — by (Mo, € X(W1) (as anS-module). Acting

by W(S), we can assume th&t’, «;) > 0 fori =n — 1 andn. By the Premet theorem [12],
X(V;) coincides with the weight system of the irreducible complex representation of
the groupC2(C) with highest weightr. Now [2, Chapter VIII, Proposition 7.5] that
concerns the weight systems of complex representations implies that(V;) = X(Wy),

as desired. Our claim off, just proven yields thatr, o,—1) <m,—1+2m, +1<p

for A € X7 as this holds fon € X(V;). Now Lemma 9 forces that/, is a completely
reducibleH -module. By Proposition 3(i) and formula (4% € Ny 2" %2 |k =, _;

(mod 2} C Jy, (). If my_1+2m, = p — 2, setXz =X(V) \ (X1 U X2). Otherwise,
putM = p —1—m,_1 and observe tha > 1. Sincem,_2 + m,_1 > p — 1, we have
my,_2 > M. Hence, for eache Ny, the weightu; = w — la,—2 € X(V) by Lemma 8. For
1eNM, setX; ;1 ={r e X(V) | A= —koy_1, k € N}. PutXp42= (V) \ (Uj@llxj).

The construction of the subseXs, 1 < < M + 2, yields that they satisfy the assumptions
of Corollary 15 with respect ta — 1. Observe thatu;, o,—1) =1 +mu_1 < M < p. Now
apply Corollaries 14 and 15 and the arguments of the proof of Corollary 17 to complete
the proof forG = C,(K).

Case 6. Finally, letG = D, (K). Using the graph automorphism 6finterchangingy;,—1
anda, if necessary, one can assume thgt 1 > m,. First, suppose that,_» + m, <
p—1.PutH = H(n) and S = H(n — 2, n). By formula (3),N"-2"""*1 3, (u). If
® = muw,, we are done. Otherwise, skt = mgy ) — m,_» —m, — 1 and observe that
O<M<my+2mp+---+2m,_3+m,_2+m,_1. By [10, Item (e) of Corollary Il1.2],
for eachk <m1 + 2mo + --- + 2m,_2 + m, 1, the setX(V) contains a weight with
b, (L) =0 andb,_2(1) = k. Hence, forl Ny, there existgu; € X(V) with b, (u;) =0
and b,_>(u;) = my,—2 + [. Considering the orbit ofi; under the action oW (G), one
easily concludes that; (1;) # 0 for somej # n — 2. It is clear that{u;, «,) < p. Now
apply Corollary 17 to complete the proof in this case.

Next, assume thatk,_» +m, > p — 1. Thenm,_» +m,_1 > p — 1 as well. Therefore
our assumptionsyield that; +m;11 < p—1forsome <n—2.SetS=H(1,...,n—1).
Naturally, S = A,_1(K). By Proposition 7,W is an irreducibleS-module with highest
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Weighth;}mjwj. Observe thaE;?;}mj > p — 1. Now the arguments in Case 1 yield
thatJw (1) = Ni’. It remains to apply Corollary 14. The theorem is proved

Proof of Proposition 4. The proof is based on Results 14, 16, and 17 and is quite similar
to that of Theorem 2. We emphasize that heman be equal to 2. The arguments below
include this case as well. Latbe such as in the assertion of the proposition. iFivith

m; = cy(u). As before, seV =V,,. If G = A,(K) or D,(K), ori <n with n > 2, there
exists j < »n such thaty; and«; are linked on the Dynkin diagram @ and have the
same length. Ifn; +m; < p — 1, the assertion of the proposition follows from Theorem 2.
Hence assume that; +m; > p—1.SetM = p —1—m;. ThenM <m;. Forl eNé‘f, put

w =o—lojandX; = (A € X(V) | A= —ka;, k € N}. Set¥y 2= X\ (UM x)).
Observe thatu;, «;) < p. Then complete the proof as in Case 1 of Theorem 2 using
Lemma 16 and Corollary 17.

Now, let G = B, (K) or C,,(K) andi =n. SetX1 = {w — ka; € X(V)} and M =
mg(u) —m; — 1. If M =0 ore; is short andM = 1, the result follows from Lemma 10
and Corollary 14. Hence assume thdt> 0 andM > 1 if «; is short. In the latter case,
denote by 2 the maximal even integer itW}!. Arguing as in Case 3 of the proof of
Theorem 2, foIG = B,,(K) and every € N construct a weighi; € X (V) with b,,(v;)) =0
and (v;, o) = 21 + m,. SinceM < 2my for G = C2(K) andi = 1, Lemma 8 shows
that such weights; exist in this case as well. FaF = C,(K) andi = n, argue as in
Case 4 of the proof cited above and for ealaehN{l construct a weight; € X(V) with
b, (v;) =0 and(v;, o) =1 + m,. Then complete the proof for all three cases considered
in this paragraph using the schemes proposed in Cases 3 and 4 of the proof of Theorem 2
with the weightsy; instead ofu;. In this case, we do not need to consiélgri (v;). O

4. Regular unipotent elements of a subgroup of type A»

Lemma 18. Let p > 2, I' = A2(K), u = a1w1 + a2w2 be a dominant weight of", and
V =V,. Assume thail C I'" is a Zariski closed simple subgroup of type containing a
regular unipotent element. Th&ay + 2az € Irr V|I1. If a = A7 for A € X(V), thena is
even and: < 2a1 + 2ap.

Proof. The existence of such subgrodipis well known and follows, for instance, from
the construction of the irreducible representatiod9fK ) with highest weight 2. Itis also
well known (see, for instance, [4, Chapter 5]) that all the labels on the labelled Dynkin
diagram of a regular unipotent element are equal to 2 and hence there exist maximal tori
Ty C I andT C I' such thatT;; € T and the homomorphism: X(I") — Z determined

by the restriction of weights frorii to 7;; mapswe1 anday to 2. Sincew; = (201 + 2)/3

and w2 = (a1 + 202)/3 [1, Table 1], this forces (w;) = 2 for i = 1, 2. Thereforer (1)

is even for anyr € X(V) andt(X) < t(u) = 2a1 + 2a. This implies the second part

of the assertion of the lemma. Furthermore, one can see that a nonzero ve&tor of
generates an indecomposabiiemodule with highest weightdd + 2a> and therefore

2a1 + 2az € Irr V|I1. This completes the proof.O
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Fori =ajw1 + acwr € X(A2(K)), sets(L) = ay + ap.

Lemma19. Letn > 3andG = A, (K). Assume that = a1w1 + - - - + a,w, IS a dominant
weight ofG anday +---+a, <p—2.SetVv =V, andS=H(i,i + 1) € G. Then

n—1 n n
IrrvV|S = {Vx ‘)»=x1w1+xzwz, x1<zai, xz<zai, x1+xz<zai ,
i=1 i=2 i=1

andV|S is completely reducible for = 4. Inany cases(A) < a1+---+ay if Vi €lrr V|S.

Proof. The factors are described in [11, Theorem 1.3]. The complete reducibility of the
restriction forn = 4 follows from [3, Theorem 6.2]. O

Proof of Theorem 5. SetV =V, S=H(@,i + 1,i +2,i + 3), H = H(o;,®j+1 +
diy2 +aiy3), W= KSvt, L =m; + miy1 +miy2 + mip3, andM = min(mq + --- +
my, (p —1)/2).

One can assume thatis a regular unipotent element &f. Let IT C H be a Zariski
closed subgroup of typd; containingu (the existence of such subgroup was discussed
in the proof of Lemma 18). By Lemma 19(A) < m1+ ---+m, if V) €lrr V|H. Now
Lemma 18 implies that < 23_,m; for eacha e Irr V|I1. Since|u| = p, this forces

Jv(u) C N‘i. Furthermore, by Proposition 7 and Lemma 19,is a completely reducible
H-module with irreducible components, with highest weights. = ajw1 + axw2, where
(a1, a2) runs over all pairs of integers withy < m; +m; 11 +mj2, a2 <mjy1+mii2 +
m;+3, andai + a2 < L. Hence, for eacla NCL,, the set IriW|H contains a factoi,
with s(1) = a. By Lemma 18, 2 € Irr(V, |IT) andb < 2a for eachb € X(V,|IT). Now
Lemma 9 implies thaV, is a completely reduciblé7-module ifs(A) < (p — 1)/2. Set
L1 =min(L, (p —1)/2). Corollary 13 and Lemma 12 yield thatj 2- 1 € Jy (u) for
j €NGLIf M < L, Corollary 14 forces that € Jy (). Now assume thatl > L. Set¥; =
(AeX(V)|V* S W}andM' =M — L. Letl e N}'. First suppose that< Y"' i m;.

Then there exist < i andb < m; such that = b + Z;;{,HW (the latter sum is O if
s=i—1).Setw =w —bay; — (b+mgi)as41— - — (b +mep1+ - +mi_1)o_1.

Now assume thaEf/;llmj <1< M'. Then there exist > i + 3 andc < m; such that
l=c+ Z;;llm/ + Z;‘:}Hmj (the first sum is O ifi = 1 and the second one is O if

t =i+ 4).In this case, putyy = w — cay — (¢ + my—_1)ay—1 — -+ — (c+mp_1+--- +

M 4)Qi+4 —mia1 — (m1+ma)az — -+ — (my+---+m;_1)a;—1 (if i =1, the last term

in this formula iskas with k € N). Using Lemma 8 and arguing as in Case 1 of the proof of
Theorem 2, one can deduce thate X(V) forall [ € Nﬁ’. Now setX;11 ={x € X(V) |

= = Y by for 1 e NV, Xppi0 = X(V)\ (Uil " 20, andUy = Y, cx, VI

J=i
Arguing as in the proof of Corollary 15, one easily observes that EB,’{”:fZ U, Uy

are S-modules and henc# -modules and7-modules. We claim that(ug) < L +1 <
(p —1)/2 for eachu € X(U;y1) (the weight system of th&-moduleU;;1), 1 <I < M.
Indeed, setv = o; + ;11 + @;12 + @;+3 and observe that is a root of H and that
s(un) = (u,v). Since(a;,v) = 0foralli < j<i+3, wehave(u, v) < (u;,v)=L+I,
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which yields the claim. Asu;, v) = L + 1, we haves((u;)y) = L + 1. Now Lemma 18
and Corollary 13 imply that! < p for all d € Irr(U|IT), 2(L + 1) € lrr(Uj41|IT), and
2(L+1)+ 1€ Jy,,(u). Now apply Lemma 12 and conclude thiaC Jy (u).

If Z.’}:lmj < (p—1)/2, we have(u,v) < (p—1)/2 for eachpu € X(V) since
(u, o) <{w, o) = ijlmj for each rootx. Hences(uy) < (p — 1)/2 for all such
w. Now Lemma 18 yields that < p — 1 for all @ € X(V|IT) and that in our case all
weights of V|IT are even integers Zzyzlmj. It remains to apply Corollary 13. The
theorem is proved. O

Proof of Proposition 6. The proof is similar to that of Theorem 5. Keep the notation
and U;. Fix i with m; +m; 1 =m. SetS = H(i,i + 1) and Uy = KSv*. Then
S = Az(K). We can assume that € S. Fix an Aj-subgroup/T containingu as in
Theorem 5. Foi. € X(S), defines(r) as before. By Proposition 71 is an irreducible
S-module with highest weightz; w1 + m;11w2. Now Lemmas 9 and 18 imply thdf;
is a completely reducibléZ-module and has an irreduciblé-component with highest
weight 2n. Therefore 21 + 1 € Jy,(u) by Lemma 10. Ifm = M, we are done. Hence
assume thaM > m and putM1 = M — m. Setoe = o; + «;+1. One easily observes that
(w, o)+ {u, air1) = (u, a) = s(us) for u € X(V). Arguing as in the proof of Theorem 5,
for eachl € Ni“ we construct a weight; € X(V) such that; (u;) = b;+1(n;) =0 and
(i, a) =m+1.

Next, set

Xi={reXx(V) IV cUi},  Xe={heX(V)|r=pm-1—co; —daj1]

for 2<k < M1+ 1, and Xpyi2 = X(V) \ (UM X)), For 2< k < M1 + 2 put
Uy = Zuexk VH#. Arguing as in the proof of Corollary 15, we can conclude thatis

an S-module andV = @y:lfz Up. If L e X with 2<k < M1+ 1, we have(d, a) <

(up_1,0) =m+k—1<(p—1)/2. Hences(rs) < (p — 1)/2 andr7 < p by Lemma 18.
Now Lemmas 9 and 18 and Corollary 13 imply tliatis a completely reducibl& -module
with the maximal weight @z + k — 1) and hence ¥ 2(m + k — 1) € Jy, (u). Lemma 12
completes the proof. O
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