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Abstract Recently, a novel family of calmodulin-binding tran-
scription activators (CAMTAs) was reported in various eukary-
otes. All CAMTAs share a similar domain organization, with a
novel type of sequence-specific DNA-binding domain (designated
CG-1). This domain could bind DNA directly and activate tran-
scription, or interact with other transcription factors, not
through DNA binding, thus acting as a co-activator of transcrip-
tion. Investigations of CAMTAs in various organisms imply a
broad range of functions from sensory mechanisms to embryo
development and growth control, highlighted by the apparent
involvement of mammalian CAMTA2 in cardiac growth, and
of CAMTA1 in tumor suppression and memory performance.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Transcription factors (TFs) play a crucial role in regulating

every aspect of the organism’s life cycle and are fit to respond

to signals originating from within and without the organism.

Ca2+ plays a key role in regulating gene transcription [1].

The mechanisms of Ca2+-dependent transcription regulation

are numerous and include various signal transducers, such as

the superfamily of EF-hand Ca2+-binding proteins (e.g. cal-

modulin, CaM) [1]. These regulate the activity of a number

of transcriptional regulators such as the cAMP transcriptional

activator CREB and its versatile co-activator CREB-binding

protein CBP300 [2]. The expression of the mammalian c-fos

gene is mediated by Ca2+ signals through two DNA regulatory

elements, the CRE (cyclic-AMP-response element) and the

SRE (serum-response element). Increase in nuclear Ca2+ con-

centration stimulates CRE-dependent gene expression,

whereas elevation of cytosolic Ca2+ activates transcription

via SRE [3]. Likewise, in plants different sets of genes are reg-

ulated by cytosolic and nuclear Ca2+ signals [4]. Thus, nuclear

and cytoplasmic Ca2+ signals control transcription by distinct

mechanisms. Ca2+ can also directly bind to and regulate cer-

tain TFs. The DREAM protein contains four EF-hand motifs
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and represses transcription [5], as DREAM affinity for DNA is

reduced upon binding to Ca2+. Similarly, a basic helix–loop–

helix (bHLH) TF (AtNIG1) involved in salt-stress signaling

in plants was also reported to directly bind Ca2+ [6]. In addi-

tion, certain TFs of the bHLH family were shown to directly

bind CaM, thus inhibiting DNA-binding by masking the

DNA-binding domain [7–9]. In plants, recent reports suggest

the occurrence of other types of CaM-binding TFs including

WRKY [10], Myb [11], and Calmodulin-binding Transcription

Activators (CAMTAs) [12].
2. CAMTAs 0 domain organization

The CAMTA proteins consist of multiple predicted func-

tional domains, evolutionarily conserved in amino acid

sequences, and organized in a conserved order (Fig. 1). The

functional domains include: nuclear localization signals

(NLS); CG-1, a unique DNA-binding domain (see details be-

low); TIG, a domain implicated in nonspecific DNA contacts

in TFs [13], and involved in protein dimerization [14,15];

ANK (ankyrin) repeats, which are present as tandemly repeated

modules of about 33 amino acids in a large number of eukary-

ote proteins and viruses, and participate in protein–protein

interactions [16–18]. In addition, CAMTAs contain a variable

number of IQ motifs [12]. The IQ motifs consist of low com-

plexity regions with the repetitive motif IQXXXRGXXX and

are known to be associated with binding of CaM and CaM-like

proteins [19,20]. Recent investigations in fly, mammals and

plants, confirm the function of these domains in controlling

gene expression, however, with interesting variations. Mapping

of a Ca2+-dependent CaM-binding domain in Arabidopsis

AtCAMTA1 revealed a single high-affinity binding site

(Kd � 1.2 nM) within an 18-amino acid region adjacent to the

IQ motifs [12], predicting the occurrence of multiple CaM-bind-

ing sites with complex regulatory properties. Analysis of a rice

CAMTA revealed a Ca2+-dependent CaM-binding domain and

4 Ca2+-dependent CaM-dissociation domains, equivalent to the

IQ motifs (Ca2+-independent), localized in the C-terminus [21].

Analysis of transcription regulation by a rice CAMTA using a

synthetic promoter revealed that Ca2+/CaM inhibited CAM-

TA-mediated transcription. In contrast, in Drosophila a Ca2+-

independent binding site for CaM was found within an IQ

motif, and CaM binding to DmCAMTA is a prerequisite for

DmCAMTA transcriptional activity [22]. CaM activation of

DmCAMTA, however, is controlled by Ca2+ as evident in
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Bioinformatics analysis of CAMTAs’ domain organization, and phylogeny. (A) Domain organization: presentation of CAMTAs (drawn to
scale) from multicellular and unicellular eukaryotes was obtained by NCBI/BLAST/CDART (Conserved Domain Architecture Retrieval Tool) at
http://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi, based on NCBI http://www.ncbi.nlm.nih.gov/Entrez and http://www.ncbi.nlm.nih.
gov/Structure/cdd/wrpsb.cgi, Pfam (http://www.sanger.ac.uk/Software/Pfam) and DOUTfinder (http://mendel.imp.ac.at/dout/). CaM-binding
domains (CaMBD) were specifically searched at http://calcium.uhnres.utoronto.ca/ctdb/flash.htm; Nuclear localization signals (NLS) were searched
by a few programs: PredictNLS at http://cubic.bioc.columbia.edu/cgi/var/nair/resonline.pl, which searches for monopartite NLSs, exemplified by the
SV40 large T antigen NLS (PKKKRRV), and bipartite NLSs, exemplified by the nucleoplasmin NLS (KRPAATKKAGQAKKKK); Motifscan at
http://myhits.isb-sib.ch/cgi-bin/motif_scan; and the PSORT at http://www.psort.org/. Nuclear export signals (NES) were searched at http://
www.cbs.dtu.dk/services/NetNES/. Transcription activation domains (TADs) were experimentally mapped to a region between the CG-1 and a
transcription factor immunoglobulin (TIG)-like DNA-binding domain, domains in both AtCAMTA1 [12] and HsCAMTA2 [18], but as these could
not be identified by bioinformatics analysis, they are not shown in Fig. 2. The CG-1 domain interacts with DNA cis-elements as described. In
addition, the CG-1 domain of HsCAMTA2 was found to interact with the homeodomain of the Nkx2.5 TF (see Fig. 2), and acts as co-activator of
transcription. Using the Superfamily bioinformatics program (http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/hmm.html), a previously
unrecognized ANK domain was found within the CG-1 domain, suggesting a role for the CG-1 domain in protein-protein interactions. In fact,
N-terminus ANK domains are found in almost all CAMTAs (except AtCAMTA5), suggesting that CAMTAs participate in multi-component
complexes. The NLS were deduced by at least one search algorithm. NLS are localized to the N-terminus in most CAMTAs, with exceptions in some
rice CAMTAs, which have an additional NLS at the C-terminus, as confirmed experimentally [21]. NLS is not detected in all CAMTAs: Paramecium
CAMTA lacks an apparent NLS, but contains a putative NES in the N-terminus. In C. elegans, CAMTA contains both NLS and NES, localized to
the C- and N-termini, respectively. Bioinformatics analysis of HsCAMTA2 detected NLS only in the N-terminus, but experimental evidence localized
the NLS to the C-terminus, and an NES to the N-terminus [18]. (B) Phylogram tree: the tree was constructed using ClustalW (http://www.ebi.ac.uk/
clustalw/), colored by phylogenetic classification: Nematodes, metallic gold; Insects, yellow; Mammals, light blue; Fowl, purple; Ciliates (unicellular
protozoa), pink; Plants (monocotyledons, dicotyledons, and moss), green. CAMTA accession numbers:Homo sapiens: HsCAMTA1 (Q9Y6Y1),
HsCAMTA2 (O94983); Mus musculus: CAMTA1 (CAM18835), CAMTA2 (CAM28144); Gallus gallus, red jungle fowl (XP_417530); Pan
troglodytes, chimpanzee (XP_514346); Canis familiaris, dog (XP_546572); Rattus norvegicus, Norway rat (XP_213362); Macaca mulatta, rhesus
monkey (XP_001117780); Drosophila melanogaster, fruit fly (ABI94369); Apis mellifera, honey bee (XP_001120489); Aedes aegypti, yellow fever
musquito (EAT45641); Tribolium castaneum, red flour beetle (XP_968552);Tetrahymena thermophila, ciliate protozoa (XP_001011181); Paramecium
tetraurelia, unicellular ciliate protozoa (CAK81933);Caenorhabditis elegans, nematode (NP_494796); Caenorhabditis briggsae (CAE67879);
Physcomitrella patens, moss (gw1.188.72.1); Arabidopsis thaliana: AtCAMTA1 (Q9FY74), AtCAMTA2 (Q6NPP4), AtCAMTA3 (Q8GSA7),
AtCAMTA4 (NP_176899), AtCAMTA5 (O23463), AtCAMTA6 (NM_112570); Oryza sativa: Os01g69910, Os03g09100, Os04g31900, Os07g43030,
Os10g22950. The scale bar represents the number of changes per site.
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Fig. 2. Models for CAMTA-mediated signaling in human, fly and
plants. (A) Human HsCAMTA2 mediates hypertrophic signaling:
Cardiac growth is driven through multiple G protein-coupled receptors
and protein kinases C and D (PKC/PKD) to class II Histone
Deacetylase (HDAC5) [18,39,40]. HsCAMTA2 is repressed by asso-
ciation with HDAC5. Activation of PKC/PKD, leads to phosphoryl-
ation of HDAC5 (yellow star), and its nuclear export, thus relieving
repression of CAMTA2. Cardiac hypertrophic growth is enhanced
through the interaction of the CG-1 domain with the Nkx2.5
homeodomain and their binding to the Nkx2.5 response element
(NKE) in the ANF promoter. HsCAMTA2 may have additional
transcriptional targets, yet unidentified. (B) The fly DmCAMTA is
essential in phototransduction: photoactivated rhodopsin (Rh) inter-
acts with GTP-binding protein (Gq) triggering the phospholipase C
(PLC) second messenger cascade (inositol 1,4,5 triphosphate and
diacylglycerol). This results in the elevation of intracellular Ca2+, due
to the opening of cation channels, and in the depolarization of the
photoreceptor cell [31]. Termination of the photoresponse occurs via
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mutants defective in Ca2+ influx. There is less information

about the interaction of mammalian CAMTA with CaM.

Nuclear localization signals are predicted in almost all

CAMTAs, but there seem to be differences in the localization

of NLS in CAMTAs of different organisms. Based on experi-

mental data, mammalian CAMTA2 contains an NLS near

the C-terminus and a nuclear export signal (NES) within the

CG-1 domain [18]. In contrast, Arabidopsis CAMTA3

(AtSR1) contains an NLS in the CG-1 domain, as demon-

strated by the localization of the CG-1 domain fused to GFP

[23]. However, in a rice CAMTA (OsCBT) two NLS sequences

were found, one in the N-terminal CG-1 domain and another

in the C-terminal part [21]. Further experimental evidence

revealed the occurrence of other functional domains including

a transcription activation domain (TAD) in the Arabidopsis

AtCAMTA1 [12], human HsCAMTA2 [18] and fly DmCAM-

TA [22]. Finally, proteins resembling CAMTAs were originally

reported only in multicellular eukaryotes [12], however bioin-

formatics analysis of more recent databases revealed CAM-

TA-like proteins also in some unicellular eukaryotes

including the ciliates Paramecium tetraurelia and Tetrahymena

thermophila (Fig. 1).
3. CG-1: a unique and novel sequence-specific DNA-binding

domain

The first hint that CAMTAs function as DNA-binding pro-

teins came from the cloning of a cDNA encoding a partial

plant protein that binds to a CGCG-containing DNA se-

quence [24]. Later, AtCAMTA3 (AtSR1) was reported to bind

to the DNA consensus motif (G/A/C)CGCG(T/G/C) [23], and

similar experiments with AtCAMTA1 [25] and OsCBT (a rice

CAMTA) [21] extended the DNA-binding core sequence to

CG(C/T)G. These results were confirmed by in vitro binding

to authentic plant gene promoters containing CG(C/T)G-core

cis-elements [21,23,26]. In plants, the CAMTA binding se-

quences include two known abscisic acid (ABA)–responsive
deactivation of stimulated Rh, a process in which CAMTA is involved.
Following CG-1 binding to the promoter of the F-Box gene dFbxl4 at
the CGCG site, CAMTA’s transcriptional activity is stimulated via
Ca2+/CaM. The mechanism by which dFbXl4 deactivates Rh remains
speculative; it may interfere with the association of Gq with Rh by
directly binding to it or by mediating ubiquitination and degradation
of Rh [22,41]. (C) Plant CAMTAs integrate stress and growth signals:
plants respond and adapt to environmental stresses by multiple
signaling pathways [42]. Ca2+ concentrations are transiently elevated,
via increased Ca2+ influx in response to environmental stimuli,
including abiotic (cold, heat, salt, drought, light, touch) and biotic
(pathogens) stresses. Ca2+ transients are transduced by various types of
Ca2+-binding proteins including CaM, which affect numerous down-
stream targets and cellular processes. Auxin is a multifunctional plant
hormone that plays a central role in growth and development, whose
signal transduction is also mediated by Ca2+/CaM [43]. The down-
stream targets of plant CAMTAs are mostly unknown, except for the
AVP1 gene encoding an H+-pyrophosphatase (H+-PPase), which
generates proton gradients in endomembrane compartments with the
breakdown of pyrophosphate (PPi). CAMTA binds to the promoter of
AVP1 via the DNA cis-element core CGCG, which triggers the proton
gradient, essential to auxin uptake and efflux [26,33]. Thus, plant
CAMTAs integrate developmental cues with stress-evoked cellular
signals.

N
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cis-elements (ABREs): the G-box ABRE [CACGTG(T/G/C)],

and a related coupling element (ABRE-CE), (C/A)A-

CGCG(T/G/C), both of which have recently been reported

to function as Ca2+-responsive cis-elements [25,27]. Interest-

ingly, the Drosophila DmCAMTA also binds to DNA se-

quences containing the CGCG-core motif [22]. An important

DmCAMTA target gene containing this cis-element is the F-

box gene dFbxl4, which was shown to be required for deacti-

vation of the G protein-coupled light receptor, rhodopsin

[22]. A remaining open question is whether human CAMTAs

bind directly to DNA, and if they do, to which DNA se-

quences. The conservation in DNA-sequence binding specific-

ity is consistent with the relatively high amino acid sequence

conservation of CG-1 domains [12]. However, there is yet no

3D structural model for the CG-1 domain and therefore its

mode of interaction with DNA remains unresolved.
4. CAMTAs function as transcription activators and co-

activators

Transcription activation domains (TADs) have so far been

mapped in the Arabidopsis AtCAMTA1 [12] and human

HsCAMTA2 [18]. Both TADs map to a region between the

CG-1 and TIG domains. However, because there is little se-

quence homology among CAMTAs in this region, it is not

known if all CAMTAs contain TADs. Further support of

transcription activation by CAMTAs was obtained using

reporter genes downstream of synthetic or native promoter

sequences containing the CGCG-core motifs in plant protop-

lasts [21], and cell cultures [26]. The Drosophila DmCAMTA

was also capable of activating transcription in vivo using the

dFbxl4 promoter containing a single CGCG-core binding site

[22].

Mammalian CAMTA2 was reported to act as an activator of

cardiac growth (hypertrophy), which is accompanied by tran-

scriptional reprogramming of cardiac gene expression

(Fig. 2). This activity is mediated by the interaction of HsCAM-

TA2, through its CG-1 domain, with the homeodomain of the

Nkx2.5 TF. The latter binds to the NKE cis-element of the

atrial natriuretic factor (ANF) gene, a cardiac-specific marker

of hypertrophy. Functional mapping of the mammalian CAM-

TA2 domains suggests that in this physiological context there

is no direct DNA-binding of the CG-1 domain to the NKE cis-

element at the ANF promoter (NKE domain). In addition,

while the CG-1 domain is sufficient for the association of

CAMTA2 with Nkx2.5, activation of Nkx2.5-dependent tran-

scription requires CG-1, TAD and TIG. Other protein–protein

interactions occur via the mammalian CAMTA2 ANK do-

main. The function of the ANK domain in transcriptional reg-

ulation was demonstrated for the human CAMTA2, where it

interacts with class II histone deacetylase (HDAC5) [18]. When

this interaction occurs, it prevents the association of CAMTA2

with the Nkx2.5 homeodomain TF and consequently cardiac

growth and remodeling genes are suppressed. This interaction

is prohibited when histone deacetylase is phosphorylated in re-

sponse to upstream signals from PKC and PKD, thus allowing

cardiac gene activation by CAMTA2.

Therefore, the interaction of CAMTAs with co-activators

and co-repressors, in addition to DNA cis-element binding, en-

ables an expanded signal-dependent gene expression and regu-

lation. Moreover, the CG-1 domain in Drosophila CAMTA
mediates the dimerization of CAMTA proteins [28]. Therefore,

in organisms with multiple CAMTAs the possibility of homo-

and hetero-dimerization exists with further functional implica-

tions.
5. CAMTAs mediate responses to external stimuli including

biotic and abiotic stresses

Arabidopsis CAMTA genes respond differentially and rap-

idly (within <15 min) to various environmental cues such as

heat, cold, high salinity, drought, UV, and to signaling inter-

mediates and phytohormones, such as H2O2, ABA, ethylene,

salicylic acid, and methyl jasmonate [23]. The rapid response

of CAMTA genes to these external chemical and physical stim-

uli suggests that they play a role in the cross-talk between mul-

tiple signal transduction pathways involved in stress tolerance.

In Drosophila, CAMTA is very abundant in photoreceptor

cells (Fig. 2), and was indeed shown to stimulate the expression

of the F-box protein, dFbxl4, resulting in rhodopsin deactiva-

tion [18]. Rhodopsin belongs to the class of G-protein-coupled

receptors (GPCR) that convey extracellular stimuli by interac-

tion with heterotrimeric G-proteins [29]. The tight regulation

of the phototransduction pathway is essential for maintaining

Ca2+ homeostasis, which involves light-induced Ca2+ influx

through TRP channels, and Ca2+ extrusion by Na+/Ca2+ ex-

change [30,31]. In this context, Ca2+ signaling, through CaM

and DmCAMTA is essential for switching off the photo-stim-

ulated system. Interestingly, Serial Analysis of Gene Expres-

sion (SAGE) reveals the prevalence of CAMTA2 transcripts

in the developing and adult murine retina [32]. However, the

function of CAMTA2 in the mammalian retina is currently

unknown. If CAMTA is involved in the regulation of other

GPCRs, and in other cell types, it may have a role in the reg-

ulation of the cell cycle, cellular growth, differentiation, and

suppression of cell proliferation in response to signals other

than light.
6. CAMTAs control growth and cell proliferation, and may

function as tumor suppressors and in episodic memory

performance

In plants, one of the identified targets of CAMTAs is the

gene encoding AVP1, a H+-pyrophosphatase [26]. In addition

to maintaining vacuolar pH, the protein controls the transport

of the main plant growth hormone auxin, and consequently

controls auxin-dependent development [33]. AVP1 overexpres-

sion causes increased cell division at the onset of organ forma-

tion (hyperplasia) and increased auxin transport. Null mutants

of AVP1 have severely disrupted organ development and re-

duced auxin transport. Thus, plant CAMTAs may participate

in growth control in response to stress by integrating responses

to phytohormones and stress-evoked cellular signals (Fig. 2).

C. elegans contains two alternatively-spliced forms of CAM-

TA (T05C1.4). Silencing of this gene abrogates embryonic

development (http://www.wormbase.org/db/gene/gene?name=

WBGene00020251;class=Gene). A further example of the role

of CAMTA in growth control is the case of mammalian CAM-

TA2, which functions as a co-activator of gene expression in

cardiac hypertrophy, a process that may be triggered by a

http://www.wormbase.org/db/gene/gene?name=WBGene00020251;class=Gene
http://www.wormbase.org/db/gene/gene?name=WBGene00020251;class=Gene
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variety of stress-responsive signaling pathways mediated by

Ca2+ [34]. Over-expression of CAMTA2 stimulates hypertro-

phy and proliferation of cardiomycytes. However, although

mammalian CAMTA1 and CAMTA2 are highly expressed

in heart and brain [18], CAMTA2 does not show appreciable

expression in the heart until after birth, whereas CAMTA1 is

strongly expressed in the embryonic heart. It was therefore

suggested that CAMTA1 mediates the developmental func-

tions of TFs responsible for embryonic cardiac gene expression

(e.g. Nkx2.5) [18].

A possible role of human CAMTA1 in cell proliferation and

tumor suppression has recently been put forward by several

research groups. A search for markers for neuroblastoma,

the most common cancer in infants, revealed that expression

of CAMTA1, a gene mapping to the 1p36 chromosomal region

commonly deleted in neuroblastoma, can represent a powerful

prognostic variable that may complement the predictive value

of established risk factors in neuroblastoma [35]. Low CAM-

TA1 expression was tightly associated with low overall survival

probability. The prognostic value of CAMTA1 expression was

further supported by a genome-wide microarray expression

study that identified CAMTA1 as one of 47 top-ranked differ-

entially expressed transcripts separating progressive from

regressive neuroblastoma phenotypes [36]. The potential role

of CAMTA1 in tumor development is also supported by the

findings of a recent loss of heterozygosity study in gliomas: a

1p minimal deleted region was identified that spans a region

of 150 kb, where thus far the only gene mapped to that region

is CAMTA1 [37].

A recent study in an effort to identify genetic factors in-

volved in human episodic memory performance [38] identified

single nucleotide polymorphisms (SNPs) within the coding re-

gion of CAMTA1 gene that were significantly associated with

memory performance. Consistent with these findings, CAM-

TA1 expression was shown to be enriched in memory-related

human brain regions [38]. Hence, understanding the function

and regulation of CAMTA1 during embryogenesis and in the

adult should give further insight into certain brain functions

and types of tumors.
7. Conclusions and perspectives

The unique properties of CAMTAs, particularly the novel

type DNA-binding domain (CG-1), should be regarded as

excellent incentives to continue exploring these proteins in dif-

ferent organisms while addressing structural and functional

questions. Identifying CAMTAs 0 downstream target genes

and interacting proteins are among the major tasks ahead.

Such studies should provide important information to eluci-

date aspects of cardiac development and tumorigenesis, and

consequently for improving diagnostic tools and therapies.

In plants, CAMTA genes may serve as important targets for

the improvement of stress tolerance in crops.
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