
ELSEVIER 

An Intemabonal Joumal 
Avadable online at www.sciencedirect.com computers & 

mathematics 
with applications 

Computers and Mathematics with Apphcations 50 (2005) 179-185 
www elsevier .com/locat e/camwa 

Algebraic Inversion of the Laplace Transform 

P .  G .  M A S S O U R O S  AND G .  M .  G E N I N  
Department of Mechamcal and Aerospace Engineering 

Washington Umversity, Campus Box 1185 
St. Louis, MO 63130, U.S.A. 

gmg©me, wustl, edu 

(Recewed Apml 2004, accepted November 2004) 

A b s t r a c t - - A  new algebraic scheme for reverting Laplace transforms of smooth functions is pre- 
sented. Expansion of the Laplace transform F(s) m descending powers of s is used to construct 
the Taylor semes of the corresponding time function f(t) This is done through entirely algebraic 
evaluatmns of F(s) at symmetmc points around circles in the complex plane Test functions are used 
to examine the method and the results show good convergence over a broad region near t = 0. The 
method ~s especially well-suited to computer-based inversion of Laplace transform. (~) 2005 Elsevier 
Ltd All rights reserved. 

1 .  I N T R O D U C T I O N  

There  are many  problems whose solution may  be found in te rms of a Laplace  t ransform. Simple 

t ransforms can often be inverted using readi ly available tables.  More complex functions can be 

analy t ica l ly  inverted through the complex inversion formula, 

I / c + ~  es tF  f (t) = . . . . .  (s) ds, (1.1) 

where c is a posit ive real number,  such tha t  all the  poles of the  function F(s) lie a t  the  left of the  

line s = c. In  many  cases, the  result ing functions are not  easy to invert  ana ly t ica l ly  and there  is 

need for numerical  schemes. 

A var ie ty  of different methods  exist for numerical ly  mvert ing the Laplace transform. There  

exists no universal  method,  but  different types  of methods  work well for different classes of func- 

tions. Some methods  numerical ly  evaluate the  inverse th rough  expanding  the complex inversion 

formula (1 1) into a cosine series [1] or a more general  Fourier  t ype  series [2]. Such methods  work 

well for discontinuous functions. Other  methods  involve implementa t ion  of the  requisite quadra-  

ture  methods  for in tegrat ing the  definition of the  Laplace t ransform; combined with  evaluations 

of F(s) at  selected values of s result  in a system of l inear equat ions to be solved [3]. Another  

class of methods  hinge on the very impor t an t  result  given by  Widde r  [4,5] and i ts  subsequent 

improvement ,  the  pos t -Widder  inversion formula, 

where F (~) (s) denotes the  n th derivative of the  function F(s). 
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This formula can be used both analytically and numerically, but in numerical implementation 
the need to take derivatives of the transformed function is a disadvantage. Another method 
related to the above result is given in [6]. Other major families of methods include those in [7-9]. 

An important theorem is developed m [5] and is related to the method presented in the follow- 
ing. 

If F(s)  can be written in a series of descending powers of s, 

o ~  An 
g (s) = E 8n+1' for s > r ,  ( 1 . 3 )  

n = o  

then the time function f ( t )  = L - I [ F ( s ) ] ,  can be expressed by the series, 

oo tn 
f (t) = E A~ . ) ,  for 0 _< t < 0% (1.4) 

n : O  

where r is some positive number for which (1.3) is convergent. Use of this theorem requires 
explicit knowledge of the expansion (1.3), i.e., the coefficients An need to be evaluated. In this 
work, we construct f ( t )  in a series, in terms of expressions that include only F ( s )  and f(0). The 
scheme is especially well-suited for numerical use. 

2. T H E  A L G O R I T H M  

This algorithm is based on the expansion of the definition of the Laplace transform, 

/7 F (s) = e - S t f  (t) dr, (2.1) 

into an asymptotic series of descending powers of s using the Laplace method. This expansion 
is valid if f ( t )  is differentiable at t = 0 and for f ( t )  <_ e Bt as t --+ oo for some positive real B. 
Successively integrating (2.1) by parts, we have 

F (s) = - - s (t) dt  

_ : ¢ o >  + :,;<o_> + :.(o> 
- T  - -  T + ' '  

o o  

= Z f(~> (0) 
8n+l 

n = 0  

(2.2) 

o r  

f '  (0) f" (0) ~ ,  f(~l (0) 
s F  (s) = f (0) + + + - .  = (2.3) 

S T ~ 8 n 
n=O 

By substituting t = 1/s  we have, 

oo 

t = f (0) + t f '  (0) + t 2 f "  (0) + . . . .  E t~ f (n )  (0) 
n-~O 

(2.4) 

The basic idea of this method is to express the terms t n f  (n) (0) in series that  involve algebraic 
expressions of just F ( s ) ,  f(0),  and higher powers of t. These expressions will then be used to 
construct the Taylor series of the function f( t ) ,  around t = 0. 



02 n (M, N)  = ~ = ~ /M e *(2n~/N), 

The roots have the important  property, 

Algebram Invermon 

Consider the N roots of a positive real number M in the complex plane, 

n = 0 , 1 , 2 , . . . , N -  1. 

Next, we define 

N { NM L, f o r m = L N ,  L=1,2 ,3 , . . . ,  
E (wn (M, N))  "~ = 0, for m = other integer. 
n=l 

( 1 ) ] 
S N ( M ' t ) = E  (wn(M,N))t F (w~(M,N))t - f ( O )  

n : l  

Using (2.4), as well as property (2.6), we arrive at the expression, 

2 N (M, t) = N M t N f  (N) (0) + NM2t2Nf (2N) (0) + NMat3Nf (aN) (0) + . . . .  

Thus, an expression for tNf(g)(o) is obtained, 

t N¢(N).I (0) -- 2N (M, t) 
NM 

SN (M, t) 
NM 

Mt2N f (2N) (0) - M2taN f (3N) (0) . . . .  

o o  

E Mnt(n+l)Nf((n+l)N) (0). 
n=l 
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(2.5) 

(2.6) 

(2.7) 

(2.s) 

(2.9) 

We generalize (2.9) for different values of M as a function of N,  

o o  

2N (MN, t) E M~t(n+l)N f((n+l)N) (0). (2.10) 
tg f (g) (0) -- NMN n=l 

The Taylor series of the function f(t) around t = 0 is given by 

o o  

t2f '' (0) + . . . .  f (0) + ~ tnf(~) (0). (2.11) f (t) = f (O) + tf '  (O) + 2!~ n[ 
n=l 

By substituting (2.10), term by term in the expression (2.11), we arrive at the new series that  

involves the terms Sn, 

C1 62 22 CN 23 (M3, t) + . . .  f (t) = f (O) + -~lSl (Mx,t) +-~2 (M2,t) + ' "  + -M--~N 
(2.12) 

= f (o) + ~ & (M~,t). 
n = l  

The coefficients Cn can be evaluated through the iterative algorithm, 

1 P 
X-" M(~/~-I )c  C1 = 1. (2.13) C ~ -  n! / - - '  ~' ~ '  

By ~,, we denote the p integers tha t  exactly divide the integer n including ~1 = 1, but  

excluding n itself. 
Expression (2.12) is the new series for the inverse Laplace function. The next section describes 

its implementation. 
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3 .  E X A M P L E S  O F  I M P L E M E N T A T I O N  

On implementing this scheme numerically, series (2.12) is constructed, and thus, the selection 
of the series of numbers Mn should be addressed. The series M~ has to be chosen, such that 
(I ~-M-~lt) -1 is inside the region of convergence of (2.3) for the interval of t, for which we require 
good results. It is therefore sufficient to select Mn that satisfy the inequality, 

(V-M-;)-1 t >> r~, (3.1) 

where rs is the modulus of the singularity of sF(s) farthest from the origin in the complex plane. 
The evaluations of the function F(s), that are used for the computation of the terms S~(M~, t), 

are made around circles in the complex plane that enclose all the singularities of F(s) and 
consequently of sF(s). It is thus clear that the magnitudes of the numbers M~ chosen, should 
be decreasing with increasing n. Consideration of machine accuracy should also be made, so a 
bound exists for the decrease in magnitude. An optimal series of M,~ was not pursued in this 
work, but for the test functions discussed in the next section, the following series was used, 

M1 = 0.01, Mn+l = O.05Mn. (3.2) 

This selection works very well, but we should take into account that in the test functions, the 
modulus of the largest root of the function F(s), is at most, of the order of unity. The coeffi- 
cients C~ are calculated directly from this choice for Ms, and are the same for all of the functions 
evaluated in this section. The first ten Cn are listed in Table 1. 

T a b l e  1. F i r s t  t e n  c o e f f i c i e n t s  C n  c o r r e s p o n d i n g  t o  Mn o f  f o r m  (3 .2)  

M~ C~ 

1 0 0 0 0 e  -- 02 1 0 0 0 0 e  -- 00  

5 . 0 0 0 0 e  -- 04  4 . 9 0 0 0 e  -- 01 

2 . 5 0 0 0 e  -- 05 1 .6657e  -- 01 

1 2 5 0 0 e  -- 06 4 . 1 4 2 1 e  -- 02  

6 . 2 5 0 0 e  -- 08 8 . 3 3 3 3 e  --  03 

n 

6 

7 

8 

9 

10 

M~ C~ 

3 . 1 2 5 0 e  --  09 1 . 3 8 4 6 e  --  03 

1 5 6 2 5 e  --  10 1 . 9 8 4 1 e  --  04  

7 . 8 1 2 5 e  - 12 2 . 4 7 5 0 e  --  05  

3 9 0 6 3 e  - 13 2 . 7 5 5 6 e  --  06  

1 .9531e  - 14 2 . 7 5 0 5 e  --  07  

T a b l e  2. T e s t  f u n c t i o n s  F(s) e x a m i n e d  a n d  t h e i r  c o r r e s p o n d i n g  L a p l a c e  i n v e r s e  f ( t)  

T e s t  F u n c t i o n s  F(s) 

1 

s 2 + 1  

1 

(s + 1) 2 

1 

e - 1 / s  

s2  

f ( t )  = L-I[F(s)] 

s i n  t 

t e - t  

J0 (t) 

v Q ' J I ( 2 v ~ )  

The four test functions given in Table 2 were chosen to test the method and in this section 
the results are presented. Graphs that plot the approximation through truncating series (2.12) 
are given and compared with the exact function (shown in the Figures la-4a with dotted lines). 
In all cases f(0) was prescribed and the series (2.12) was truncated for 30, 40, and 80 terms 
(denoted in the graphs by I, II, and III correspondingly). 

Logarithmic scale graphs for the absolute error err -- I f(t)-fapp (t) l are presented in Figures lb -  
4b. All numerical computations were performed using MATLAB, imaginary parts were ignored. 
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Figure 1. (a) Approximat ion  for f ( t )  = sin(t) with  I: 30 te rms,  Ih  40 terms,  III 80 
terms.  (b) Absolute  error in log scale 
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F*gure 2. (a) Approximat ion  for f(t)  = r e  -~ wzth I. 30 terms,  II: 40 terms,  III. 80 
t e rms  (b) Absolute  error in log scale. 
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Figure 3 (a) Approx~matlonfor f(t) = Jo(t) wlth I' 30 terms, II 40 terms, Ill. 80 
terms (b) Absolute error m log scale 
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(a) Approximation for f(t) = v~Jl(2v~) with I: 30 terms, II' 40 terms, 

III: 80 terms. (b) Absolute error in log scale 

We have to note, that in the course of approximating the inverse Laplace transform of the 

function _F (s) -- I/v~ + I, care has to be taken in order to evaluate the correct root in the term 
v~ + I. This is equivalent to selecting the correct analytic continuation of the function F(s), in 

the region where the Laplace transform integral (2.1) does not converge, i.e., for the values of s 

with a negative real part. In this particular case, when evaluating F(s) in the right half of the 
complex plane (for the values of s with a positive real part), the root selected was the one in the 

right half plane, when evaluating F(s) in the left half plane (for values of s with a negative real 

part), the root selected was the one in the left half plane. So, for evaluation in the left half plane 

the expression F (s) = -1 /v / -~  + 1 was used. 

From the results shown, one can note that the approximation performs very well for a region 
in time near t = 0. Good convergence near t = 0 is expected, since the method approximates 
the Taylor series. At some threshold the error increases rapidly and the approximation diverges. 
The extent of the region for which the behavior of the approximation is good depends on the 
function F(s),  on the number of terms in the series (2.11) taken, and on the selection of the 
series of numbers Mn. For the same selection of the series of numbers Mn, the method will 
work in a more extended region for functions F(s),  with singularities of smaller magnitude• The 

results from the test functions show that the approximation for the function F(s)  = e-1/S/s  2, 
works well for a greater range than those approximations for the other test functions, since it has 
singularities only at t = 0, while for the other functions, the positions of the singularities have 
unit magnitude• 

In each plot of error, a distinction between numerical error (noisy lines) and error from having 
insufficient terms in the Taylor series (smooth lines) is clear• The exception is the function in 
Figure 4, where for the 80 term approximation, the numerical noise dominates before the limit 
of the Taylor approximation expires. 

4. L I M I T A T I O N S  A N D  D I S C U S S I O N  

Since the method is based on constructing the Taylor series around t = 0, this approximation 
method focuses on continuous and differentiable functions f ( t ) .  The function to be approximated 
and all its derivatives have to be finite at t = 0 In order for the expansion (2.2) to be valid, f ( t )  
must be bounded by an exponential e Bt for some positive B as t ~ c~. The function must also 
have a finite number of singularities, so that the condition (3.1) can be met. 

For the implementation of this method, the function in Laplace space F(s)  has to be explicitly 
given as well as the value f(0). In practice, f(0) is often known from existing initial conditions 
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that  are defined in the specific problem to be solved. In the more general cases, tha t  f(0)  Is 

not known beforehand, it can be analytically evaluated from the following well-known expression 

which originates from (2.3), 

f (0) = slimoo [sF (s)]. (4.1) 

The advantage of the method presented in this paper lies in the fact tha t  it only uses algebraic 

expressions to construct  and, in many  cases, accelerate the Taylor series of f ( t ) .  The coeffi- 

cients Cn are easy to compute and one can compute as many Cn as needed without  much effort 

through the iterative algorithm (2.12). The only l imitat ion on the numerical  aspect is tha t  the 

decrease in magni tude  of the numbers  M~ is bounded by machine accuracy. So, even though 

the fact tha t  the numbers  Mn get very small with n, does not affect the calculation of S~ (since 

the values I ~- -~1  do not decrease rapidly and can even be constructed to remain constant) ,  the 

existence of M~ in the calculations is in itself a problem, when the order of magni tude  approaches 

the machine accuracy. In relation to (3.1), we would like to take M~ very small, bu t  at the same 

time we have to make sure tha t  these M,~ are large enough that  they are within machine accuracy 

unti l  the series is t runcated.  

For the functions to which the method can be applied, the results are very good in a region 

of t near t = 0. From the error graphs given we can see tha t  the error is extremely small over a 

broad initial  region. 

R E F E R E N C E S  
1 H Dubner and J Abate, Numermal mversion of Laplace transforms by relating them to the fimte Fourier 

cosine transform, J ACM 15 (1), 115-123, (1968) 
2 K. Crump, Numerical inversion of the Laplace transforms using a Fourmr serms approximation, J. ACM 23 

(1), 89-96, (1976) 
3. R Bellman, R. Kalaba and J Lockett, Numemcal Inverszon of the Laplace Transform" Applzcatzons to 

Bwlogy, Economzcs, Engzneermg, and Physzcs, Elsevmr, New York, (1966). 
4. D.V. Wldder, The Laplace Transform, Princeton Umversity Press, (1941). 
5 I.I. Hirschman and D V Wldder, The Convolutwn Transform, Princeton University Press, (1955) 
6. D. Jagerman, An inversion technique for the Laplace transform with application to approxlmatmn, Bell. Syst 

Tech. J. 57, 669-710, (1978) 
7 B Davis and B Martin, Numerical inversion of the Laplace transform: A survey and comparison of methods, 

J Comput. Phys. 33, 1-32, (1979) 
8 R. Pmssens, A blbhography on numerical reversion of the Laplace transform and its apphcatlons, J. Comp. 

Appl. Math. 1, 115-128, (1975) 
9 R. Pmssens and N.D.P. Dang, A bibliography on numermal reversion of the Laplace transform and its apph- 

cations A supplement, J. Comp Appl Math. 2 (3), 225-228, (1976) 
10 C.M Bender and S.A Orszag, Advanced Mathematzcal Methods for Sczentzsts and Engzneers" Asymptotzc 

Methods and Perturbatzon Theory, Springer, New York, (1999). 


