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In this paper, we consider the problem of the superposition of two networks in the structure 
of local telecommunication networks: the physical one, determined by the ways of the means of 
communication, and the interconnection one. We compare the mean-distance of the graphs asso- 
ciated to these two networks. 

Dans cet article, nous considCrons le problkme de la superposition de deux reseaux dans la 
structure de reseaux locaux d’interconnexion: le premier, determint par le trajet des moyens de 
communication sera appele rCseau physique, le second est le rCseau d’interconnexion. Nous com- 
parons les diametres moyens des graphes associCs B ces reseaux. 

Introduction 

The following problem has been suggested by people working in the French 
National Telecommunication Center (C.N.E.T. Lannion). 

In the structure of a telecommunication network, we can distinguish two net- 
works. First, suppose we draw on a map the routes that the means of communica- 
tions (cables for example) follow. Then we get what we call the physical network 
P, which can be modelled by a graph whose vertices are the intersections of the 
routes and whose links are the parts of the routes that connected two vertices with- 
out any intersection between them. On the other hand, there is the interconnection 
network 1, modelled by a graph whose vertices, the switching centers, correspond 
to the nodes of the network P, but whose links (or edges) represent the connection 
between these centers. Such a link can exist only if there exists in P a path between 
the corresponding nodes of P. In practice, the link which connects two nodes of I 
travels through the path of P. The network I is said to be superposed on the network 
P. 

The problem which we are interested in has been suggested in the study of future 
local networks (for example TV networks) in a town. In this case, the physical net- 
work is related to the configuration of the streets and the existence of underground 
networks. 
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The network P is usually given. Its construction depends on cost considerations, 
on the topography and on the localization of the users. Thus, most often the average 
path length between two nodes is rather large. On the other hand, there is a freedom 
for the construction of the interconnection network I. The choice of the connections 
can improve the average path length between two nodes and therefore, reduce the 
message delay and the capacity of commutation centers needed for the transmission 
of the messages between the nodes. 

However, the number of links in I is bounded by two constraints: 
(1) the number of links issued from a switching center is bounded (for practical 

constraints), 
(2) the capacity of a link of P, which is the number of links of Z that can pass 

through it, is also bounded. 
In this paper we will study relation between the mean-distance (or average path 

length) of the two networks. 

Definitions and notation 

Definitions and notation not given here can be found in (1). 
The vertex-set and the edge-set of a graph G will be denoted, respectively, by 

V(G) and E(G). 
The graphs associated with the physical and the interconnection networks will be 

denoted, respectively, by g and G, with V(g) = V(G). We will always assume that 
g and G are simple connected graphs. 

We can model the practical problem by giving a one-to-one correspondence @ 
between the set of edges of G and a set of paths of g that we will denote by C. As 
the graph must be simple, there cannot be several distinct paths in C between any 
given pair of vertices of G. 

The distance between two vertices x and y of g (resp. of G) will be denoted by 
d(x,y) (resp. D(x,y)). We call length of an edge E of the graph G, and denote it 
by I(E), the number of edges of g in the path G(E). 

Let zl be the maximum degree of G and CI be max,,E(8j I{CE C / e E E(c)} I. In 
practice conditions (1) and (2) mean that d and a are bounded. 

Let the mean distance of respectively g and G by: 

a=---!--- c ax, Y), 
u(u-11) XYem) 

i5= & ,c,G, D(x, y) d-we LJ = 1 U&l. 
x. E 

Example. In Fig. 1, we give a schema of two superposed networks. In Figs. 2(a) and 
2(b) we give the graphs g and G associated respectively to the networks P and I. In 
this example, the parameters are a = 2, 6 = 4, where 6 is the maximum degree of g, 
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Fig. 1. 

Fig. 2(a). Graph g. 

Fig. 2(b). Graph G. 

A=4, d=38/21=1.81, D=34/21-1.62. 
We note that 

&x1,x,) = 1 and D(x,,xz) = 2, 

&x1,x4) = 2 and D(x,,xJ = 1. 
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Hence 

d(.qrx2) <D(x,,xz) and d(xr,.q) > D(xI,xq). 

In what follows, we will avoid cases where there exist vertices of g, x and y, such 
that d(x, y) <D(x, y), to be sure that DS a. 

Supplementary conditions 

Condition A. E(g) is contained in C (which means that every edge of g is also an 
edge of G). Therefore, for any x,y of V(g), d(x,y)rD(x,y) and then &a. 

Furthermore, to simplify the calculations we will suppose that 

Condition B. g is regular of degree 6 and G is regular of degree d. Therefore 
AS&Z. 

Relationship between d and D 

G. Vautrin [3] asked if there was a simple relation between a and D and, in par- 
ticular, if it was true that d I (Ga/A)D. We will give two relations and we will show, 
by exhibiting infinite families of counterexamples, that the relation a s (&/A)D is 
not true. 

Proposition 1. If condition A is satisfied, then 

D I d I LD, where L = sup l(E). 
EflW) 

Furthermore, equality holds on the right of this inequality if and only if G is isomor- 
phic to g (and then d =D). 

Proof. First, condition A implies that DSa. 
Let us denote by C,, the shortest path between x and y in G. The set 

{@(E) 1 EE C~,,) d e f ines a path (not necessarily elementary) between x and y; then 

d(x, Y) 5 & I(E). 

Therefore 

c d(x, Y) = 
&YE %T) ,,,c,,, .F, 4E) 

s ,,& L I&J. 

As JE(C,,)I =D(x, y), we get ailed. 
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Furthermore, if G is isomorphic to g, then E(g) is in one-to-one correspondence 
with C; since C a E(g) (condition A) C= E(g) and L. = 1. Therefore d=D = LB. 
Conversely, if d=LD, then, for any pair (x, v) of vertices of g: 

d(x, Y) = c 49 = L ax, Yh 
EEL 

Therefore, for any pair of adjacent vertices x and y in the graph g, d(x, _Y) = 1 = L 

D(x, Y) = 1 (condition A). The equality L = 1 means that Cc E(g) and G is isomor- 
phic to g. ci 

Let us give two definitions: An edge of g is said to be saturated if it is contained 
in a distinct paths of C. 

The average length of the edges of G is 

’ = ,Efc), EEECG) 
~ c w. 

Proposition 2. If condition B is satisfied, then LsSa/A. Furthermore, equality 
holds if and only if all the edges of g are saturated. 

Proof. From the definition a, we deduce that 

Since the graphs g and G are regular (condition B) their number of edges are 
[E(g)[ =&%J, resp. /E(G)/ =+Ao. Therefore 

Furthermore, equality holds if and only if Ccsc (E(c)/ =a IE(g)l, which means 
that all edges of g are saturated. Cl 

These two propositions seem to give support to Vautrin’s conjecture. We first give 
a counterexample in the case 6 = 2, and then in the general case. 

Counterexample in the case 6 = 2 

Let g be the cycle C,, whose vertices are denoted by x0, x1, . . . ,x0_ ,. Let u = 
2qL + 1 with L = 2b, b and q being positive integers such that b < q. Let two vertices 
Xi and Xj be joined by an edge in G if and only if [j-i1 = 1 or L. In other words, 
C consists of E(g) and of all the paths of the form (Xi,Xi+t,.**,Xi+,,), adding 
module u. Conditions A and B are fulfilled and 6 = 2 and A = 4. (See Fig. 3 for the 
case v = 9, L = 2.) 
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Fig. 3. d=2.5, D=lS, d/D=(Zgb+I)/(q+b)=5/3. 

Proposition 3. With the definitions of g and G given above, 

a 2qb+l 

i5=-’ q+b 

Proof. The mean distance of C, is d== +(2qb + 1). We have, obviously, for any xi 
of V(g): 

C 
Os;jxu-I 

D(X,9xj) = ,,jgu_, D(xOsxj) = 2 ,,gqL D(xOsxj)- 

jtt 
Therefore 

D = -& $, D(xo, Xi). 

Let D be the diameter of G, that is D= max,,i,,L @(x0,x;)). Let r;: be the set of 
vertices of (xl, . . . , xqL) at distance i from the vertex x0. D can be written as: 

The sets fi for i = 1,2, . . . , D are easily determined: 

fi=&,+ylP+Y= i,Osysb,OsBL+ysqL} 

U{xaL_;,lP+v=i,l=v=-l,O~pL-ylqL). 

The cardinality of 4 is equal to the number of pairs (/Ay) of nonnegative 
integers satisfying 
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p+y=i, p+y=i, 

(a) OlyzSb, or (b) lr/X-ylqL, 

OS/IL + ysqL, Osysb-I. 

Therefore, D = q + b and 

if lsisb, then Ifi/ = 2i, 

if bsisq, then 141 = 26, 

if lsisq+b, then /cl =2(b+q-i). 

Therefore 

i,i/Gj =i$,i2i+i=$+,i2b+i~$~,i2(b+q-i) 

i i2+ i bi+ i (q+i)(b-i) 
i-1 i=b+l i=l 1 

=2 bei+iqb-iqi 
i 1=I i=l i=l 1 = qb(q+ b). 

so 

DC q+b 
&qbk+bl =-j---a 

Therefore, we deduce that a/D = (2qb + l)/(q + b). 0 

Then, as q approaches infinity the quotient d/D goes to 26. This means that 
asymptotically b = a/L. 

Furthermore, it is obvious that all the edges of g are contained in the same number 
of paths of C, which will be CL Therefore, every edge of g is saturated and L = &r/d. 
t is easily calculated: L= +(I + L)cL if L> 1. Since lim,,, d/D= L, there exists 
q. such that, if qzqo 

a/hihaa/t, 
which contradicts Vautrin’s conjecture. 

This example also shows that, given the maximum length of L of an edge of the 
graph G, we cannot improve (at least asymptotically) the bound of Proposition 1). 

Remark. We can extend this example by deleting the restriction on the parity of u 
and L, but the calculations are longer. 
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Counterexample in the general case 

Let us consider for g a regular graph of degree 6 and girth at least 2L + 1. Let 
C be the set of all the paths of length at most L. Then G is a simple regular graph 
isomorphic to gL, the L-th power of g. 

Proposition 4. With the definitions of g and G given above, 

a/td<aa/L+l. 

Proof. Let x and y be two vertices of G. From the definition of G, we deduce that 
D(x, y) = rd(x, y)/Ll (rp1 being the least integer greater than or equal to p). There- 
fore 

d(x, Y) d(x, Y) + 1 
-~D(x,y)<- 

L L * 

Since this inequality is satisfied for each pair of vertices x and y of g, 

a/Ldka/L+l. 0 

The regularity of g and the definition of G of Proposition 4 imply that each edge 
of the graph g is contained in the same number 01 of paths of C. Hence each edge 
of g is saturated and the average length of the edges of G is t=&z/d. 

Furthermore, we can calculate o and A, for 623. Since the girth of g is at least 
2L + 1, the number of vertices of g at distance at most L from any vertex x of g is 

6+6(6-1)+...+6(6--l)L_‘=A. 

Therefore 

A =&[(&l)L-11. 

Let (x, y) be an edge of g. For i = 1,2, . . . , L, there are (6 - I)‘-’ paths (x0,x1,. . . ,xi), 

of length i, such that (x,y)=(Xi,Xj+,) for j given in (41, . . ..i- l}. Therefore 

a= $,i(J_l)i-l = L(6-1)L+‘-(L+~)(6-1)L+1 
(6-2) 

We note that the value of a and A and therefore, the value of ,!? depend only on 
6 and L (and not on the number of vertices of the graph g). 

Let (gi)i, N be a family of regular graphs of degree (rz 3 such that lim,,,,, ui = +CQ 
where ui = IV(gi)l. Then, if ai is the mean distance of gi, limi,+o ai = +m. Indeed, 
let ni be the largest integer n such that 

n-1 

ui= l+ c &&l)‘IU~. 
j=O 

For any vertex x of gi, the sum C,, V(gj_ 1xt d(x, y) is greater than or equal to the sum 
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of the distances between the root r and all the other vertices in a tree T with U; ver- 
tices all of degree 6 unless the leaves which are all at distance n, from r. Therefore 

1 1 
1 ?li - 

(6--2)(6-l) + (6--2)(6-1)“~-‘. 
so 

1 
lim - c d(&Y)=~ 
i-- Ui-1 ye&-)-(x} 

for each vertex x of g, and lim,,, ai = 00: 
Let now gi be a (S,2i + I)-cage. By a result of Erdos and Sachs [2] such a cage 

exists for every ir 1. Furthermore, because of the lower bound on the number of 
vertices of a cage [see 41, lim,,, ui = 00. 

Note that i&/L + 1 la,/i; if and only if dikLE/(L -e). Since lim,,, Di = 03, 
there exists an i,, such that for any izi,, ai? LL/(L -e) and then, 

bi5d,+ldd,=A_a. 
L t 6a” 

Thus, these graphs gi (izio) give counterexamples to Vautrin’s conjecture for any 
values of 6 + 3 and L. 

While the construction of G gives a rather good value for D, it imposes rather 
great values on A and a. In practice, however, 6, d and a are given, and it would 
be interesting to find a functionf(a, 6, A) (in Vautrin’s conjecture it was f(a, 8, A) = 
da/d) such that we always have a/D5 g(a, 6,d). But this seems a difficult problem. 
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