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Non-obese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D) due to the progressive loss of
insulin-secreting [3-cells by an autoimmune driven process. NOD mice represent a valuable tool for studying
the genetics of T1D and for evaluating therapeutic interventions. Here we describe the development and
characterization by end-sequencing of bacterial artificial chromosome (BAC) libraries derived from NOD/
MrkTac (DIL NOD) and NOD/ShiLt] (CHORI-29), two commonly used NOD substrains. The DIL NOD library is
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B?c/x(r)iralsartiﬁcial chromosome composed of 196,032 BACs and the CHORI-29 library is composed of 110,976 BACs. The average depth of
NOD/MrkTac genome coverage of the DIL NOD library, estimated from mapping the BAC end-sequences to the reference
NOD/ShiLt] mouse genome sequence, was 7.1-fold across the autosomes and 6.6-fold across the X chromosome. Clones

from this library have an average insert size of 150 kb and map to over 95.6% of the reference mouse genome
Non-obese diabetic (NOD) assembly (NCBIm37), covering 98.8% of Ensembl mouse genes. By the same metric, the CHORI-29 library has
Type 1 diabetes an average depth over the autosomes of 5.0-fold and 2.8-fold coverage of the X chromosome, the reduced X
TiD ) ) chromosome coverage being due to the use of a male donor for this library. Clones from this library have an
igsr;llm'del)endem diabetes average insert size of 205 kb and map to 93.9% of the reference mouse genome assembly, covering 95.7% of
Ensembl genes. We have identified and validated 191,841 single nucleotide polymorphisms (SNPs) for DIL

NOD and 114,380 SNPs for CHORI-29. In total we generated 229,736,133 bp of sequence for the DIL NOD and
121,963,211 bp for the CHORI-29. These BAC libraries represent a powerful resource for functional studies,
such as gene targeting in NOD embryonic stem (ES) cell lines, and for sequencing and mapping experiments.
© 2009 Elsevier Inc. Open access under CC BY license.

Mouse genome

Introduction

Type 1 diabetes (T1D) or insulin-dependent diabetes (IDD) is a
polygenic disorder, characterized by hyperglycaemia that results from
the autoimmune T cell-mediated destruction of the insulin-producing
3-cells of the islets of Langerhans of the pancreas [1-3]. T1D is
triggered by different environmental and genetic factors and has

7 Sequence data from this library have been deposited with the DDBJ/EMBL/
GenBank Data libraries under Accession Numbers FRO00001-FR332535.
77 Sequence data from this library have been deposited with the DDBJ/EMBL/
GenBank Data libraries under Accession Numbers FR332536-FR502694.
* Corresponding author. Wellcome Trust Sanger Institute Wellcome Trust Genome
Campus Hinxton, Cambridge, CB10 1HH, UK. Fax: +44 0 1223 494919.
E-mail address: cas@sanger.ac.uk (C.A. Steward).
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variable penetrance, suggesting that susceptibility to this syndrome is
inherited and polygenic [1-6].

The non-obese diabetic (NOD) mouse is an experimental model for
human T1D, developed in Japan by Makino et al. [7]. NOD mice
spontaneously develop T1D following an autoimmune mediated
process that progressively destroys their insulin-secreting 3-cells
[2,3]. T1D is typically associated with allelic variants of the Human
Leukocyte Antigen (HLA) class Il immune response genes within the
Major Histocompatability Complex (MHC) [3,8]. Genetic analysis of the
NOD mouse has further established that the inheritance of diabetes in
these mice is controlled polygenically by at least 27 disease-associated
loci, distributed over at least 14 different chromosomes [9]. These loci
have been designated Idd loci, for insulin-dependent diabetes [9,10].

Understanding how these loci contribute to the development of
T1D in the NOD mouse should inform us of the underlying me-
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chanisms of T1D development in humans. It is important, however,
to analyse Idd loci in the context of the genome in which they reside
so that the effect of the background in which the phenotype is
observed, and the role of epistatic genetic interactions can be
assessed. Bacterial artificial chromosomes (BACs) represent a useful
resource for sequencing, mapping and functional studies [11]. Here
we describe the development and end-sequencing of two BAC
libraries for the NOD substrains NOD/MrkTac (DIL NOD) and NOD/
ShiLt] (CHORI-29). While NOD/MrkTac and NOD/ShiLt] mice are
derived from the same founding stock of NOD mice developed by
intercrossing Jcl:ICR (Institute for Cancer Research) mice for more
than 20 generations [7] they have been maintained as isolated
colonies for many generations, and as such are likely to have
diverged significantly. Indeed these NOD substrains show subtle
differences in the timing and presentation of diabetes, and also in
their plasma glucose levels. The availability of BAC libraries for both
of these NOD substrains will allow us to study the differences
between them and to gain a better understanding of the pathogen-
esis of T1D. In addition, with the recent advent of embryonic stem
(ES) cells derived from NOD mice [12,13] these BAC libraries will
form the foundation for targeted manipulation of the NOD mouse
genome.

Results
End-sequencing

All clones from the DIL NOD and CHORI-29 BAC libraries were
end-sequenced and the sequence read data have been submitted to
EMBL. These data are also available from the Ensembl trace reposi-
tory (http://trace.ensembl.org/) and the NCBI Trace Archive (http://
www.ncbi.nlm.nih.gov/Traces/trace.cgi). 332,535 DIL NOD BAC clone
end-sequences successfully passed post-sequencing quality proces-
sing from a total of 196,032 BACs, generating 229,736,133 bp of
sequence. Of these passed reads, 318,065 (95.6%) were aligned to the
C57BL/6] reference genome (NCBIm37), 170,029 (53.5%) of which
were aligned to a single definitive location (Table 1A). Similarly for
the CHORI-29 library, 170,159 BAC clone end-sequences passed
post-sequencing quality processing from 110,976 BACs, generating
121,963,211 bp of sequence. Of these passed reads, 159,574 (93.8%)
were aligned successfully to the reference C57BL/6] genome with
80,710 (50.6%) reads aligned to a single definitive location on
NCBIm37 (Table 1B). The majority of the reads that did not map
contained repetitive sequences or were of low quality. Both sets of
data can be downloaded from the Sanger FTP site (ftp://ftp.sanger.ac.
uk/pub/NODmouse/NOD_BACend_alignments). Mapping was per-
formed using SSAHA2 with default parameters [14]. Using read-pair
information we could place 41,468 DIL NOD clones and 18,257 CHORI-
29 clones unambiguously on the genome since both read-pairs
matched uniquely. However, it was also possible to establish the
position of certain clones for which only one end mapped uniquely
where the other end of the clone mapped to the genome within 3
standard deviations of the mean insert length of clones from the
library and on the opposite sequence strand. This allowed us to place a

Table 1A
BAC clones in library 196,032
Attempted BAC clone end-reads 378,896
BAC clone end-reads sequenced successfully 332,535
Passed BAC clones sequenced on both strands 150,878
BAC clone end-reads with an alighment to the genome 318,065
Aligned BAC clone end-reads with a unique match 170,029
Aligned BAC clone end-reads with multiple matches 148,036
BAC clones positioned using unique end-read pairs 41,468
BAC clones positioned uniquely 125,266

Sequencing and alignment summary for the DIL NOD BAC library.

Table 1B
BAC clones in library 110,976
Attempted BAC clone end-reads 207,321
BAC clone end-reads sequenced successfully 170,159
Passed BAC clones sequenced on both strands 75,046
BAC clone end-reads with an alignment to the genome 159,574
Aligned BAC clone end-reads with a unique match 80,710
Aligned BAC clone end-reads with multiple matches 78,864
BAC clones positioned using unique end-read pairs 18,257
BAC clones positioned uniquely 62,162

Sequencing and alignment summary for the CHORI-29 BAC library.

further 83,796 DIL NOD clones and 43,905 CHORI-29 clones on the
genome, resulting in a total of 125,266 uniquely placed DIL NOD
clones and 62,162 uniquely placed CHORI-29 clones. The different
success rates in the unique positioning of the BAC clones from these
libraries to the genome was largely due to differences in the quality of
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Fig. 1. DIL NOD clones have an average insert size of 149,809 bp and CHORI-29 clones
have an average insert size of 205,413 bp. (A) Frequency distribution of the insert size
of the 125,266 DIL NOD clones (green) and the 62,162 CHORI-29 clones (blue). (B)
CHEF gel of Notl digested clones showing the difference in size between the NOD
libraries. The two different vector bands are illustrated with white arrows. Marker (M)
is a DNA marker of 24-300 kb size range.
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Table 2A
Chr. Total chr. Non-redundant Clone-length Passed aligned Clone % total
name length bp clone-length bp total bp sequence bp depth coverage
1 197,195,432 189,902,383 1,385,443,533 13,593,208 7.03 96.3
2 181,748,087 177,813,774 1,348,761,746 13,129,801 7.42 97.84
3 159,599,783 155,666,906 1,151,145,108 11,396,911 7.21 97.54
4 155,630,120 150,659,365 1,134,909,770 10,944,727 7.29 96.81
5 152,537,259 146,223,145 1,009,782,448 9,773,915 6.62 95.86
6 149,517,037 145,684,306 1,049,822,257 10,281,087 7.02 97.44
7 152,524,553 140,866,414 1,007,473,869 9,637,732 6.61 92.36
8 131,738,871 123,985,369 907,535,329 8,826,036 6.89 94.11
9 124,076,172 120,302,728 916,247,038 8,300,500 7.38 96.96
10 129,993,255 125,971,520 897,618,520 8,764,981 6.91 96.91
11 121,843,856 118,333,935 924,494,065 8,842,955 7.59 97.12
12 121,257,530 117,098,461 854,759,223 8,258,226 7.05 96.57
13 120,284,312 116,142,787 888,982,416 8,609,816 7.39 96.56
14 125,194,864 119,290,632 846,844,974 8,247,811 6.76 95.28
15 103,494,974 100,431,693 735,484,668 7,116,922 7.11 97.04
16 98,319,150 94,516,190 692,930,172 6,811,564 7.05 96.13
17 95,272,651 91,304,604 690,760,336 6,680,800 7.25 95.84
18 90,772,031 86,713,096 655,698,203 6,460,483 7.22 95.53
19 61,342,430 57,670,646 421,571,236 4,064,957 6.87 94.01
X 166,650,296 160,833,108 1,095,695,031 10,991,837 6.57 96.51
Y 15,902,555 0 0 0 0 0

All data in Table 1 and Table 2 are derived from the NCBIm37 mouse assembly. The DIL NOD library covers over 95.6% of the mouse genome at an average depth of 7.1-fold across the
autosomes and 6.6-fold across the X chromosome. Column 2 is the C57BL/6] chromosome length. The non-redundant clone-length field (column 3) is the non-redundant BAC clone
sequence estimated for that chromosome, using both read-pairs. This may count each base several times, the number of times being the number of BACs overlapping that position.
The clone-length total field (column 4) is the total sequence estimated for all the BACs for that chromosome, using both read-pairs. The passed aligned sequence column (5) is the
total number of sequenced bases per chromosome that have successfully passed quality control and been mapped. The clone depth field (column 6) is the clone-length total (column
4) divided by the total chromosome length (column 2). The % total coverage (column 7) is the non-redundant clone-length total (counting each base covered only once) as a

percentage of the total chromosome length.

end-sequence data produced from both libraries. CHORI-29 clones
have larger genomic inserts and as a consequence were harder to prep
and sequence compared to clones from the DIL NOD BAC library. Using
the mapping data for both libraries it was possible to estimate the
average insert size for the DIL NOD library to be 149,809 bp and
205,413 bp for the CHORI-29 library (Fig. 1A), which correlated with
the experimentally derived figures (Fig. 1B).

Physical genome coverage and coverage of Ensembl genes

The average depth of genome coverage of the end-sequenced DIL
NOD library was calculated to be 7.1-fold across the autosomes and 6.6-
fold across the X chromosome (Table 2A). The end-sequenced CHORI-29
library has an average depth of 5.0-fold and 2.8-fold across the

autosomes and the X chromosome, respectively (Table 2B). The total
number of Ensembl [15] predicted genes that are fully covered by a BAC
clone from the DIL NOD library is 31,093 (98.8%) and 30,103 (95.7%) for
the CHORI-29 library, based upon Ensembl mouse release 55 (NCBIm37).
The total number of Ensembl genes partially covered by DIL NOD and
CHORI-29 BACs is 349 (1.1%), and 1,351 (4.3%) respectively, 200 (0.6%)
of which are partial in both libraries. The total number of Ensembl genes
contained completely in DIL NOD and CHORI-29 BAC gaps is 30 (0.1%)
and 18 (0.06%) respectively. There are 5 (0.02%) genes that are present
on the reference genome but absent completely from both NOD libraries.
This is likely because it was not possible to place one or both BAC end-
reads of a pair due to reference genome gaps adjacent to these Ensembl
genes. These data are available on the Sanger FTP site (ftp://ftp.sanger.
ac.uk/pub/NODmouse/NOD_Ensembl_gene_coverage).

Table 2B

Chr. Total chr. Non-redundant Clone-length Passed aligned Clone % total
Name length bp clone-length bp total bp sequence bp depth coverage
1 197,195,432 188,433,001 1,046,993,130 7,724,484 531 95.56
2 181,748,087 175,429,538 942,386,790 6,916,061 518 96.52
3 159,599,783 154,711,914 875,284,125 6,490,661 5.48 96.94
4 155,630,120 148,498,769 827,737,353 6,127,905 5.32 95.42
5 152,537,259 144,530,268 733,517,218 5,404,820 4.81 94.75
6 149,517,037 143,599,805 775,532,299 5,768,104 5.19 96.04
7 152,524,553 135,008,655 644,735,047 4,788,996 4.23 88.52
8 131,738,871 121,214,563 606,581,664 4,522,109 4.60 92.01
9 124,076,172 118,654,230 598,157,862 4,362,992 4.82 95.63
10 129,993,255 124,749,578 675,601,360 4,987,613 5.20 95.97
11 121,843,856 115,930,403 605,273,345 4,474,962 497 95.15
12 121,257,530 115,274,597 604,649,354 4,482,487 498 95.07
13 120,284,312 114,926,992 609,116,213 4,517,988 5.06 95.55
14 125,194,864 116,442,268 607,970,623 4,531,884 4.85 93.01
15 103,494,974 99,239,967 543,851,152 3,998,763 5.25 95.89
16 98,319,150 92,840,807 534,474,134 3,928,889 5.44 94.43
17 95,272,651 89,677,039 468,395,835 3,456,144 4.92 94.13
18 90,772,031 85,715,767 456,115,712 3,373,974 5.02 94.43
19 61,342,430 56,286,798 291,811,698 2,148,157 4.75 91.76
X 166,650,296 148,955,095 469,399,660 3,543,869 2.82 89.38
Y 15,902,555 2,427,223 9,762,866 80,060 0.62 15.26

The CHORI-29 library covers 93.9% of the mouse genome at an average depth of 5.0-fold across the autosomes and 2.8-fold across the X chromosome. For further information

regarding the data, please see legend for Table 2A.
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To make the data accessible to the wider community, we have
generated a Distributed Annotation System (DAS) [16] source to
display both the DIL NOD clones (http://www.ebi.ac.uk/das-srv/
genomicdas/das/nod_clones_m37) and the CHORI-29 clones (http://
www.ebi.ac.uk/das-srv/genomicdas/das/chori29_clones_m37) so
that they can be visualized in DAS source compliant browsers. For
example, in the Ensembl genome browser (http://www.ensembl.
org/Mus_musculus/Info/Index) the alignments of both NOD BAC
libraries can be accessed through the DAS sources menu and viewed
against the reference C57BL/6] genome. DIL NOD clones are displayed
as red and black lines depending on the orientation of the insert in the
vector, while CHORI-29 clones are displayed as green and blue lines.
The BAC end-sequences can also be viewed as traces in the main
“Region in Detail” window of the Ensembl genome browser. The
method used to display BAC ends in Ensembl shows only those that
have corresponding ends that are considered to be within 3 standard
deviations of the mean insert size of the library. End-reads provide a
link to the Ensembl trace repository (http://trace.ensembl.org),
where the end-read sequences for all quality clipped reads have
been deposited (Fig. 2). FASTA files of these quality clipped reads have
also been generated and deposited on the Sanger FTP site (ftp://ftp.
sanger.ac.uk/pub/NODmouse/NOD_BACend_fasta_sequences).

Analysis of nucleotide variation

We used SSAHA-SNP2 [15] to call single nucleotide polymorph-
isms (SNPs) and deletion insertion polymorphisms (DIPs) from
both the DIL NOD and CHORI-29 end-sequence reads by
comparing them to the NCBIm37 C57BL/6] assembly. We called
191,841 SNPs and 15,824 DIPs for DIL NOD and 114,380 SNPs and

59.84 Mb 59.86 Mb 59.88 Mb 59.90 Mb

4,942 DIPs for CHORI-29. These data are available on the Sanger
FTP site (ftp://ftp.sanger.ac.uk/pub/NODmouse/NOD_variation_-
data). The following criteria were used: the identity had to be
greater than or equal to 92% match length, greater than or equal
to 80% of the read length and a match score or match length
greater than 250 bp. These SNPs have been validated against
[llumina whole genome shotgun data of the NOD/ShiLt] genome
(http://www.sanger.ac.uk/modelorgs/mousegenomes/) and sub-
mitted to dbSNP. However, it is important to note that the DIPs
are candidate nucleotide variants and follow-up genotyping is
warranted.

Discussion

The genome-wide DIL NOD and CHORI-29 mouse BAC end-
sequenced libraries provide a unique way of studying T1D in mouse.
The two libraries were aligned against the C57BL/6] mouse genome
and are displayed on the Ensembl genome browser, which almost
eliminates the need to perform filter hybridizations to isolate clones of
interest, except for “non-reference” regions of the genome that are
novel in NOD mouse. The distribution of mapped sequence reads is
relatively even across the genome, with the exception of the Y
chromosome, which is not represented in the DIL NOD mouse library.
To date, high-quality BAC libraries exist for several mouse strains,
including C57BL/6J, MSM/Ms [17,18], C3H/He], BALB/c, A/], SPRET/Ei,
AKR/], CAST/Ei (http://bacpac.chori.org/home.htm) and 129S7 [11],
with BAC end-sequences existing for C57BL/6J, MSM/Ms and 129S7.
Such libraries have been shown to be an invaluable resource for
assembling genomes and for in vivo functional studies, such as BAC
rescue [19-21].
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Fig. 2. NOD BAC clones are displayed on the Ensembl genome browser under the DAS sources, http://www.ebi.ac.uk/das-srv/genomicdas/das/nod_clones_m37 and http://www.
ebi.ac.uk/das-srv/genomicdas/das/chori29_clones_m37. The NOD/MrkTac mouse strain is designated DIL NOD (Sanger/Ensembl prefix bQ) and the NOD/ShiLt] mouse strain is
designated CHORI-29 (Sanger/Ensembl prefix bCN). The DIL NOD clones are displayed as black and red bars and the CHORI-29 clones are displayed as blue and green bars, the
colours indicating the orientation of the DNA insert in the vector. BAC clones on the forward strand are drawn above the DNA contig while clones on the reverse strand are drawn
below. The clone end-reads are shown as small arrows in the corresponding color to the relevant BAC clone. Links to the end-read sequences in the Ensembl trace archive can be

found by clicking on the clone end of interest.
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The high-density and end-sequence quality of these BAC libraries
make them useful tools for examining large-scale structural differ-
ences between the two substrains of NOD and other mouse strains
and will greatly facilitate high-throughput targeted manipulation of
the NOD mouse genome. With the recent advent of NOD ES lines these
BAC libraries will be a critical resource for targeting vector cons-
truction [12,13] where isogenic DNA has been shown to be critically
important in obtaining high targeting frequencies [22]. Due to the
high coverage of the C57BL/6] reference genome by the NOD BAC
ends, regions with poor coverage of the reference genome may re-
present structural variants in the NOD mouse genome when com-
pared to the reference genome. Importantly we are currently
performing targeted sequencing of regions of the NOD mouse genome
relevant to T1D, which is crucial for understanding the role genetic
susceptibility plays in the pathogenesis of T1D (http://www.sanger.
ac.uk/Projects/M_musculus-NOD/). We are also in the process of
using the Illumina platform [23] to sequence the entire NOD/ShiLt]
genome, which will greatly improve the utility of these BAC resources,
and should help to position unaligned BACs to novel ‘non-reference’
regions of the NOD genome (http://www.sanger.ac.uk/modelorgs/
mousegenomes/ ).

Materials and methods
Construction of the BAC libraries

The DIL NOD BAC library was constructed from NOD/MrkTac
female liver genomic DNA at the Genomic Sciences Center, RIKEN in
collaboration with the Diabetes and Inflammation Laboratory at
Cambridge University. EcoRl was used to partially digest whole
genomic DNA and the resulting fragments were cloned in pBACe3.6
as described previously [18]. These clones are available from Dr Jayne
Danska jayne.danska@sickkids.on.ca. The CHORI-29 library was
constructed in a similar manner at the Children's Hospital, Oakland,
California, USA. NOD/ShiLt] male kidney genomic DNA, obtained
from the Jackson Laboratory, was cloned in pTARBAC2.1 and these
clones are available from http://bacpac.chori.org/. The average
insert size was experimentally verified using clamped hexagonal
electric field (CHEF) electrophoresis, a system similar to pulse field
gel electrophoresis (PFGE) [24]. The marker (M) (Fig. 1B) was a
MidRange II PFG Marker - N3552S from New England BioLabs. For
storage purposes, the DIL NOD library was arrayed into 527 384-well
plates and the CHORI-29 library was replicated into 672 384-well
plates.

End-sequence profiling of the BAC resource

In total 378,896 reads were attempted for the DIL NOD library
using T7 and SP6, M13-21 and pUCR, and 3HPPSK and 3HPpur primers
on the vector and big dye terminator chemistry. 207,321 reads were
attempted for the CHORI-29 library using the T7 and SP6 primers on
the vector, and big dye terminator chemistry. Sequence-reads were
subjected to processing using Automated Sequence Preprocessing
(ASP) [25]. The number of insertless clones was determined to be 3%
for DIL NOD and 1% for CHORI-29. Average read-lengths were
determined to be 694.08 bp in length for DIL NOD and 718.77 bp in
length for CHORI-29.

End-sequence mapping of BAC clones

End-read data were mapped using SSAHA2 with the mapping
criteria that more than 100 bp should map with greater than 95%
identity to the NCBIm37 assembly. Clone-ends were iteratively
aligned against the genome and after each round the average size of
the clones was calculated as well as the standard deviation. Clone-
ends that were plus or minus three standard deviations away from the

mean were rejected. Clones with only one end aligned, ends that were
orientated in the same direction, or ends that lie at unrealistic
distances were rejected.
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