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linear-quadratic exchange economies when the parameters (PI, &) are “un- 
bounded” ; the problem of coverage; fired versus variable tolerances. ’ 1. Mech- 
anisms with resealing and constant round-off tolerances. 2. Mechanisms with vari- 
able round-off tolerances and with resealing. 

A. INTRODUCTION 

1. Preliminary Remarks 

In an earlier paper (Hurwicz and Marschak, 1984) we developed tech- 
niques for the construction of informationally efficient privacy-preserving 
mechanisms with discrete message spaces for the case of bounded discrete 
outcome spaces. We then sought to apply these techniques to obtain discrete- 
mechanism analogs to results which have been obtained for continuum mech- 
anisms (mechanisms whose message spaces are continua). Those results 
establish the message-space minimality of the Walrasian mechanism among 
all mechanisms which achieve Pareto optimality on wide classes of exchange 
economies and which obey appropriate regularity conditions. Efficiency is 
defined relative to a performance function-often called, in the present study, 
a “desired-outcome” function-which assigns a set of desired outcomes 
(often a one-element set) to each environment. A given discrete mechanism 
is efficient if there is no other mechanism with smaller or equal error, as well 
as smaller or equal informational costs, with one of these inequalities strict. 
Error is the largest possible distance between the desired outcome and the 
outcome generated by the mechanism. Our (1984) paper focused entirely on 
the case where the set of desired outcomes is bounded as one passes over the 
set of possible environments. Much of (1984) confined attention to finite 
mechanisms, in which the number of possible messages is finite and so is the 
number of possible outcomes. In that case, the natural cost measures for the 
study of efficiency are simply the number of possible messages and the 
number of possible outcomes. 

By contrast, the present paper considers desired-outcome (performance) 
functions which are unbounded on the set of possible environments, and 
mechanisms in which the message space, while not a continuum, is never- 
theless infinite. The discrete mechanisms on which we concentrate have 
integer tuples (or a slight generalization of integer tuples) as messages. (A 
fuple is a finite ordered sequence. A k-tuple has k elements. A two-tuple is 
an ordered pair, etc.) We seek to order such message spaces according to a 
suitable measure of size. Our central aim is again to explore analogs to the 
message-space minimality results obtained for continuum Walrasian mech- 
anisms, where minimality now has to do with the measure of size which we 
propose. At the same time, the techniques needed to do so shed light on the 

’ Certain lengthy details of proofs in Sections E and F are contained in three appendixes which 
are omitted from the present paper but are available in unpublished form from the authors. 
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general question of efficient discrete mechanisms with infinite message 
spaces, relative to unbounded desired-outcome functions, where efficiency is 
now defined (on the cost side) with regard to the message-space size measure 
we consider. In particular, we obtain some results about transforming a 
continuum mechanism realizing a given performance (desired-outcome) 
function into a discrete mechanism that approximates the continuum mech- 
anism and is also (in a sense to be specified) informationally efficient relative 
to that performance function. 

We begin by briefly surveying-in Section 2-the results on continuum 
mechanisms. 

2. Continuum Mechanisms 

Let Ei, with typical element ei , be the space of possible characteristics or 
local environments of the ith agent, i = 1, . . . , n; E = El X * . * X E,, ; 
M the message space; A the space of possible actions. An element 
e = (e,, . . . , e,) of E is called an environment. E is called the class of a 
priori admissible environments. 

One way to describe the static aspects of a privacy-preserving resource 
allocation mechanism is to specify an outcome function h: M + A and n 
equilibrium-condition functions gi: M X E + Zi , where Zi are appropriately 
chosen spaces with a null element written as 0. The interpretation is as 
follows: for any given m E M, the ith agent is required to verify whether 

gih ei) = 0, (1.4) 

where ei E Ei is his local environment. Since the agent need only know his 
own local environment, the mechanism is privacy preserving. If 
gi(m, ei) = 0, i = 1, . . . , n, then the message m qualifies as an equi- 
librium message for e. A number of trials will be required until an equilibrium 
message is found. But, as in much of the literature, we do not deal with the 
dynamics of a mechanism and are not concerned with the number of trials 
required. The outcome function h then prescribes that the equilibrium action 
or equilibrium outcome a = h (m) be taken. Thus, a mechanism on E is 
defined by a triple T = (M, g, h), where g = (gl, . . . , g,), such that there 
exists an equilibrium message for each e in E. It will sometimes be convenient 
to state that requirement as “rr covers E.” A mechanism T has the per- 
formance correspondence F: E -f, A given by 

F(e) = {a : g(m, e) = 0 for some m E M; a = h(m)}, 

where g (m, e) = 0 abbreviates gi (m, e) = 0, i = 1, . . . , n. We shall often 
say that “72 realizes F on E.” If E describes a class of economies, then we are 
particularly interested in performance correspondences whose values are Par- 
eto optimal, i.e., correspondences such that, for every e E E, every element 
of F(e) is Pareto optimal in the economy defined by e. 
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An alternative specification of a mechanism is obtained by noting that ( lA) 
is a binary relation between m and ei, and that it defines a correspondence 
pi: Ei -W M given by 

/.&i(e) = {m 1 gi(m, ei) = 0) . 

More generally, then, one may define a mechanism by requiring that the ith 
agent verify whether, for a given m E M, it is the case that 

m E PiCeil. 

Ifm E /.Li(ei) fOri = 1, . . . , n, then m qualifies as an equilibrium message 
for e. Equivalently, we define the correspondence cc: E * M by 

CL(e) = fj I.4 (ei), 

and we accept m as an equilibrium message if and only if m E p(e). The 
action is again chosen to be a = h (m), and the performance correspondence 
F: E ++ M of a mechanism 7~ = (M, /L, h) is defined by 

F(e) = {a : m E p(e) for some m E M; a = h(m)}. 

We shall use both the “(M, g, h)” specification of a mechanism and the 
alternative “(M, p, h)” specification; sometimes one of them will be con- 
venient and sometimes the other.’ 

In much of the economist’s experience, message spaces are Euclidean. For 
instance, the Walrasian process can be fitted into the preceding framework as 
follows. Let A be the space of net trades in an n-person exchange economy; 
thus a E A is an n-tuple a = (al, , . . , a,), a E R(l+‘)“, where there are 1 
goods other than numeraire. Let P be the normalized price space. Then the 
Walrasian equilibrium conditions can be written as 

u;(w; + x’, w; - p *xi) 
ugw; + xi, Wf - p*x’) - pk = 0, 

i = 1,. . . , n - 1, 
n-l n-l . k=l,...,l, 

u;(w; - f: xi, WY” - p - F xi) 
n-l n-1 

u;( w,” - f: 2, w; - p - 7 xi) 
- pk = 0, 

where y denotes the numeraire; p is in P; xi is an l-tuple of nonnumeraire 
goods; wi, wi denote i’s endowment; and subscripts for agent i’s utility 

‘For the two-agent case we shall rewrite the triple (kf, g, h) as a quadruple, namely 
ef, g1, &2, h). 
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function ui indicate partial differentiation. Let m = (x', . . . , P-l, p). 
Then each message is defined by n l-tuples of real numbers and so the 
dimension of the message space (the space of such m's) is n - 1. 

Now in this version of the Walrasian mechanism the equilibrium-condition 
functions gi are specified by the left-hand sides of the above equations and 
h(m) is the projection function, i.e., 

h(x’, . . . ) x”--1, p) = (xl, . . . , x0-‘) 

(x” equals - X7-l xi). A central question studied in the literature is whether 
there exists a mechanism, guaranteeing the existence and Pareto optimality of 
equilibrium allocations for the same class of environments as the Walrasian 
mechanism, but with a message space of lower dimension. If no restrictions 
are imposed on the functions g (or the correspondences pi), then the answer 
is in the affirmative due to the existence of the Peano mapping from (say) [w’ 
onto Rk for any k finite. Let y be such a Peano mapping. Then, for any 
mechanism with multidimensional M one can substitute a mechanism with a 
one-dimensional message space, say a subset of R ’ , through the replacement 
of the equilibrium equation 

gib, ei) = 0 

gi(fiz, ei) = 0, 

where 

and 

gi(fi, ei) = gi(y(e), ei), V(ti, ei, i). 

Then the outcome function h is replaced by h such that 

h(rit) = h(y(fi)), Vrii. 

Let g(m, e) = 0; then, since y is onto, there is ~2 E M such that y(k) = m. 
Hence, if a is an equilibrium outcome of the (M, g, h) mechanism, it is also 
an equilibrium outcome of the (a, g, h) mechanism. On the other hand, let 
g(fi, e) = 0. Then g(m, e) = 0 for m = r(m). Hence, every equilibrium 
outcome of the new mechanism is also an equilibrium outcome of the original 
mechanism. Thus (M, g, h) and (&, g, h) are both privacy preserving and 
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have the same performance. Consequently we can construct a privacy- 
preserving one-dimensional mechanism with Walrasian (hence Pareto- 
optimal) performance unless some regularity restrictions are imposed so as to 
rule out equilibrium-condition functions such as g = g * y with y Peano. 

Two types of restrictions have been used for this purpose. They can best 
be stated by writing both (M, g, h) and (M, 2, h) in their alternative forms, 
namely (M, p, h) and (M, p, /?), respectively. We have 

p(e) = {fi E ii2 : @) E p(e)}, 

i.e., 

fi(4 = r-%-441, 

where 7-l is the correspondence defined by r-‘(m) = {ti : m = y(fi)}. It is 
seen that $ inherits the irregularity of y-l. In fact, it turns out that y-l, and 
hence fi, violates a smoothness condition on correspondences, called local 
threadedness. A correspondence is locally threaded if at each point of its 
domain there is a neighborhood such that in that neighborhood there is a 
continuous selection. 

Let (M, p, h), with M Euclidean, be a privacy-preserving nonwasteful’ 
mechanism on a class of n-person (1 + 1)-commodity exchange economies 
which includes the classic ones (convex preferences, etc.). From the results 
of Mount and Reiter (1974)) Walker (1977)) and Osana (1978)) it follows 
that, if the equilibrium correspondence /.L is locally threaded, then the dimen- 
sion of M cannot be lower than nf, the dimension used by the above Walrasian 
mechanism. 3 

But this result leaves open the possibility that there might be some non- 
Euclidean message space which, in some sense, would be “smaller” than the 
nl-dimensional Euclidean space. To deal with this possibility, Mount and 
Reiter defined a quasi ordering of topological spaces which, for Euclidean 
spaces E’ agrees with the Euclidean dimension, but is meaningful even in 
spaces for which dimension may not be defined. According to their definition, 
the (infomzational) size of a topological space A is at least as great as that of 
topological space B (written A L MR B) if any only if there exists a continuous 
surjective functionfi A + B whose inverse (correspondence) f-l is locally 
threaded. 

Since it is desirable that a given space have size at least as great as its 
subspaces, a property lacking in rMR, two alternatives have been proposed 
by Walker. The first (denoted 2w) is defined by A 2w B if and only if there 

2A mechanism is nonwasteful if all its equilibrium allocations are Pareto optimal. 
3 Alternatively, it has been shown that dim M 1 nl if it is assumed that CL-’ has a Lipschitz- 

continuous selection (Hurwicz, 1971). 
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exists a subspace A’ of A such that A’ - >MR B. The second is the Frechet 
“dimension type” (denoted rF) defined by A >F B if and only if there is a 
subspace of A which is homeomorphic to B. In subsequent work both alterna- 
tives have been used (zw by Osana, for Edgeworth Box economies, ?F by 
Sato for economies with public goods).5 

The typical proof of minimal size requirements for message spaces goes as 
follows. Suppose we wish to show that a privacy-preserving mechanism 
(44, p, h) that is nonwasteful over a class of environments E must satisfy the 
requirement A4 2 M ‘, where M ’ is some given message space and 2 repre- 
sents a quasi ordering such as 2MR, zw, or z-~. We find a set i 5 E of test 
environments such that E 2 I?. We shall say6 that a subset B of E has the 
uniqueness property (with respect to the Pareto correspondence) if and only 
if: for all 2, d E k [where t = (&, &), C? = (e’,, &)I, if there exists some a 
which is Pareto optimal for the four environments e’, 6, (6, &), (%, , &), then 

Now, let (M, p, h) be a privacy-preserving mechanism on E, whose subset 
i? has the uniqueness property. Then it can be shown that the restriction of p 
to I?, written a: ,!f? * M, is an injective correspondence, i.e., 

That is to say, the inverse &i- ’ is a single-valued function from M onto I?. It 
then turns out that, under certain regularity conditions, the size of M must be 
at least as great as that of 8. In particular, let l? be homeomorphic to a 
finite-dimensional Euclidean space and let M be a Hausdorff space. Suppose, 
furthermore, that fi is locally threaded. Then M zF E, i.e., g can be em- 
bedded homeomorphically in Me9 We may also note that M zF 8 implies M 
=-WE - . 

When both spaces are Euclidean, M 1 & implies dim M 2 dim 8. Thus 
for such spaces the local threadedness of p (which is inherited by fi) is a 

4 Possibly A itself. 
* Hurwicz (1977) and Calsamiglia (1977) only consider finite-dimensional Euclidean message 

spaces. (See Calsamiglia, 1977, p. 274.) 
6This definition is only given here for n = 2 (since our applications do not go beyond this 

case). 
‘This concept can be defined more generally for any social choice correspondence 0*: 

E + A. We say that E * C E has the uniqueness property with respect to 0 * if and only if: 
for all P, &? E E*, if O*(6) fl O*(d) fl O*(P,, &) fl O*(&, &) # $, then e = k. 

‘See Hurwicz, 1977 (Single-Valuedness Lemma); Calsamiglia, 1977 (Injectiveness 
Lemma). 

9 See Sato, 1981, p. 53, Lemma 1. Analogous theorems for other orderings and/or spaces arc 
found in Mount and Reiter, 1974; Walker, 1977; Chander, 1983. 
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sufficient condition to force the message space to be at least of the dimension 
of 8. But there is in the Euclidean case an alternative to the assumption of 
local threadedness of /.L. (See Hurwicz, 1977.) For suppose that M and E are 
Euclidean and in addition that p-‘: M z0 E is Lipschitzian. Then (Apostol, 
1957, p. 257, Theorem 10-8) again dim M 2 dim E. 

We see, therefore, that the conclusion dim M 2 dim 8, where ,?? is a class 
of test environments with the uniqueness property, can be obtained either by 
assuming the equilibrium correspondence itself (restricted to 8) to have a 
continuity property (viz., local threadedness) or by assuming its inverse to 
have a stronger property, viz., having a Lipschitzian selection (the latter is 
sufficient since under our other assumptions PC-’ is single valued). [This need 
for a stronger property on the inverse is not surprising because, in effect, we 
are imposing condifions designed to rule out a space-filling (e.g., Peano) 
curve from M onto E. Now a space-filling curve such as Peano’s is continuous 
but its inverse does not have (and cannot have) local threads. Hence to rule 
out such a mapping, say 6, we can either require local threadedness of its 
inverse S-’ or some property of 6 stronger than continuity. It only remains to 
note that in our context 6 corresponds to a-’ and hence S-’ to fi. Hence we 
require either local threadedness of fi or the Lipschitz continuity (which, of 
course, is stronger than ordinary continuity) of hi-‘.] 

Using such a framework it follows from the work of Mount and Reiter 
(1974), Osana (1978), and Sato (1981), that if p is locally threaded, privacy 
preserving, interior valued, and nonwasteful, and if, for each i, Ei contains 
a class 8, of Cobb-Douglas environments, then its message space will have 
the Mount-Reiter, Walker, or Frechet size at least as great as that of the 
Euclidean space of dimension nl, provided that either the message space is 
Hausdorff or the correspondence (p 1 E)-’ is upper or lower hemicontinuous. 
Thus the Walrasian mechanism attains the lower bound on size in a class of 
topological spaces much broader than Euclidean. An analogous result for 
public-goods economies has been established by Sato with respect to a variant 
of the Lindahl mechanism. 

B. DIMENSIONAL REQUIREMENTS IN DISCRETE MESSAGE SPACES 

1. The Questions to Be Studied and the Plan of the Paper 

How does the situation change when the message space and the space of 
permissible outcomes become discrete while the class E of a priori admissible 
environments remains a continuum? We shall divide the inquiry into three 
main questions. They will be formulated specifically for the case in which E 
is the class of (parametrized) linear-quadratic two-person two-commodity 
exchange economies (a class considered also in our (1984) paper), but the 
concepts required will be general ones, and some of the results established in 
answering the three questions will be general as well. 
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It will be helpful, in the present preliminary sketch of the paper, to present 
the three questions not in the order of their subsequent detailed treatment, but 
rather in the reverse order. 

(i) Can the lower bound on error implied by a given space of permis- 
sible outcomes be attained for a discrete message space? 

In the continuum literature just summarized, the possible Pareto optima for 
a typical class E of exchange economies-e.g., the class of CobbDouglas 
economies-is a continuum. Consequently the outcome space h [p(E)] for 
a continuum mechanism (M, ,u, h) which realizes a Pareto-optimal per- 
formance function on E is also a continuum. For discrete mechanisms, neither 
the set of equilibrium messages nor the set of equilibrium outcomes is a 
continuum. We shall be considering discrete mechanisms (on a set E) whose 
messages and outcomes are tuples of integers; i.e., the permissible outcome 
space is no longer a continuum, even though the correct (e.g., Pareto- 
optimal) outcome space remains a continuum. That means that for some 
environments in E the correct (Pareto-optimal) outcome cannot be an equi- 
librium outcome of such a discrete mechanism. For some sets E-including 
the linear-quadratic set which we shall mainly study-that means in turn that 
there is a positive lower bound to the mechanism’s error on E. Here error 
means-for the case in which each environment has a unique Pareto-optimal 
outcome-the maximum distance, over all economies e in E, between the 
Pareto-optimal outcome fore and the equilibrium outcome which the discrete 
mechanism yields for e. lo 

For the class of (parametrized) two-person, two-commodity linear- 
quadratic exchange economies-a class which we henceforth denote E *-the 
correct (Pareto-optimal) outcomes comprise a continuum in the real line. For 
any integer n, moreover, there is an economy e in E * for which the correct 
outcome, to be denoted 4 (e) , equals n + 1. In the discrete mechanisms which 
we shall study-approximations to the continuum Walrasian mechanism on 
E*-the permissible outcome space is that of the integers; i.e., every equi- 
librium outcome is contained in 

N = {. . . , -l,O, +1,. . .}. 

Clearly, for any mechanism on E * with integers as the permissible outcomes, 
a lower bound on error is 4. For let such a mechanism, say T = (M, CL, h), 
dictate some x E N as the equilibrium outcome when the environment e 
satisfies 4(e) = n + 4, n E N. The closest permissible outcomes being n 

“‘When there is a set of Pareto optima for every e, then “error at e” may be defined as the 
maximum distauce, over all the equilibrium outcomes for e, between the equilibrium outcome 
and the nearest Pareto optimum. “Error” is then the supremum of “error at e” over all e in E. 
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and n + 1, the distance 1 x - 4(e) 1 cannot be below 4. Hence E+(T)), the 
error of the mechanism rr, defined by 

E+(T) = sup Sup /h(m) - 444 1, 
eEE m+(e) 

must satisfy 

Our tirst question, then, concerns mechanisms on E * using integer tuples as 
messages and integers as outcomes”-i.e., mechanisms n = (MCk’, p, h) 
satisfying 

MC” = M, x . . . X Mk; k I 1 an integer; for r = 1, . . . , k 

and for some real b,, M, c { . . . , -2b,, -b,, 0, +2b, . . . } (la) 

hb.(E)l G N. c&J 

The question is whether among such mechanisms there exists one which is 
capable of exactly attaining the lower bound of 1 as its error. We show in 
Section D (Proposition IV) that the answer is in the negative and remains so 
when Mck) is replaced by any denumerable message space. The proposition 
generalizes to a class of environments broader than E * and a class of desired- 
outcome functions broader than the function 4 which is associated with E * . 

(ii) Can one get arbitrarily close to the lower bound on error when 
messages are integer k-tuples? 

Given the negative answer to the previous question, it is natural to ask next 
whether one can find a mechanism on E * (our set of linear-quadratic ex- 
change economies) which satisfies (la) for some k, satisfies (2J, and has an 
error arbitrarily close to the lower bound of 1. Here the answer turns out to 
be in the affirmative, at least for large subsets of E *. 

One gets arbitrarily close to an error of f by using a discrete mechanism 
which (i) has a message space in M , (‘)* (ii) approximates the continuum 
Walrasian mechanism in a “round-off” manner; and (iii) rescales every mes- 
sage, i.e., each agent divides any message by a suitable positive constant in 
forming his response. Thus given his environment ei, agent i accepts a 
message m as an equilibrium message if and only if I gi(m *, et) I I Si, where 
Si > 0 is a “round-off tolerance,” m* is the resealed version of m, and gi is 
the equilibrium-condition function of the continuum Walrasian mechanism. 
In fact, the merits of such “resealed round-off” approximations hold in set- 
tings far more general than our linear-quadratic exchange-economy set E *. 

“‘Ihe analysis we shall give in Sections C and D extends to the case where the permissible 
outcomes lie not in N but in {. . . , -26, -b, 0, b, 2b, . .}, b real, b # 1. 
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We show in Proposition III of Section C that for a wide class of environment 
sets E, of real-valued desired-outcome functions 4 defined on E, and of 
continuum mechanisms realizing 4, such a resealed approximation to the 
continuum mechanism can always be made-by suitably choosing the re- 
scaling constant-arbitrarily close to the error permitted by an integer out- 
come space. The conclusion of Proposition III holds when E, 4, and the 
continuum mechanism realizing 4 on E meet a certain collection of regularity 
requirements called “Condition A.” Condition A is met, in particular, by a 
subset E*’ of our set E * (namely a subset in which each of two specific 
parameters of the four that define a parametrized economy lies in an arbitrary 
compact subset of positive reals), by the restriction of the Pareto-optimality 
function 4 to E *’ , and by the continuum Walrasian mechanism on E *‘. For 
the subset E *‘, moreover, the ordinary round-off approximation to the con- 
tinuum mechanism-the discrete approximation in which 120 resealing 
occurs-has a lower bound on error which is greater than i, no matter what 
values we choose for the round-off tolerances Si among all those values for 
which the discrete mechanism covers” E*‘. That is shown in Section E, 
which is based on Appendix 1 (see footnote §). Thus if we did not permit 
resealing in our approximation to the Walrasian mechanism, then we could 
not bring error arbitrarily close to 1. 

(iii) Can one get arbitrarily close to the lower bound on error with a 
message space “smaller” than the space of integer pairs? 

The final question is whether the same arbitrary closeness to the lower 
bound of 1 can be achieved by a mechanism on E* whose message space is, 
in some suitable sense, “smaller” than the space of integer pairs which we use 
in the resealed discrete Walrasian mechanism. In particular, can it be 
achieved if the message space is M (l)7 In the absence of further restrictions . 
the answer is in the affirmative because of the existence of well-known 
one-to-one correspondences between Mck) and M(r) for any finite k (both M@) 
and M(l) are denumerable). But it is possible to define a concept of informa- 
tional size for discrete sets in a manner quite analogous to the Mount-Reiter 
approach for topological spaces. This leads to the formulation of regularity of 
“smoothness” conditions: one may then indeed have a lower bound on the 
“dimension” k when one considers all smooth mechanisms which use some 
message space in the collection (M(‘), M(*), . . .} and which realize a given 
performance function on a given environment set. A mechanism which, in 
effect, codes each message in Mck’ into a message in @‘), with k’ < k, 
violates the smoothness condition. Our general definition of informational 
size and the associated definition of smooth-or “pseudo-Lipschitzian” as we 
call it-are given in the next section (B2). In Section B3, we again consider 

“Recall that a mechanism is said to cover an environment set if it has an equilibrium message 
for every environment in the set. 
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the class E* of linear-quadratic exchange economies, and we take as the 
performance function to be realized the set-valued function which assigns to 
any economy e in E * all outcomes within a given distance E of the Pareto- 
optimal outcome 4(e). We study-analogously to the procedure used in the 
continuum case-a suitable “test” class of economies in E *. We thereby 
show (Proposition I) that no mechanism on E * which is pseudo-Lipschitzian 
on an appropriate subset of E *, using integer tuples as messages and having 
a message space smaller than @)-no matter what its outcome space--can 
realize the given (set-valued) performance function on E *. In Proposition II, 
we demonstrate that Proposition I is not vacuous-that there exists an integer- 
message mechanism, pseudo-Lipschitzian on a subset with the uniqueness 
property, and realizing the set-valued performance function on nontrivial 
subsets of E *. In particular, we verify in Proposition II that on a subset of E *’ 
our resealed discrete Wahasian mechanism is indeed pseudo-Lipschitzian and 
realizes the given set-valued performance function. (Recall that E*’ is the 
subset of E * on which the resealed mechanism’s error was shown to be 
arbitrarily close to 4.) 

By virtue of Propositions I, II, III, we will have shown that for a certain 
class E of (two-person two-commodity) exchange economies, the resealed 
discrete Wahasian mechanism has minimal message-space size among all 
smooth (pseudo-Lipschitzian) integer-outcome mechanisms on E which have 
errors arbitrarily close to the lower bound implied by integer outcomes. That 
class E has the following properties: (1) It includes the test economies used 
in proving Proposition I and it includes the subset of E *’ on which the 
resealed discrete Walrasian mechanism was shown to be pseudo-Lipschitzian; 
(2) the continuum Walrasian mechanism P on E realizes a desired-outcome 
function + with respect to which error is defined, and the triple (E, 4, vr) 
obeys Condition A; (3) the discrete resealed round-off approximation to T is 
pseudo-Lipschitzian on E. So we indeed have a first analog (a somewhat 
limited one) to the dimensional-minimality results of the continuum lit- 
erature . 

In Section F we deal with the fact that Condition A-under which the 
resealed approximation to a continuum mechanism was shown to have the 
merits described in Proposition III-appears to be a rather stringent one when 
applied to the full set E * of linear-quadratic exchange economies and the 
continuum Walrasian mechanism T on E *. The triple (E *, T, c#J), where 4 
is the Pareto-optimal desired-outcome function, fails to meet Condition A, 
because for the full set E * a certain uniform-continuity requirement on T (part 
of Condition A) fails to hold; the requirement does hold for the smaller set 
E *’ considered above. One therefore asks: Even though (E * , r, 4) fails that 
uniform-continuity requirement-which is, after all, only a sufJicienf condi- 
tion for the conclusion of Proposition III-is it nevertheless the case that the 
resealed integer-outcome approximation to T on the full set E * has an error 
arbitrarily close to the error implied by integer outcomes? The answer is in 
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the negative. In Section Fl (based on Appendix 2) we show that the resealed 
mechanism cannot even be made to cover the full set E *. 

In Section F2, (based on Appendix 3), we resolve the coverage difficulty 
and restore the error-optimal&y property of the resealed approximation by 
liberalizing the round-off rules and settling for a set somewhat smaller than 
E * (but still unbounded). The constant round-off tolerance Si is replaced by 
a function $ on person i’s local-environment set. (Thus the privacy- 
preserving property of the mechanism is not lost.) For such a variable round- 
oflapproximation, both coverage and error optimality are restored, not for the 
full set E *, but rather for a set E which can be made arbitrarily close to E *. 
Thus we have further support for the hypothesis of parallelism between 
continuum situations and their discrete-approximation counterparts. 

Furthermore, it can be shown that the variable round-off mechanism is 
pseudo-Lipschitzian on a subset of ,!? which has the uniqueness property. This 
rules out the existence of a mechanism of equalAaccuracy in approximating the 
continuum Walrasian mechanism on all of E), whose (discrete) message 
space is “one-dimensional.” 

2. Informational Size of Discrete Message Spaces 

We seek a definition of informational size which will, in particular, dis- 
tinguish between the spaces MC”‘) and MC”“’ defined in the previous section, 
where n ’ # n”. If one wants to adapt the MR definition to such spaces, then 
one natural suggestion is to associate with each space MC”’ the “discrete” 
topology, whose open sets are all the subsets of MC”). But since, for that 
topology, every subset of MC”) is both closed and open, one sees that the MR 
definition assigns the same size to M (“) as to MC”“‘. It is conceivable that there 
is some other topology with respect to which the MR size (or the Walker or 
Fr&het size) is different for M (n’) than for MC”“). We shall, however, use an 
alternative approach, based on norms and on the Lipschitz properties.‘3 

We start with some definitions. 

DEFINITION 1. A function’4f : X + Y is said to be Lipschitz continuous 
(or Lipschitziun) if and only if there exists K > 0 such that 

IIf(x’) -f(x”)I( I K- (lx - ~“11 for all x’, X” E X. 

DEFINITION 2. A function g: A --, B is said to be Lipschitz sectioned if 
and only if the inverse correspondence has a Lipschitzian selection, i.e., if 

“The fact that our approach using norms serves our purposes, together with the apparent need 
for uniform continuity in certain proofs, suggests that in a more general treatment of our problem 
it may be natural to use not only topology but also uniform structures and uniform spaces. The 
choice of norm may matter (Dugundji, 1966, p. 201, Ex. 1, last sentence). 

‘%e term “function” means single valued, unless the contrary is specified. 
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and only if there exists a Lipschitzian function s: g(A) + A such that 
s(b) E g-‘(b) for all b E g(A). 

EXAMPLE. The standard15 one-to-one mapping $: w z0N2, where w is 
the set of nonnegative integers and m2 is the set of nonnegative integer pairs, 
is Lipschitzian (with K = 1) but, as we shall see from the proof of Lemma 
Bl below, it is not Lipschitz sectioned. 

DEFINITION 3. We shall say that the (informational) Lipschitz size of 
space A is at least as great as that of space B, written A zL B, if and only 
if there exists a surjective function g: A’ z0 B which is Lipschitz sectioned, 
where A’ is a subset of A. As usual, A >L B means “A zL B but not B 2L 
A.” AkB means “A zL B and B zL A.” 

We now prove a lemma concerning integer r-tuples. We do so both to 
illustrate the size ordering and because the lemma is needed in the proof of 
Proposition I. 

LEMMA Bl. Let r’, r” be positive integers with r” > r ‘. The informa- 
tional Lipschitz size of N”, the set of all integer r’-tuples, is strictly lower 
than the Lipschitz size of N’“, the set of all integer r”-tuples; i.e., in symbols, 
N”’ ,L N”. 

Proof. We show here that N* >L N ( = N’). An analogous argument 
shows that N”’ >L N” for any r ’ , r” with r” > r ’ . 

Step 1. First we show that N2 zL N. Consider the projection function 
T: N2 --, N, defined by T(X, y) = x. It is surjective (onto). It is also Lip- 
schitz sectioned, since its inverse 7r-i has the selection s defined by 
s(0) = (0, 0) which is Lipschitzian, with K = 1. [The function s is Lip- 
schitzian because, for 8’ # 0”, 

““rag! I sB(“;;“)lI = ll’“‘;~! r ~,, O)Il = ll~~- e”, 011 = le’ - e”l I - e” I 18’ - eIl[ 
= 1.1 

Step 2. It remains to be shown that it is not the case that N zL N2. 
Suppose that N ?L N2. Then there exists a surjection g: N’ zti N2, where 
N’ c N and g is Lipschitz sectioned. This means that g-i has a Lipschitzian 
selection s. Hence there is a Lipschitzian one-to-one function from N2 to N’ 
and hence also from N2 to N. [Any selection d from g-’ is one-to-one: Suppose 
d = s(y*) and d = s(y**). Then d E g-‘(y*) and d E g-‘(y**), i.e., 
g(d) = y* and g(d) = y**. Hence y* = y**, since g is a function.] Con- 
sider, then, such a one-to-one function s from N2 to N, where s is Lipschitzian 
with some given K > 0. Without loss of generality, we may set s (0, 0) = 0. 
For some integer m > 0, consider a subset of N2, namely J(m) = 

I5 See, e.g., Kamke, 1950, p. 2. 
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{(n, y) E EN2 : 0 - -= x -c m, 0 I y I m}. The set J(m) is an (m + 1) X - 

(m + 1) square of points in the two-dimensional lattice N*, and so 
#J(m) = (m + l)*. 

Now, for all z in J(m), we have (1 z - (0, 0) (( = )I z/l 5 m. Hence, since s 
is Lipschitzian with K, we must have 11 s(z) - ~(0, 0) 11 5 K * llz - (0, 0) )I, 
and, therefore, for all z in J(m), 

where s(z) is an integer. Now the number of integers r satisfying the in- 
equality 1 r 1 5 K * m does not exceed 2Km + 1. Because s is one-to-one, a 
contradiction is obtained if #J(m) > 2Km + 1, i.e., if (m + I)* > 
2Km + 1. For a positive integer m, this is equivalent to m > 2K - 2. 
Hence, for any given K > 0, the choice m = max(2K - 1, 1) yields a 
contradiction. Q.E.D. 

Remark B 1. The argument in Step 2 implies also that there is no Lip- 
schitzian one-to-one function from n* to N, where ;ii* denotes the set of all 
pairs of nonnegative integers. 

3. Some Results for Pure-Exchange Economies 
We now proceed to apply these concepts to a set of Edgeworth-box econ- 

omies. We show that if a discrete mechanism on this set obeys certain 
regularity conditions, if its message space is one of N, N*, N3, . . . , and if 
its equilibrium outcome is always within a specified distance of the Pareto- 
optimal outcome, then the mechanism’s message space must have Lipschitz 
size at least as great as N*. The pattern of proof will be seen to be quite similar 
to that for continua. 

We shah study a pure-exchange economy for two individuals and two 
goods, X and Y. The utility functions are quadratic in X and linear in x say 

U ’ = O!i(Wt + Xi) - 1 pi(Wf + Xi)2 + Wr + yi) 

where wf , wr denote endowments (initial holdings prior to trade); xi, yi are 
net trades; (Yi > 0, pi > 0, w;’ 2 0, wT 2_ 0; and we are assumed to be in 
the region where ui increases with xi. The marginal utilities with respect to 
X are, for a net increment xi in i’s holding of X, 

fA -  Pi% 9 i= 1,2, 

where 
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The Walrasian equilibrium conditions are, accordingly, 

ei - PiXi = p, i= 1,2;Xi+Xz=O, 

wherep is the normalized price of X (Y is the numeraire). Writing xl = x, this 
becomes 

P + p,x - 8, = 0 

P - p2x - e, = 0. 

(3B) 
(4B) 

Solving, we obtain 

x = e, E ($((j, p) 
PI + P2 

hP2 + e2p1 

p = PI + p2 
(6~) 

To every quadruple (0,) pr, &, &), there correspond many (in fact a 
continuum) of Edgeworth-box economies (wf , crl, pi, wz, cy2, p2). We shall 
assume that an Edgeworth-box economy can occur if and only if (i) marginal 
utilities are nonnegative at every point in the box, and (ii) there is an interior 
Pareto optimum (with equality of marginal rates of substitution). The point 
[(w; + x, w; + y), (w,’ - x, wy2 - y)] is an interior Pareto optimum if and 
only if x E [-wi, w,2], y E [-wi, w,‘], and x = 4(r3, p). Consequently, 
the set of parametrized economies [( 4, pi), ( e2, j3-J] which correspond to the 
Edgeworth-box economies that can occur is the set 

{[(e,, pi), (f3,, p2) : p, > 0, p2 > 0; for some positive al, a2 and 
some nonnegative wi, wz we have (i) 8i = crl - p1 wf , e2 = cy2 - 
pZwZ,(ii)& -plx rOand~2++2~rOforallxin[-w,!,w~], 

(iii> m PI E [-WA ~31. 
It is readily verified, however, l6 that this set is identical to the set 

E* = m, pd, (e2, p2)1 : e1 2 0, e2 2 0, P, > 0, p2 > 01 
= E; x E$, 

‘6Suppose 8, < 0, 6$ < 0. Requirements (ii) and (iii) imply that 81 - PI [(0, - &)/ 
(PI + &)I 2 0, i.e. &[l - j3r/@ + /$)I z -&&/@r + &), which is impossible, since 
the term on the left is negative and the term on the right is positive. Suppose 0, > 0, & < 0. 
Then requirement (ii) implies that & + &, x 2 0 for x = -w:, i.e., t& 2 p2wi, which is 
impossible, since w: 2 0. Similarly, 8, < 0, & > 0 is ruled out. Only 8, 2 0, 6 2 0 is 
consistent with requirements (i), (ii), (iii) and with the inequalities pi > 0, ~1 > 0, wj 2 0, 
i = 1, 2; and any nonnegative (0,) &) is consistent with those requirements and inequalities. 
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ET = {(ei, pi> : 4 2 0, pi > o}, i= 1,2. 

We shall write i’s local environment as ei = (0i, pi); we also write e = 
63, e2>. 

The continuum Walrasian mechanism on E* is a quadruple rr = 
W, go, a, h), where ~4 = {(x, p) : (x, p) E R21; h(m) = h((x, p)) = x; 
and gi, i = 1, 2, is a function from M X ET to R given by the left-hand sides 
of (3a), (4a). The mechanism T is indeed a mechanism on E * (a mechanism 
which covers E *), since for each e E E *, there exists a message (x, p) 
satisfying (3a, 4a). The mechanism 7~, moreover, realizes the (point-valued) 
desired-outcome function C/J on E *, since, for each e in E*, we have 
h(m) = 4(e), where m = (x, p) is the unique message satisfying @a), (6B). 
The mechanism leaves unspecified the Y-trade which takes place. Hence, 
since any feasible Y-trade, when combined with the X-trade x = 4(e), com- 
prises a Pareto optimum, we impose no bias in favor of any particular member 
of the set of Pareto optima for e when we take 4 (e) to be our desired outcome 
for e. 

If we now consider, instead of the continuum mechanism on E *, any 
mechanism on E * whose outcome function is integer valued (whether that 
mechanism has a discrete message space or not), then we can no longer hope 
to realize C$ exactly. Since the range of the desired-outcome function 4 on E * 
includes the entire closed interval between some pair of successive integers, 
the most we can ask for is that for some specified E > 0 

Ix- 4(e)I Ii+ E. 

That desideratum gives us a correspondence OF, from E * to the integers, 
defined by 

We shall study a class of discrete mechanisms on E* which have integers 
as outcomes and have, for some integer k > 0, the set Nk of integer k-tuples 
as the message space. We are interested in mechanisms which belong to that 
class and which also realize the correspondence 0:; i.e., for every e in E *, 
every equilibrium outcome lies in 0: (e). An example of a mechanism in the 
class is GT* = (N2, g:, gz, h*), a round-oflapproximution to the continuum 
Walrasian mechanism 7~ on E *. Since only integer pairs are now available as 
messages, rather than the points of the continuum lR2 (as in the continuum 
Walrasian mechanism ?r), it is no longer possible to insist that for every e in 
E*, there exist a message m for which gi(m, ei) = 0, i = 1, 2, where the gi 
are the equilibrium-condition functions of the continuum Walrasian mech- 
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anism 7~ = (44, gl, g2, h). The most one can ask is that for some preassigned 
Si > 0, i = 1, 2, the function gi have a value within Si of zero. Thus we 
have, for the round-off approximation T* , for every e = (e, , e2) in E * , and 
for all integer pairs” (x, p) in N2 

g,*[(X, p>, 4 = 0 if and only if Igi[(xv p), ei] 1 5 Si, i = 1, 2, (78) 

h*((x, p)) = the integer closest to h((x, p)) 
63~) 

= the integer closest to x, 

with ties broken downward, where the round-off tolerances 6,) S, are positive 
numbers such that for every e = (e, , e2) in E *, 

there exists (x, p) E N2 for which gf[(x, p), ei] = 0, i = 1, 2. (9a) 

If the pair (& , &) has the property (9a) for all e in some set, then that pair 
is said to achieve coverage ofthat set. Note that, as always, we can write the 
mechanism~*inthealtemativeform~* = (N2, CL*, h*),where,fori = 1, 
2, E.L* is a correspondence from E to N2 such that 

2 

P*(e) = fl /J*(ei) 
i=l 

and p? is the individual correspondence given by 

/I: (ei) ={m E N2 : (gi(m,ei) ( 5 6;). 

The mechanism T* realizes O,* on E* and only if 

sup sup 1 h*[(x, p)l - &9 1 = 4 + E, 
eEE’ kP)E/A*w 

or, to use the notation introduced in Section B 1, 

E&7r*) = 1 + E. 

We shall now leave the example T* for the present, and shall consider 
instead any mechanism (N“, p, h) on E * which realizes the correspondence 
O,* . We ask: How “large’‘-in the sense of Definition 3must the message 
space of such a mechanism be if the mechanism is to be “smooth,” in a sense 
suggested by the following weakening of Definition l? 

171t would, of course, be natural-in approximating r-to limit the “price” component of 
each message to nonnegative integers. We shall not do so here. 
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DEFINITION 4. A function f: A --) B is said to be pseudo-Lipschitzian if 
and only if, for every c > 0, there exists K > 0 such that for all a ‘, a” E A 
satisfying the inequality 

I/a’ - a”]/ L c, 

we have 

llf(a’) - f(a”)(I 4 K*((a’ - a”/(. 

It is clear that a Lips&it&n function is pseudo-Lipschitzian. Also, if the 
domain A is Nk or the more general MCk) of ( lB), then a pseudo-Lipschitzian 
function is Lipschitzian. (The latter property will be used in what follows.) 
On the other hand, a pseudo-Lipschitzian function need not be continuous 
(e.g., f(x) = [xl, where [x] is the largest integer not exceeding x), and 
a continuous function need not be pseudo-Lipschitzian (e.g., f(x) = 
x2, x E R). 

We shall need to exhibit a set contained in E * and having the uniqueness 
property (described in Section A2) with respect to 0:. For any given n > 2 
that purpose is served by the set 

~5, = E f, x Ei,, 
E& = {ei : ei = (6i, pi), pi = 1, 0, = n * (4~ + 7) 

for some n E (0, 1, 2, . . .}}. 

We note that E,, is isomorphic with R2, the set of all pairs of nonnegative 
integers. The set E,, will be our set of “test environments”; its role will be 
analogous to the role of the “test environment” set in the typical proof of 
dimensional minimality for continuum mechanisms (as described in Section 
A2). We shall establish 

PROPOSITION I. Let the restriction p ( E,, to E,, ofthe equilibrium corre- 
spondence pu: E ++ M have a pseudo-Lipschitzian selection, and let the 
mechanism (M, p, h) realize 0 T on a subset E ’ of E* containing E,, . Assume 
that M, the message space, is one of the following: {0}, N, N2, . . . . Then 

M zL N2, 

Remark B2. By methods similar to those used here one can generalize 
Proposition I to the case of an arbitrary number of goods and agents. 

Proposition I would not be of interest if a mechanism satisfying the condi- 
tions of the proposition with M kN2 were not known. But, in fact, the 
following holds. 
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~OPOSITION II. Consider the discrete mechanism 72* = (P, gT , g2*, 
h *) (a round-off approximation to the continuum Walrasian mechanism on 
E* ) as a mechanism on the set E,,; i.e., letgf, g;, h* satisfy (7& (8B), (gB) 
for every e in E,,. Then 

(i) this mechanism is pseudo-Lipschitzian (i.e., the correspondence 
p*: E,, ++ N2 has a pseudo-Lipschitzian selection); 

(ii) there exists E* such thatfor all E > E*, (S,, $) can be chosen so 
ht (7~) (88) (9 > B are satisfied for all e in E,, and 0, is realized on E,,. 

Remark B3. In Proposition III below, we consider a modified (“re- 
scaled”) version of the approximate price mechanism T*. It can be shown 
that conclusion (i) of Proposition II also holds for such a modified mech- 
anism, and, in addition, for E arbitrarily small, the modified mechanism 
realizes 0, on subsets of E * larger than the set EC,,, namely on sets of’the form 
{[(6, PI>, (02, p2)] : 81 2 0, 02 2 0, pi E Bi, i = 1, 2}, where Bi 
(i = 1, 2) is an arbitrary compact subset of the positive real line. 

Remark B4. It can be shown (using an argument like that used in the 
proof of Proposition II) that the pseudo-Lipschitzian property holds for T* on 
a subset of E * larger than EC,,, namely ihe set {Kk PI>, (&, &)I : 4 2 0, 
f32 2 0, p1 = yp2; p2 2 p}, where p and y are arbitrary positive numbers. 

Proof of Proposition I 
Part 1. We first show that the set E,, has the uniqueness property with 

respect to the desired-outcome correspondence Ot . Let e ’ = [(ei, l), 
(&, l)] and e” = [(f$‘, l), (e,“, I)] belong to E,,. Let x belong to the inter- 
section of the four sets 

OT(e’), 0: (e”), axe;, 0, (e;, 03, axe;, 0, w, 03. 
[Clearly, the points [(e;, l), (@, l)] and [(&‘, l), (t?;, l)] also belong to 
EC,,.] That means that there exist four pairs (x’, zj) such that 

x = xj + zj, j = 1, 2, 3, 4 (1%) 

where lzj] 5 E + $,j = 1, 2, 3, 4, and 

x1 = c$(e’), x2 = $(e”), 2 = mx, 0, to;‘, 01, 

~4 = dxe;, 0, w, i)i. 

In view of ( lOa), we have 

0 = x2 - x3 + z2 - z3. (llJ3) 
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Since 4(e) = 1(/3, - 6) for e in E+ (11~) can be written 

(e’; - 83/2 - (e; - e9/2 + zz - z3 = 0; 

i.e., 

and, therefore, 

I e;l 
Similarly, 

- 

e’; - e; = 2(z3 - z2), 

e; 1 I 2(~ + 1 + E + 1) = 4E + 2. 

1 e; - e; 1 I 4~. 

Since both e ’ and e” are in E,, it follows (in view of the definition of E,, and 
the fact that 77 > 2) that e’ = err. Thus the uniqueness property has been 
established. 

Part 2. Now suppose that the assertion M zL N* is false. That means, in 
view of Lemma Bl , that M cannot be in {N3, N4, . . .}. Clearly, M = (0) 
does not realize 0,. So it must be that M = N. But then, since by hypothesis 
the correspondence p I E,, has a pseudo-Lipschitzian selection, since E,, is 
discrete (so that a pseudo-Lipschitzian function on E,, is also a Lipschitzian 
function), and since the uniqueness property just shown implies the injec- 
tiveness of p on E,,,, there exists a one-to-one Lipschitzian function from EEtl 
to N. Since, however, EE,, is isomorphic to R*, the set of all pairs of non- 
negative integers, that means that there also exists a one-to-one Lipschitzian 
function from N2 to N. But that is impossible (see Remark Bl following the 
proof of Lemma Bl). 

That completes the proof. 

Proof of Proposition II 
We only show here that conclusion (i) of the proposition holds, i.e., that 

the approximate Walrasian mechanism v*, viewed as a mechanism on E,, 
and satisfying (7a), (gB), (9B) for all e in EC,,, is pseudo-Lipschitzian. Conclu- 
sion (ii) will follow from results discussed in Section E (see Remark El). 

An integer-valued pair 6, p) lies in ru*K&, Bd, (82, Pdl, where I(&, PI), 
(4, &)I E EE,,, so that pi = pZ = 1, if and only if 

IP + x - 61 5 h, 

IP - x - e,l 5 4, 
h(x, p) = x. 
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so x = (6 - f322)/2 + (YI - Y2)/% P = (6 + 022)/2 + (Yl + Y2W9 
where Iyi( TS &, i = 1, 2. 

Choose an arbitrary c > 0 (constant). We shall show that there exists 
K > 0 (depending on c) such that 

II b’, P ‘1 - W’, P”) II = K 
(I 8’ - e”I( 

for all (8 ’ , ef’) satisfying 

118’ - e’j I C, 

where (x ’ , p ‘), (x”, p”) denote the values taken by (x, p) for 8’ and e”, 
respectively. From the formula for x and the definition of the norm it 
follows-letting 6 denote max( 6,) &)-that 

Ix’ - x”I = &I (e; - e; + y; - y;) - (e; - e; + y; - y;) 1 

= 1 1 (e; - ey) - (e; - 0;‘) + (Y; - Y;) - b; - ~31 
s ;(le; - eql + le; - e;l) 

5 + l(lv; - Y;‘( + Iv; - $1) 

5 i(2) max(l e; - e;l, le; - e;l) 

+ i(2) max(lyl - ~91, 1~; - y;‘l) 
5 118’ - e”II + 6 

5 118’ - e’rI( + (8) (lb L e”“), 

since II 8’ - e”I( 1 c. Hence 

lx’ - x”I 
11 et _ e,,I( s ’ + ‘/” 

A similar inequality holds for Ip ’ - p” I. Therefore, 

ll(X’./pB’) I ~‘~i P”)lI = max Ix’ - x”l IP’ - P”I 
I I, 

( ) 11 8’ - e” 1) 11 8’ - 8” (1 ’ 
5 1 + 6/c. 
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So the equilibrium message correspondence p * is indeed pseudo-Lipschitzian 
for any c > 0; we only have to set K = 1 + S/c. Q.E.D. 

C. THE E-OFTIMALITY OFRESCALED ROUND-OFFMECHANISMS 

1. A Proposition about Resealed Approximations to Continuum 
Mechanisms 

In this section we show that, under certain regularity conditions, a con- 
tinuum mechanism which exactly realizes a given performance function can 
be converted into a discrete round-off mechanism whose maximum error can 
be brought arbitrarily close to the lower bound implied by an integer-valued 
outcome set (to 1 in the case just considered) by choosing a sufficiently high 
resealing factor. 

In the continuum mechanism, to be described formally below, both the 
message space and the outcome space are Euclidean, and the equilibrium 
equations must be satisfied exactly. By hypothesis, it realizes exactly the 
specified performance (desired-outcome) function. In the discrete mech- 
anism, both the message space and the outcome space are discrete; 
specifically, the outcome space is the set of all integers, and the message 
space a finite Cartesian product of such sets. Because the outcome space 
consists of integers, the number i is, as before, an obvious lower bound on 
maximum error, given that the correct values of the performance function 
include numbers of the form 1 + n, where n is an integer. In a discrete 
round-off mechanism the equilibrium equations of the continuum mechanism 
are only required to be satisfied approximately, with a specified accuracy; 
i.e., equations are replaced by inequalities. Furthermore, in a discrete round- 
off mechanism the variables are resealed in the manner shown below. It then 
turns out that, by choosing a sufficiently high resealing factor and a 
sufficiently high degree of approximation required in the equilibrium condi- 
tions, the maximum error in the discrete process can be made arbitrarily close 
to the lower bound 1. 

About the space of environments (economies) E we only specify that it is 
the Cartesian product of the n individual environments (spaces of individual 
characteristics) El, where n is the number of agents; i.e., E = El X - * * X 
E,. We denote by 4 the performance (desired-outcome) function which we 
wish to realize through our mechanism. Its domain is E, its range the set R 
of reals. (It appears that our results could be extended to the case of a 
multidimensional range, but this has not been carried out as yet.) Formally, 
t$: E-, IF& 

The continuum mechanism, denoted by T, is specified as usual by its 
message space M, its equilibrium functions gi, i E I = { 1, . . . , n}, and the 
outcome function h. It is assumed that M = Rk, the k-dimensional Euclidean 
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space. For each i E I, we have gi: M X Ei + [WS. The outcome function is 
h: M + [w. The equilibrium conditions are 

i E I. 

These conditions are sometimes abbreviated as 

g(m, e) = 0. 

In what follows, the functions gi, i E I, and h will be assumed to satisfy 
some or all parts of the following regularity condition: 

Condition A. (i) the outcome function h is uniformly continuous on M; 
(ii) for each i E I, the function gi is Lipschitzian in m, uniformly on 

its domain M X Ei ; 
(iii) there is a neighborhood Y of 0 in RP+“‘+qn such that g (m, e) = y 

(i.e., gi(llt, ei) = yi, yi E Rqi, i E I) is uniquely solvable for m on E X Y, 
the solution being written as m = f( y, e); 

(iv) the solution m = f( y, e) of g(m, e) = y is continuous in y uni- 
formly on E X Y; i.e., the family {fe}eEE of functions fe: Y + M, where 
fe(y) =ff(y, e), is equicontinuous. 

Remark Cl. It is readily verified that Condition A is satisfied by the 
continuum Walrasian mechanism introduced in Section B2 when that mech- 
anism is defined on a subset of the set E * introduced in Remark B3, namely 
on a subset of the form 

E*’ = {[(O,, PI), (02, &)I : 81 2 0, & 2 0, PI E BI, I32 E B21, 

where Bi, B2 are arbitrary compact subsets of the positive real line. The set 
E **, with pi = p2 = 1, is an example. 

In conformity with our customary notation, we write p(e) = f(0, e); i.e., 
p(e) is the unique solution of g(m, e) = 0. We assume that the continuum 
mechanism T = (M, g, h) realizes the performance function $J (on E), i.e., 
that 

h(h)) = 444 for all e in E. 

We shall now proceed to describe the corresponding resealed discrete 
round-of mechanism ~~6. As before, denote by N the set of all integers. The 
new message space is Nk, the set of all integer k-tuples. (Thus N = N’.) 

The permissible range of the outcome function is N. Since the new outcome 
function is parametrized by the scale factor s > 0, it will be denoted by h,. 
Thus h,: M’ + 2, where M’ = Nk is the new message space. An element of 
the new message space will be written z = (zl, . . . , z&), where the Zj, 
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j=l,..., k, are integers. Also, we denote by [a] the integer closest to the 
real number a, with ties resolved (say) downward (if ties are resolved upward 
instead, then the proposition to be proved remains true). Then the new 
outcome function is defined by 

where h is the outcome function of the continuum mechanism V. 
Let&,..., 6, be positive real numbers. The norm symbols will refer, as 

before, to the maximum norm. The equilibrium conditions of the discrete 
mechanism rrSs (where 6 abbreviates (6,) . . . , S,), are 

wherel denotes (1, . . . , n}. These conditions are sometimes abbreviated as 

II g(z/s, 4 II 5 6. 

(The symbol z/s denotes (zi/s, . . . , z~/s).) The g functions in the above 
inequalities are the equilibrium functions of the continuum mechanism 7r. 
(Clearly, by setting the scale factor s = 0 and also the round-off tolerances 
Si = 0, i E I, we would get back the continuum-mechanism equilibrium 
conditions, although applied to integer-valued messages. In general, because 
of the restriction of outcomes to integers, these more demanding equilibrium 
conditions-equalities-would be impossible to satisfy.) 

We now state 

PROPOSITION III. Let the continuum mechanism 7~ = (M, g, h) on E, 
with M = Rk, h: M --;, R, realize the per$ormance function 4: E + [w, and 
let it satisfy the above Condition A. Then, for every E > 0, there exist 
positive numbers s and S, such that, for every e in E: 

there is a k-tuple z* of integers z* satisfying the inequalities 

(Jgi(Z*/s, d/I 5 4 i E 1; 
UC) 

for every k-tuple z of integers, if IJgi(z/s,eJ(I 5 6, i E I, 

I VW41 - 444 I = T! + E. 
cw 

[Recall that [a] denotes the integer closest to a, with ties resolved downward. 
Also that, for z = (z,, . . . , zk) and any nonzero number s, we write z/s for 
(Zl/S, . . . , zk/s). Also note that here 6 is a scalar.] 
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Remark C2. Conclusion (lc) means that the discrete mechanism has an 
equilibrium message for every e in E. Conclusion &) means that every 
equilibrium outcome of the discrete mechanism yields an error which does not 
exceed the lower bound of f by more than the specified E. The proposition, 
therefore, asserts that the outcome of the discrete mechanism can be brought 
arbitrarily close to the lower bound 1 on error by a suitable choice of the 
scaling factor s and of the round-off tolerance 6. 

2. Proof of Proposition III 
Part 1. Given E > 0, the uniform continuity of h on M, postulated in 

Condition A (i), implies that there is an r, > 0 such that 

Ilrn - m’I[ 5 rc implies Ih(m) - h(m’)( 5 l for all m, m’ E M. 

Since, by Condition A (iii)-(iv), f( y, e) is well-defined and continuous in y, 
uniformly on E X Y, it is the case that there is a number, say cS(r,), such that, 
for all y ’ , y” in the set Y, 

Ily’ - ~“11 5 8(r*) implies Ilfty’, e) -f(y”, 411 5 rcs 

Also, since Y is a neighborhood of the origin in Rq, q = & qi, there exists 
for each y in [wq a positive number, say 6 ’ , such that 

Now let 

II y I( C= 6’ implies y E Y 

6 = min(&r,), 6’) 

and K the common Lipschitz constant for the functions gi. (The existence of 
K is guaranteed by A.(ii).) Define the resealing factor s by 

s = K/6, 

where 6 is defined as above. 

We shall now show that 6 and s so defined satisfy the assertions of the 
proposition. 

Part 2. Let m, denotef(0, e). Choose the k-tuple z* of integers by setting 
its jth component 

Zir = [Sm,j], J 

where m=,j is the jth component of m, and, again, [a] denotes the integer 
closest to a. Then 

1 Zi*/s -%jI = ( ([sm,,jl - sm,j>/SI 4 l/G), 
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because ( [a] - a ( -( 1. Hence 

2*/s - m,)) = max]zi*/s -??l,,j) 5 1/(2S). 
i 

But, by the Lipschitz property, we have 

(Igi(z*/s, ei) - gih,, ei)II 5 K*(lz*/s - m,)(. 
Therefore, 

Ilgi(Z*/S, ei) - Sic me,411 5 W(1/CW) = (K)U/W/@) = 6/2 < 6. 

Since gi(me, ei) = 0 by the definition of m,, we have shown that 

for any 6 and s constructed in Part 1, )(gi(Z*/S, ei) I( < 6, i E 1. (3~) 

That is, we have established assertion (1~). 

Part 3. By A (iii), the equation system g (m, e) = 0 has for a given e a 
unique solution, say m,. [In the alternative notation, we can write p(e) = 
{m,} (a one-element set).] By the uniform continuity of h on M, we have, for 
all m E M, and with r, defined in Part 1 above, 

(Jm - me/( I rr implies /h(m) - h(m,)( 5 e; 

i.e., since h(m,) = $(e) (because the continuum mechanism T realizes 4). 

1) m - m, ]I 5 rc implies’] h(m) - 4(e) ) 5 c. (4c) 

Now, again denoting by [a] the integer closest to a, we have 

I [h b41 - 4(e) I = IO Ml - h(m)> + (h(m) - 4(e)) ( 
5 IiIhMl - h(m)/ + Ih(m) - +(e>I 
5 4 + Ih(m) - 4441, 

since ) [a] - a) 5 1 always. Therefore, we have 

for all (m, e), 1) m - m,II 5 r, implies ) [h(m)] - 4(e) I 5 4 + E. (5~) 

Part 4. For 6 > 0 constructed in Part 1, for all y ‘, y” in the set Y, and 
for any y in R41 + +qn, 

IJy’ - y”I] 5 6 implies JJf(y’, e) - f(y”, 411 5 r,, (6,) 

j[y (I 5 6 implies y E Y (7,) 
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Now for a given r 2 0, suppose that (m, e) satisfies 

291 

In view of (7c), that is equivalent to the existence of some y which satisfies 

so that y E Y by (7c), and hence also 

m =f(y, 4. 

Then, setting y ’ = y and y” = 0, the antecedent in (6c) is satisfied (since 
y E Y). Therefore, 

II f(y, 4 - f@, 4 II 5 r,. 

Butf(0, e) = p(e) = m,. So, we have Ilrn - m, II I r,. In particular, if it 
happens that m = z/s for some z in Nk and a positive number s, we have 
shown that 

Ilgi(Z/S, ei) )I 5 6 implies /Z/S - m,)I 5 r,. (8~) 

In view of (5c) and (8c), we have therefore established that 

the assertion (2,) holds for s and S constructed in Part 1. (9c) 

Q.E.D. 

Remark C3. Note that in Part 2 it is shown that we can achieve coverage 
of E-i.e., we can assure that an equilibrium message exists for every e in 
E-for arbitrarily small 6, by choosing the resealing factor s sufficiently 
large. All we need for that result is the Lipschitzian property of the 
equilibrium-condition functions gi of the continuum mechanism which we are 
approximating. That stands in sharp contrast to the difficulty of achieving 
coverage of the linear-quadratic exchange-economy set E * when the approx- 
imating discrete mechanism (an approximation to the continuum Walrasian 
mechanism) does not use resealing. That difficulty is discussed in Section Fl 
below. 

D. No DENUMEWLE-MESSAGE MECHANISM ON THE SET OF 
LINEAR-QUADRATIC EXCHANGE ECONOMIES EXACTLY ATTAINS THE LOWER 

BOUND ON ERROR IMPLIED BY INTEGER OUTCOMES 

Consider again the set E* of linear-quadratic exchange economies 
e = [(h, PI), (h, PJI and the subset 
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E** = k = [@,, PI), (&, &)I : 6 2 0, 6 2 0, PI = Pz = 1). 

Consider also the desired-outcome function 4 = (0, - f&)/(/?, + &). On 
E ** that function takes the form i(8i - I$), and it will be convenient to let 
4(e) denote i(t?i - &) , where 8 denotes ( &, 6,). We now study any mech- 
anism ?T = [M,(p,, b), h] on E**, such that 

-h[p(E**)] (the set of equilibrium outcomes) lies in N (the set of all 
integers); 

-A4 is a denumerable set. 

We shall study the error 

0) = sup SUP 14.0) - h(m)l, 
eEE* mEp(0) 

where CL (f3) is a convenient way of writing the set p[ (0,) 1) , (&, l)] (the set 
of equilibrium messages for e = [(e,, l), (f3,, l)] E E **). We shall 
establish 

PROPOSITION IV. Let 7~ = [M,(pl, p2), h] be a mechanism on the set 
E**. Let M be denumerable, and let equilibrium outcomes be integers, i.e., 

h[p(E**)] E N. 

Then there exists 8 = (8,) &) E E ** such that 

Ih(m) - 4@)l > 4 for some m in p(8). (*I 

Note that (*) implies that E+ (T) > 4. 

Remark Dl . The proposition remains true for a class of sets much wider 
than E **. It is sufficient that 0, be real, i = 1, 2 (with pi, pZ again fixed), 
and that the intersection of the set of possible pairs &, &) with the set 
{(e,, &) E !R* : f3, = 8, - 1) have the power of the continuum. 

Remark D2. The proposition remains true when 4 = f (0, - 02) is re- 
placed by any function 4 in a wide class. It is sufficient that for some real K, 
the set (0 E R* : 4 = K} be a set with the power of the continuum, while the 
sets (0 E R* : 4 > K} and (0 E lR* : 4 < K} each contain more than one 
point. 

Proof of Proposition IV 

Part 1. Since the mechanism TT covers the full set E ** we have 

km = bd4) n p2(e22) z fl for all 8 = (e,, e,) E R: (ID) 
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(R$ denotes the set of pairs of nonnegative real numbers and fi denotes the 
empty set.) Write 

L = {(rl, rz) E rW: : rz = rl - 1). cb) 

Note first that there exist m E M, 8’ E L and 8” E L, 8’ # 0” such that 

m E p(t)') rl p(0"). (3,) 

For suppose that (3u) is false. Since M is denumerable, we may write it as 
an infinite ordered sequence 

M = (ml, m2, m3, . . .). 

Since (3u) is supposed false, there exists at most ooze point 8 E L such that 

If such 8 E L does exist, denote it by 8 (‘) Similarly, for any positive integer . 
j there exists at most one point 8 on the line L such that mj E p(O). If such 
8 E L does exist, denote it by O(j). 

In this manner we obtain a sequence of points, say 

(e(jd, e(jz) ) 9 . . . , (4,) 

where 1 I j, < j2 < - * - and, for each j,, the point O(jk) is an element of L 
satisfying mjk E p(@)), and, by hypothesis 

mjk $ de) for all 8 E L \ {s’“}. (5D) 

Now consider the set consisting of elements of L other than those in the 
sequence specified by (4u), i.e., the set 

L \ {e(jl) , e(jz) , . . .}. (6,) 

Note that this set has the power of the continuum (since L has that power and 
we are only subtracting a denumerable subset); a fortiori, it is nonempty. 

Let 8 be an element of the set in (6u), and examine p(e). Clearly, 
ml $Z p(e) because either there is no point 0 in L such that ml E p (0) or @‘) 
is the only such point and, by construction, e # O(l). 

Similarly, m2 $Z j.~(e), etc. Thus 

mk e p(g) for all k E (1, 2, . . .}, 
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i.e., 
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P(Q) = fA 

which contradicts the covering assumption (ID). Therefore, we have estab- 
lished the existence of m E M, 6’ 0” E L, 8’ # O”, satisfying (3~). 

Part 2. NOW (3,) implies that, for 8’ = (O;, O;), 0” = (O’,‘, O;l), 

But then we also have 

and 

m E b49;) n de;). 

Since 8’ , e” E L, we may suppose without loss of generality that 

e; < ey, i= 1,2. 

(See Fig. 1.) Write 

@D) 

e* = (e;, 8;) 
e** = (e;, e;). 

FIGURE 1 
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Note that 8* is above L, while P* is below L. Thus, by (7n), (8n) we have 

m E de*), Ne*) < ;, 

and 

m E p(e**), 4(e**) > 1. 

Now, by hypothesis, h(m) is an integer. So either h(m) I 0 or h(m) 2 1. 
Suppose first that h(m) I 0. Then 

Ih(m) - +(e**) 1 > i. 

On the other hand, suppose h(m) L 1. Then 

Ih(m) - 4(e*) 1 > 1. 

Thus, in either case, the conclusion of the proposition holds. Q.E.D. 

E. APPROXIMATINGTHE WALRASIAN MECHANISMWITHOUTREXALING 

To complete our assessment of discrete versions of the Walrasian mech- 
anism on the set E * of linear-quadratic exchange economies, we ask whether 
the resealing which achieves the minimal-error result of Proposition III is 
essential. Can one achieve a similar result without it? The answer is in the 
negative: for our desired-outcome function +[(e,, pi), (&, p2)] = (0, - 8J/ 
(pi + &), any mechanism which approximates the continuum Walrasian 
mechanism in the round-off manner without resealing and which covers a 
subset of E*, namely the subset E** = me,, m, (82, &)I : 4 2 0, 
& 2 0, /3, = pZ = 11, h as an infimum for the error larger than the infimum 
for the error implied by its outcome space. We shall prove this result for 
outcome spaces of the form {. . . , -27, -7, 0, T, 27, . . .} with T an arbi- 
trary positive number. (Easy generalization of Proposition IV shows that, 
with resealing, the greatest lower bound on error is then 7/2.) A fortiori, the 
same is true for a mechanism covering the full set E *. 

For simplicity, we shall drop any reference to the (fixed) pi’s, and accord- 
ingly we replace E** by the set 

E = {e = (e,, e,) : e1 2 0, e2 2 0). 

We henceforth regard ei as i’s local environment. Stretching the use of the 
symbol 4 slightly (as in Section D), we write 4(e) = i(0, - 0J. NOW 
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consider a discrete mechanism 5 = (a, &, g2, h) on E-written (a, ii, fi) 
in the alternative notation-where for some T > 0, p > 0 

% = {(ok, pl) : 1 2 0 and k, 1 are integers} 

Zd(Tk, ~0, 61 = 0 if and only if 1 pl + Tk - O1 ( I 6, 

g2[(& PO, %I = 0 ifandonlyifIpl+rk- &IS& 

%[(Tk, pl)] = Tk. 

(1E) 

CM 

The mechanism 5 approximates the continuum Wah-asian mechanism 
a = (M, gl, g2, h) on E, where, to recall, A4 = {(x, p) : x E R, p E R+}, 
g,=p+x- 81, g2 = p - x - 02, and h[(x, p)] = X. The approximating 
mechanism does not use a resealing factor. For generality, we do not insist 
that its messages be integer pairs; instead we now permit a “price grid” of 
mesh p and a “trade grid” of mesh T. For additional generality, we may 
require (as we did not for the resealed approximating mechanism) that the 
“price points” pl be nonnegative; our main conclusion will be seen to hold 
whether or not we impose that requirement. The lower bound on error implied 
by the outcome space is now 7/2; that generalizes the lower bound of 1 
considered in Section C. 

For any 8 = (e,, e2), the mechanism ?r has a set of equilibrium messages, -- namely all pairs (x, p) = (Tk, pl) satisfying (lr), (2r). To each such equi- -- librium message x,p) the outcome function 6 assigns the “trade projection,” 
namely Z = rk. Note that this meets the requirement on the outcome function 
in Proposition III-generalized to the case of an outcome space 
{ . . . -27, 7, 0, 7, 27, . . .}. That is true since for the outcome function h in 
the continuum mechanism being approximated, we have h[(rk, pl)] = pl and 
hence 

pl = z[(Tk, pi)] = that element of the outcome space 
of 77 which is closest to h[(rk, pl)]. 

If (Tk, pl) is an equilibrium message for 8 = (6, a)-i.e., (7k, pl) E 
a--then 

pi+ Tk= 8, +y,, IYll 5 4 (3E) 

Pi - Tk = 4 + ~2, IYZI Ir 42 (4E) 

and hence 

&(Tk, PO1 = rk = 1 (e, - e2) + 1 (y, - y2) 

= 44) + 2~~ - y2), 

6E) 
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so that 

But the inequality in (6z) in fact becomes an equality for some (0, ok, pl). -- 
To see that, let 1, k be integers such that 

i> 0, pi+ Ti > 61, pi> T& 2TE- 6, - s, > 0. 
kt8=(&8;), ~,=-81+pi+T~,8;=62+pi-T~ThenWehaVe 

(&, 6;) E E; 4(e) > 0; (~6 pn E jZ(@, since (33, (4x) hold for 1 = t 
k = E, 81 = i&, & = 6, y1 = &, y2 = -$; and, in view of (5~), 

%[(T& pi)] = 4(g) + &% + 4). 

Hence 

(7E) 

From (63, (7z) we have, then, 

Eg(Z) = sup sup l+(e) - &(m)l = y (8~) 
GEE mEji(O) 

If ?i is indeed to be a mechanism covering i?, then (&, &) must be chosen 
so as to achieve coverage; i.e., for every (0,) e,) E E, there must exist 
integers (1, k) such that (33, (+) hold. We now ask: (i) Does the set of pairs 
(6,) &) achieving coverage of ,!? possess a minimizer of the error 1 (Sr + $)? 
(ii) If so, what is the minimum of &(a, + &) on the set? It will turn out that 
there is indeed a minimizer of 1 (8, + &) and that the minimum value of 
4 (6, + &) exceeds the lower bound 7/2 for all p, T (p > 0, T > 0). So if one 
wants to bring the error arbitrarily close to 7/2 then one has to introduce a 
resealing factor into the discrete mechanism. 

To proceed, let ,!& denote the set of all pairs (&, &) which achieve 
coverage of E. That is to say 

3, = {(S,, 622): f or every (e,, &) with 8, L 0, 0, 2 0, there exist 

integers 1, k such that 1 > 0, ( pl -t 7k - 8, I 5 &, 

lpi - no - e21 5 k}. 

Now write p + x = &, p - x = & (as in the equilibrium conditions for the 
continuum Walrasian mechanism), so that p = i(e, + 0,), which is non- 
negative for (e,, t$) E E. Then the set S, can alternatively be written 
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SW= [(S, , &): for every (x, p) withp 2 0, there exist integers k, 1, such that 
1 r 0, Ipl + rk -(p + x)1 5 4, lpi - Tk - (p - ~11 5 &I. 

It is easily verified that 

$7 = &,7, I for all p > 0, 7 > 0. (9E) 

(For a set J and for a E R, the symbol uJ denotes the set {uj:j E J}.) 
Now the result obtained in Appendix 1 (see footnote 0) implies that 

The minimum of 4 (6, + &) on the set S,,,, equals f ( P/T + 4) 
if p 2 7, and equals 1 (1 + (p/7)/2) if p I T. (1%) 

Hence, in view of (9a), the minimum of f (6, + &) on SF equals 

and equals 

r[i(l ++)I =;+$ ifprr. 

In order to establish (lOs), we do not-in Appendix l-deal with the set 
S,,,,, directly but rather with the more easily analyzed and not smaller set 
s P,7,1 which is obtained from ,!&,i by deleting the “nonnegative-price” re- 
quirements p 1 0, 1 ZT 0. Thus we define, for any y > 0, 

S yl = [(h, a: f or each (n, p), there exist integers k, 1 such that 
1 y2 + k - (p + x) ( 5 61, (~1 - k - (P - x) ( -= 621. 

The minimum of i(& + &) on S,,,,i cannot be less on SP,7,1 than on &J. To 
further simplify notation, write 

s, = s,,. 

The precise result shown in Appendix 1 is that 

min{b, + S, : (a,, &) E S,} equals p + $ when p 2 1, 
and equals 1 + p/2 when p 5 1. (114 

Clearly (1 lE) implies (lo&. 
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Remark El. Return now to Proposition II, concerning the nonrescaled 
discrete price mechanism. For the case p = T = 1, (1%) implies that the 
minimum error of the nonrescaled price mechanism on E is $. (To attain that 
error, while achieving coverage, we chose 6i = 1, & = 1.) Since E,, C J!?, 
we therefore have, in the language of Proposition II, that the performance 
correspondence O,* is realized on E,, for E L b. That yields conclusion (ii) 
of the proposition. 

F. APPROXIMATING THE CONTINuuM WALRASIAN MECHANISM ON THE SET 
OF LINEAR-QUADRATIC EXCHANGE ECONOMIES WHEN THE PARAMETERS 
(p,, p2) ARE “UNBOUNDED”; THE PROBLEM OF COVERAGE; FIXED VERSUS 

VARIABLE TOLERANCES 

1. Mechanisms with Resealing and Constant Round-off Tolerances 

Consider trying to apply Proposition III to a class E of a priori admissible 
environments in which (pi, p2) ranges over a set of the form B, X Bz where 
at least one of the sets Bi is either not bounded away from zero or not bounded 
from above. (By abuse of language, we refer to such situations by calling 
(pi, &) “unbounded.“) An extreme example is that of E *, where (pi, a) 
ranges over the whole positive quadrant. Other examples are those where 
(PI, p2) ranges over such sets as (0, 11 X [l, 21, [l, m] X [l, 21, or 
(0, 00) x [l, 4. 

In such cases, for the continuous Walrasian mechanism, Condition A (iv) 
assumed in the proposition is violated. Here the solution 

Ifl =f(y, 4, m = (4 P) 

of the equation system g(m, e) = y is 

x = (6 + Yl) - (6 + y2) 
PI + P2 ’ 

p = (4 + YIN2 + (02 + y2)/3* 
Pl + P2 * 

For x to be continuous with regard to y uniformly over Y X E, it is necessary 
that at least one of the pi be bounded away from zero. For p to be continuous 
in y uniformly over Y X E, it is necessary that the ratio pi/p2 be bounded 
away from zero and also from above. (However, if the p-domain is not a 
Cartesian product, the pi’s need not be bounded from above. For example, 
(PI, &) E B ={(&, f12) : /3, = pZ, PI 2 1) satisfies A (iv). More gener- 
dly, this would be true for B c {(&, &) : A* S PI/p2 5 A**, pi h PT, 
i = 1, 2}, where A*, A**, PT, pf are fixed positive numbers.) 

There is a further problem in applying Proposition III when (pi, pZ) is 
unbounded. For it turns out that in such situations a resealed discrete approx- 
imation mechanism of the round-off type postulated in Proposition III may 
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fail to cover the class E of a priori admissible environments. That is, there 
may exist some e in E such that, no matter what resealing factor s and 
tolerances $, i E I, are chosen, the system I( g,(z/s, e;) 11 ZZ Si, i E I, of 
inequalities has no solutions for z that are scalar combinations of integers. 
(That is, there are nojxed positive reals &, 52 such that, for every e in E, the 
above system of inequalities has a solution of the form z = & nl + &n2, 
where ni and n2 are integers.) 

We have constructed one such example where the a priori class of environ- 
ments, denoted by E*‘, is defined by 

E”” = {[@I, PI), (82, &)] : 0, 2 0, i = 1, 2; PI > 0, &+ = 1). 

As shown in Appendix 2, it turns out that, whatever the chosen resealing 
factor s and tolerances Si, &, there is at least one point, namely (x, p) = 
(i, 0), which is not “covered” when /?I = 2(S1 + &). (Note that it would not 
have helped to have p2 bounded from above.) 

Explicitly, this means that, for any s > 0, p > 0, T > 0, there is no pair 
of positive numbers (S,, &J and no integers k, 1 such that the inequalities 

Ip+pIx- ($+?)I ss,, 

Ip-+y I&, 

are satisfied when x = f, p = 0, and pi = 2(& + &). (As in Section E 
above, p and T denote, respectively, the “mesh” of the “price” and “trade” 
grids.) 

Admittedly, the choice of p = 0 may be somewhat artificial in its eco- 
nomic interpretation. But if, as appears to be the case, the failure of coverage 
is a more general feature of “unbounded” (pi, pL), we are led to consider a 
class of mechanisms more general than those treated in earlier sections. It 
turns out that, at least in certain cases of “unbounded” (pi, &), we can avoid 
the failure of coverage and retain the conclusion of Proposition III (that the 
error can be pushed arbitrarily close to 7/2), by permitting the tolerances Si 
to depend on ei rather than be fixed as in previous sections. It should be noted 
that using Si dependent on ei does not violate the requirement of informational 
decentralization (the privacy-preserving property), since a condition of the 
form 

1 gib, ei) I s b(G), 

where & ( * ) is a functional relation specified by the designer, is still of the 
form 

m E /-b(ei). 
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That is, the ith individual need only know his/her own characteristic ei to 
verify whether a given m satisfies the ith equilibrium condition. ‘Ihe details 
are given in the next section. 

2. Mechanisms with Variable Round-off Tolerances and with Resealing 

In this section we show how coverage and asymptotically minimal error 
can be achieved on the class of environments denoted by E2(&), or E for 
short, defined by 

B = k’z(&) = {[(e,, PI), (&, p43 : 81 1 0, e2 2 0, p1 2 0, & 2 &I 

= fi: x Lqp,> = I?, x k2 (for short), 

for some fixed & > 0. Here (pi, p2) ranges over B, X B2 = (0, m) X 

[&, a), so B2 is bounded away from zero but not from above and B1 is 
unbounded in both directions; so (pi, &) is “unbounded.” (Of course, we 
could equally use &i(pi), where pi 2 i?, > 0 while p2 is only required to be 
positive.) 

We shall use a discrete mechanism ?r = (M, pi, j&, 6)) a discrete approx- 
imation to the continuous Walrasian mechanism T = (M, gl, g2, h) on k. 
Here, for i = 1, 2, j& is defined by 

if and only if Jgi(X, P/S, ei) 1 S &(ei), (IF) 

- -. 
where ei = (& pi), (x, p) is a message (a lattice point) in M, M is the set 
{nb, pZ) : k, 1 are integers}; p > 0; r > 0; s > 0 is a resealing factor; and 
hi is a positive real-valued function on i’s local-environment set Bi. 

The resealing factor s and the tolerance functions & (*) 3 as well as h and the 
functions gi, are chosen by the designer (of mechanisms) who only knows the 
set E and the desired-performance function 4: E + Iw which is to be realized; 
the designer does not know the prevailing e. (The number p may be either 
given to the designer or chosen by him/her.) 

The explicit form of the equilibrium inequalities is 

+ + p17k - 8, I &(e,, p,) 

$ - p2* - e2 5 &(e,, a, 

where k and 1 are integers. 
The outcome function in 5 is defined for any (x, p) E H by 

h(x, PI = x, i.e., &(nG, pl) = rk. 
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We have shown (den@ in Appendix 3, see footno@ 0) that, for any 
s 2 ~(7%) and S,(s), $(.) specified below, 5 covers E; fyrthermore that, 
with the same b’s and s sufficiently large, error e@(Z) on E can be brought 
arbitrarily close to 7/2. 

An appropriate choice of the tolerance functions turns out to be 

@l + P/S &=l> = 2 , &(e,) = F. 

It can be shown that the equilibrium correspondence ji is pseudo- 
Lipschitzian (“smooth”) on the set E& which has the uniqueness property for 
4.” It then follows by Proposition II9 that, among discrete round-off mech- 
anisms that realize the e-accurate Walrasian correspondence OTr and are 
pseudo-Lipschitzian on E& , none has a message space of discrete 
dimension” less than that of a, which is 2. Thus F can be said to have a 
minimal size message space, a property analogous to that of the continuum 
Walrasian process in Euclidean spaces. 
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