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ON THE STIEFEL-WHITNEY NUMBERS OF COMPLEX 
MANIFOLDS AND OF SPIN MANIFOLDS 

J. MILNOR 

(Received 8 October 1963) 

THE FIRST section of this paper will characterize those cobordism classes in the Thorn 
cobordism rings 9& and fi, which contain complex manifoldst. The second section attempts 
to characterize those classes in %* which contain spin manifoldst. The attempt succeeds 
only through dimension 23. 

§l. COMPLEX MANIFOLDS 

Conner and Floyd have proved the following remarkable theorem [l]. Let V, be u 
‘real form’ of the complex algebraic variety Vc, both being non-singular. Then Vc is non- 
oriented cobordant to V, x V,. 

For example the complex projective space s(C) is cobordant to the product 

P,(R) x P,(R). 

An interesting consequence of this result is the following. 

THEOREM (1). A non-oriented cobordism class contains a complex manifold if and only 
if it contains a square N x N. 

Proof. First consider the following example of the Conner-Floyd theorem. Let H,,,,,(C) 
denote a non-singular hypersurface of degree (1,l) in the product P,,,(C) x P.(C). b terms 
of homogeneous co-ordinates (wO, . . . , w,) and (z,,, . . . , .z”) with m 5 n this hypersurface can 
be defined as the locus w,,z, + wlzl + . . . + w,,,z, = 0. It can also be thought of as a 
P,_,(C)-bundle over P,(C).] Then H,JC) is non-oriented cobordant to the square 
H,,,,,(R) x H,,,,,(R) of the corresponding real variety. 

These manifolds are of interest since it is known that the weakly complex cobordism 
ring fif: is generated (redundantly) by the complex cobordism classes of the manifolds 
Pk(C) and H,,,,,(C). (See [4, 61.) 

This proves that the image of the natural ring homomorphism i: Qg -‘R* is generated 
by cobordism classes (P,(R))’ and (H,,,,(R))2 which are squares. But the collection of all 
squares (N x N) E: %* forms a sub-ring which will be denoted briefly by (92,)“. Thus we 
have proved that i(Rf;‘) c (‘Q2. 

t All manifolds are to be smooth, compact, and without boundary. Connectedness is not requireA 
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Now note that the cobordism ring !R* is generated by the cobordism classes (P,(R)) 
and (H,,(R)). In fact: 

LEMMA (1). ‘ilI* is a polynomial ring over Zz with independent generators (P,,(R)) and 
(H,*, &R)) where t, k 1 1. 

Proof. According to Thorn [IO] we must verify (1) that the manifolds listed include 
precisely one manifold Mp for each dimension p which is not of the form 2’ - 1, and (2) 
that sP(wl, . . . , wp) [MP] # 0, where sp denotes the polynomial which expresses the symmetric 
function Et{ in terms of the elementary symmetric functions. A straightforward computa- 
tion shows that 

s,+.-1 (w 1, .a*, w,+._,)[H,(R)] = (m -t n)!/m! n! 

(reduced modulo 2) for m, n 2 2. (Compare [6] or the proof of Lemma (4)). The rest of 
the argument can easily be supplied by the reader. 

Now let us return to the proof of Theorem [l]. Since 92, is generated by the (P,(R)) 

and (H,,,,,(R)), it follows that (?&)’ is generated by (P,(R))’ = (Pk(C)) and (ZYI,,,,(R))~ = 

H,,,,,(C). This shows that j(Rz) =I (%,)2 ; which completes the proof. 

Remark. This argument suggests the conjecture that every smooth manifold is diffeo- 
morphic to a real form of some complex algebraic variety. (Compare Nash [8].) 

Now consider the Stiefel-Whitney numbers of a complex manifold V. If i is odd, then 
the Stiefel-Whitney class wi~H’(V; Z2) is zero. (Compare [9, @1.8].) Hence any Stiefel- 
Whitney number wf, . . . WJ V] which involves an odd Wi will be zero. Conversely : 

THEOREM (2). Let M be a manifold such that every Stiefel- Whitney number involving 

an odd w1 is zero. Then M is cobordant to a compiex manifold. In fact if M can be oriented, 

then M is oriented cobordant to a complex manifold. 

The proof in the non-oriented case will be based on the following. 

LEMMA (2). The Stiefel- Whitney numbers of a product N x N are given by 

W2irW2i2 .** w2ipCN x Kl = wi,wi* *** wivlINl, 
while the number Wj, . . . wj,[N x N] is zero 17some j,, is odd. 

The proof will be left to the reader. 

Now let M be a manifold such that every ‘odd’ Stiefel-Whitney number of M is zero. 
We will construct a manifold N of half the dimension so that 

WI1 . . . wi.CN1 = w2i, -** w2i,Cm 

for all il . . . i,. This will imply that M is cobordant to N x N and hence, by Theorem [I], 
to a complex manifold. 

Dold [2] has shown that a given collection of Stiefel-Whitney numbers actually cor- 
responds to a manifold N” if and only if the following Wu relations are satisfied. For each 
il + . . . +ik +p=nwemusthave 

(sqp(wi, . . . wc))[N”] = UpWi, e.. Wi,[N”]* 
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[This is to be understood as follows. The expression Sqp(Wil . . . Wi,) is to be expressed 
as a polynomial in wl, w2, . . . . using the Wu formula 

sqpw, = WPW” + 
( > 

p ; n wp_lw,+l + . . . + 
( ) 

p; n wow.+p ; 

where (f) = a(a - 1) . . . (a - t + 1)/t!. The Wu classes up = up(wl, wr, . . . ) are defined 
inductively by the conditions u1 = wi and 

u, + SqlUn_l + sq%,_2 + . . . = W”.] 

Formulating this more invariantly, let $8” c H”(Bo;Z,) be the vector space generated 
by all elements of the form Sqpx + ~6. The Stiefel-Whitney numbers of each manifold 
N determine a homomorphism 

, h, : iY”(S, ; Z,) - zz , 
where h&c) = x[N]. Dold’s theorem says that a given homomorphism H”(B,,;Z,) + Z, 
corresponds to a manifold if and only if it annihilates W”. 

Define the ‘doubling homomorphism’ d : H*(&,;ZJ -+ H*(Bo;Z,) by d(w,) = wzi. 
Let M, of dimension 2n, satisfy the hypothesis of Theorem (2). Then we will show that 
h,d : H”(B, ; Z,) + Zz annihilates 41”. This will prove the existence of the required 

manifold N. 

Let $ = (WI, w3, w5, . . .) c H*(B,; Z,) denote the ideal generated by the odd wy. 

LEMMA (3). The doubiinb homomorphism d satisfies the congruence 

(1) Sq”d(x) = d(Sq’x) mod f. 

Furthermore 

(2) d(u,) = u2p mod 3. 

Proof. In the special case x = w, we have 

SqZpd(w,) = Sq2Pwzn = 
2p - 2n 

i 
W2p-IWZn+ j * 

Deleting the odd terms, and using the congruence 

(mod 21, 

this expression takes the required form 

P -n c( ) s ~2,,-2sw2n+2s = 4SqPwJ. 
s 

Now assume that the congruence (1) has already been estalished for x and y. Then 

Sq’“d(xy) z 7 (Sq2idx)(Sq2~-2idy) 

= T (dSq’x)(dSqP-‘y) = dSqP(xy) (mod 4). 

Proceeding inductively, it follows that (1) is true for all elements of H*(B,;Z,). 

C 
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The congruence d(u,)s uzp is proved by a straightforward induction on p. In order 
to carry out the induction, it is fust necessary to verify that the ideal 9 is closed under the 
action of the squaring operations. Details will be left to the reader. 

Now consider a manifold M = M2” which satisfies the condition hM(S2”) = 0. 
generator Sqpx + ug of W” we have 

For any 

hJ(SqPx + u+) = hM(Sq2p(‘(dx) + u2,dx + (terms in 9’“)) = 0. 

Thus hMd satisfies the Wu relations, and hence is equal to hN for some manifold N. This 
proves that M is cobordant to N x N, and hence is cobordant to some complex manifold V. 

Now suppose that A4 is an oriented manifold. Then the difference M - Vis an oriented 
manifold with all Stiefel-Whitney numbers zero. From the Rohlin exact sequence 

o ~;~.=I$) it f 11 ows that M - V is oriented cobordant to 2M, for some oriented 

1. 

Recall that the ring a. can be described as the direct sum of a polynomial ring 
Z[Y4, YE, Y12 , . ..I and an ideal consisting of elements of order 2. The Y4’ are all complex 
manifolds. (For example we can take Y4’ equal to P21(C) for i = 1,2,3,5,6; and equal to 
9P,(C) + H&C) for i = 4. Compare [5], [6].) Thus every oriented manifold is cobordant 
to a sum Vi - V, + T where V,, V2 are complex manifolds, and 2T N 0. Replacing Mt 
by such an expression, we see that M - V w 2M, m 2 VI - 2 V2 + 0. 

Thus M is cobordant to a difference of algebraic varieties, and hence (compare [4], [6]) 

is cobordant to an algebraic variety. This completes the proof of Theorem (2). 

$2. SPIN MANIFOLDS 

Let usstart by considering some examples of spin manifolds. 
LEMMA (4). If m E II s 0 (mod 2) then the complex hypersurface H,,,,,(C) b a spin 

manifold. 

Proof. Let a, b E H’(P,,,(C) x P.(C);Z,) be the standard generators. Then the Stiefel- 
Whitney class w,(P,,,(C) x P,(C)) is equal to (m + l)a + (n + I)b. The class w2(v) of the 
normal bundle of H,,,,,(C) is equal to (a + b) 1 H,,,,,(C), since a + b is the cohomology class 
dual to this submanifold. Subtracting these two we obtain 

w,&,,(C) = (ma + nb)lH&C) 
which completes the proof. 

A similar argument shows that the corresponding real variety H,,,,,(R) is orientable, 
if M and it are even. Remembering that H,,,,(C) is cobordant to H,,,,,(R) x H,,,,(R), we are 
tempted towards the following: 

CONJECTURE. If M is an orientable manifold then M x M is non-oriented cobordant 
to a spin manifold. [Added in proof. This has been proved by P. G. Anderson: Bull. Amer. 
Math. Sot. 70 (1964), 818-819.1 
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As an example, consider the complex projective space P,,(C). 

LEMMA (5). The product P.(C) x P,(C) is non-oriented cobordant to the quatemion 
projective space P,(H). 

Since P.(C) is orientable, and P,(H) is clearly a spin manifold, this tends to support 
the conjecture. 

Proof. Both P.(C) and P,(H) have a mod 2 cohomology ring which has one generator 
a (of dimension 2 or 4 respectively) and one relation ani’ = 0. In each case the total 
Stiefel-Whitney class is given by w = (1 + a)““‘. (Compare Hirzebruch [3].) It follows 
that the Stiefel-Whitney numbers of these manifolds are given by the formula 

W2i, a*. w2I,cpn(c)l = w411 *-* w,,,Ip.m1 = (np)...(n;l). 

Together with Lemma (2), this completes the proof. 

The cobordism ring h. has been computed by Wall i12]. In dimensions less than 15 
it follows from Wall’s work that 8. is generated by the classes of the manifolds P,(c), 

H2,.@), PJC), H2@), H4,@), P6(0 and H2.&) (of dimensions 4, 5, 8, 9, 11, 12, 13 
respectively). But for each of these manifolds we have verified that the square is cobordant 
to a spin manifold. Thus: 

THEOREM (3). If M is orientable of dimension less that 15 then M x M is non-oriented 
cobordant to a spin manlyold. 

I do not know what happens in dimensions 1 15. 

Conversely we may ask whether every spin manifold is non-oriented cobordant to the 
square of an orientable manifold. It will turn out that this is true for spin manifolds of 
dimension I 23. Again I do not know what happens in higher dimensions. 

Let us look at Stiefel-Whitney numbers. Consider manifolds M which satisfy the 

following: 

HYPOTHESIS (1). Every ‘Stiefel-Whitney number wi, . . . w,,[M’l which involves either 
w1 or w2 is zero. 

Clearly every spin manifold satisfies this hypothesis. Conversely we must ask: 

PROBLEM. Does every non-oriented cobordism class which satisfies the hypothesis (1) 
contain a spin manifold ? 

We will verify that this is true in dimensions I 23. 

LEMMA (6). If M” satisfie (1) with n s 23, then every wi, . . . w,,[M”] involving an odd 
w1 is zero. 

The proof, which will be outlined presently, involves a tedious case by case application 
of the Wu relations. This lemma is detitely false for n = 24. (In slightly higher &men- 

sions, the lemma is probably true for 24 < n < 29; but false for n = 29.) 
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Assuming Lemma (a>, it follows from Theorem (2) that M is non-oriented cobordant 
to a product N x N. The identity _ 

Wf, . . . wiJNJ = w211 .a. w2iJI”l 

now implies that every Stiefel-Whitney number of N which involves w1 is zero. But accord- 
ing to Wall [12, $91 this means that N is cobordant to an orientable manifold. Finally, 
using Theorem (3), it follows that M is cobordant to a spin manifold. Thus we have 
proved : 

THEOREM (4). For a non-oriented cobordism class (M) of dimension I 23 the following 
three conditions are equivalent 

(1) each wir*.* Wi,[M] involving WI or w2 is zero; 

(2) (M> contains a spin manifold; 

(3) (AI) contains the square N x N of an orientable manifold. 

It follows that the natural homomorphism h : RnSPin +W, is zero for odd values of 
n up to n = 23. The rank (over 2,) of h can be tabulated as follows for even values of n. 
(Compare [7].) 

n 1 2 4 6 8 10 12 14 16 18 20 22 24 

rankh(@““)] 0 0 0 1 1 0 0 2 2 1 1 (3 or 4) 

The ambiguity in dimension 24 can be described as follows. There exists an orientable 
manifold X of dimension 24 such that every Stiefel-Whitney number involving w2 is zero, 
but such that 

w,w,w,w,cx1# 0. 
(This is proved by an exhaustive examination of the Wu relations: to be more precise X 
can be chosen so that w4wsw: = wz = wf = w:wi = (w~w~)~ # 0, but so that all other 
Stiefel-Whitney numbers are zero.) It is not known whether or not this X is cobordant to a 

spin manifold. 

This description can be transformed into one involving Pontjagin numbers as follows. 
Using the Wu relation (Sq2 + u,)(w,w~)[A’j = 0 one finds that 

w;[x] = w,w6w;[x-J # 0. 

But wi is the mod 2 reduction of the Pontrjagin class pa. Therefore p$[X] E 1 (mod 2). 

The description can be further transformed by considering the polynomial 

sg = s&i, . . . , PJ = P! - ~P:P, 4 . . . -6~~9 

which expresses the symmetric function ztf in terms of elementary symmetric functions. 
Since 

S6 = s; = p: + p:p; + p: (mod 2), 

and since pf[X] E wiz[Xj = 0, and similarly p:p:[Xj z 0, we see that 

SlAPI -0. , PdCXl = PXW = 1 (mod 2). 

Thus we are left with the following: 
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PROBLEM. Does there exist a spin manifold X of dimension 24 so that s&, . . . . p6) 
[X] = 1 (mod 2) ? 

The rest of this paper will be concerned with the proof of Lemma (6). We first give 
two preliminary statements which are true in arbitrary dimensions. 

hiMMA (7). If kf sUtisfies HypOthesis (1) ?hen euery Wil . . . W,,[hfj inVOhing w3, Wg Or wg 

is zero also. 

(These particular wI presumably occur because w3, ws, and wg map into zero in 
H*(Bsp’“; Z,). Compare Thomas [l l).) 

Proof. Let (w,,w*, . . . ) c H*(Bo;Z,) denote the ideal generated by w,,,w,,, . . . . Let x 
stand for an arbitrary element of H*(Bo ; Z,). 

The formulae 
S&w& f w3x mOd(w, , w2) 

Sq2(w,x) = wgx mOd(w, , w2, w3) 

&f(W&) E wgx m04wl, w2, w3, w5) 

are easily verified. Now if every w#[MJ and every wzx”[iVJ is zero then the Wu relation 

((%I’ + ~l)w2mKl = 0 

implies that w3x[Mj = 0. Hence the relation 

((sq2 + u2)w3x)[~ = o 

implies that w+[M’j = 0; and similarly with wg. 

LEMMA (8). Let M satisfy (1) and suppose that the integers iI . . . ik are all either odd, or 
equal to 4 or 8, or occur in pairs; and that at least one of the ij is odd. Then Wi, . . . wir[w = 0. 

(For example w~w,w,[M2’] = 0.) 

Proof. Suppose that iI is odd. Note that 

sq’(wi, _1wi2 . . . wik) z wlrwi2 . . . wlr mod(w, , w5 , wg). 

Thus the WU relation (Sq’(Wi, _ 1 wil . . . w,,))[MJ = 0 completes the proof. 

We are now ready to prove Lemma (6). To avoid too much tedium, we will only con- 
sider the most difficult dimension, which happens to be 21. Consider then all partitions 
i, + . . . +ik = 21 which are not excluded by Lemmas (7,8). There turn out to be seven such 
partitions, namely: 

10, 11; 4, 6, 11; 4, 7, 10; 6, 15; 7, 14; 6, 7, 8; and 4, 4, 6, 7. 

To take care of the first, consider the Wu relation 

(%2&3wII) + ~2w*wm4l= 0, 

where 

~!72~%w1 1) = wlowll + wgw13, and u2 E 0 mod(w,, w2). 

This proves that w,~w,,[M] is equal to wswIJIMj which is 
consider the relation 

(@4(%w11) + ~4%wI1wl= 0, 

where 
Sq4(w,w,,) E wIowil, u4 = w, mod(w,, 

zero by Lemma (8)). Next 

w2, w,) 
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This implies that w4w6wII[~ is equal to wIowIIIM], which we have just shown is zero. 
The remaining five partitions are handled similarly, using the Wu relations corresponding to 

8f(~4w6%0), f%2(~4w15h Sq2(w7w12>, Sq2(w4w++J and Sq2(w43w,) respectively. 

The reader who has epough 
for other dimensions I 23. 

patience should have no difficulty in carrying out the proof 
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