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ON THE STIEFEL-WHITNEY NUMBERS OF COMPLEX
MANIFOLDS AND OF SPIN MANIFOLDS

J. MILNOR

(Received 8 October 1963)

THE FIRST section of this paper will characterize those cobordism classes in the Thom
cobordism rings N, and Q, which contain complex manifoldst. The second section attempts
to characterize those classes in R, which contain spin manifoldst. The attempt succeeds
only through dimension 23.

§1. COMPLEX MANIFOLDS

Conner and Floyd have proved the following remarkable theorem [1]. Ler Vg be a
‘real form’ of the complex algebraic variety V., both being non-singular. Then V. is non-
oriented cobordant to Vg x V.

For example the complex projective space P,(C) is cobordant to the product
P(R) x P(R).
An interesting consequence of this result is the following.

THEOREM (1). A non-oriented cobordism class contains a complex manifold if and only
if it contains a square N x N.

Proof. First consider the following example of the Conner-Floyd theorem. Let H,,(C)
denote a non-singular hypersurface of degree (1,1) in the product P,(C) x P,(C). [In terms
of homogeneous co-ordinates (wy, ..., w,,) and (z,, ..., z,) with m < n this hypersurface can
be defined as the locus wozy + wyz; + ... + w,2,, =0. It can also be thought of as a
P,_(C)-bundle over P,(C).] Then H,(C) is non-oriented cobordant to the square
H,.(R) x H,(R) of the corresponding real variety.

These manifolds are of interest since it is known that the weakly complex cobordism
ring QY is generated (redundantly) by the complex cobordism classes of the manifolds
PYC) and H,(C). (See [4, 6}.)

This proves that the image of the natural ring homomorphism j: Qf -0, is generated
by cobordism classes (P(R))? and (H,,(R))* which are squares. But the collection of all
squares (N x N)e R, forms a sub-ring which will be denoted briefly by (R,)?. Thus we
have proved that j(QY) = (9t,)%.

t All manifolds are 10 be smooth, compact, and without boundary. Connectedness is not required.
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Now note that the cobordism ring RN, is generated by the cobordism classes (Py(R))
and (H,,,(R)). In fact:

LemMa (1). R, is a polynomial ring over Z, with independent generators (P;{R)) and
(sz, 2,2&(R)) where t, k=1

Proof. According to Thom [10] we must verify (1) that the manifolds listed include
precisely one manifold M? for each dimension p which is not of the form 2/ — 1, and (2)
that s,(wy, ..., w,) [M?] # 0, where s, denotes the polynomial which expresses the symmetric
function Zt"i in terms of the elementary symmetric functions. A straightforward computa-
tion shows that

sm+n—l(w1 5 ten s wm+n—-l)[Hmn(R)] = (m + n)'/m! n!
(reduced modulo 2) for m, n > 2. (Compare [6] or the proof of Lemma (4)). The rest of
the argument can easily be supplied by the reader.

Now let us return to the proof of Theorem [1]. Since 9, is generated by the (P(R))
and (H,.(R)), it follows that (RN,)? is generated by (Py(R))* = (P(C)) and (H,.(R)* =
H_(C). This shows that j(QY) > (R,)?; which completes the proof.

Remark. This argument suggests the conjecture that every smooth manifold is diffeo-
morphic to a real form of some complex algebraic variety. (Compare Nash [8].)

Now consider the Stiefel-Whitney numbers of a complex manifold V. If i is odd, then
the Stiefel-Whitney class w;e H'(V; Z,) is zero. (Compare [9, §41.8].) Hence any Stiefel-
Whitney number w;, ... w, [V] which involves an odd w; will be zero. Conversely:

THEOREM (2). Let M be a manifold such that every Stiefel-Whitney number involving
an odd w, is zero. Then M is cobordant to a complex manifold. In fact if M can be oriented,
then M is oriented cobordant to a complex manifold.

The proof in the non-oriented case will be based on the following.
LEMMA (2). The Stiefel-Whitney numbers of a product N x N are given by
Way Way, ... Wy [N X Nl =w,w;, ... w, [N],

while the number w; ... w; [N x N] is zero if some j, is odd.

The proof will be left to the reader.

Now let M be a manifold such that every ‘odd’ Stiefel-Whitney number of M is zero.
We will construct a manifold N of half the dimension so that

Wy, o W [N] = wyy, .o wy [M]

for all i, ... i,. This will imply that M is cobordant to N x N and hence, by Theorem [1],
to a complex manifold.

Dold [2] has shown that a given collection of Stiefel-Whitney numbers actually cor-
responds to a manifold N"if and only if the following Wu relations are satisfied. For each
iy + ... + iy +p =n we must have

(Sq?(w;, ... wIIN™] = upw;, ... w, [N"].



STIEFEL-WHITNEY NUMBERS OF COMPLEX MANIFOLDS AND OF SPIN MANIFOLDS 225

[This is to be understood as follows. The expression SgP(w;, ... w; ) is to be expressed
as a polynomial in w,, w,, ..., using the Wu formula

squn = Wan + (p -1_ n)wp—lwn+l + ...+ (P —p- n)wown+p 5
where ()=ala~1)...(a—t+1)/t!. The Wu classes u, = u,(wy, w,, ...) are defined
inductively by the conditions ¥, = w, and
U, + Sq'u,_y + Squ,_, + ... =w,"]

Formulating this more invariantly, let #" = H"(By;Z,) be the vector space generated
by all elements of the form SgPx + u,x. The Stiefel-Whitney numbers of each manifold
N determine a homomorphism

‘ hN : H"(Bo§Zz)-—'>Zz,
where hy(x) = x[N]. Dold’s theorem says that a given homomorphism H"(Bqy;Z,)— Z,
corresponds to a manifold if and only if it annihilates 4%".

Define the ‘doubling homomorphism’ d: H*(B,;Z,) - H*(By;Z,) by d(w;) = w,;.
Let M, of dimension 2n, satisfy the hypothesis of Theorem (2). Then we will show that
hyd: HBo;Z,)— Z, annihilates #". This will prove the existence of the required
manifold N. '

Let £ = (wy, ws, ws, ...) © H*By;Z,) denote the ideal generated by the odd w;.
LEMMA (3). The doubling homomorphism d satisfies the congruence

(1) Sq*d(x) = d(Sq'x) mod .£.
Furthermore
(2 duy)=u,, mod J.

Proof. In the special case x = w, we have
2p-—2
qupd(wn) = qupWZn = 2 ( P j n)WZP-Jw2n+J .
J

Deleting the odd terms, and using the congruence
2p—2n\ _(p—n
(5077 o

this expression takes the required form -

Z (p N n)w2p—2sw2n+2: = d(squn)'

S s
Now assume that the congruence (1) has already been estalished for x and y. Then
Sq*?d(xy) = ¥, (Sq*dx)(Sq**~*dy)

i

= ‘; (dSq'x)(dSg*~'y) = dSg*(xy) (mod .#).

Proceeding inductively, it follows that (1) is true for all elements of H*(B,;Z,).
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The congruence d(u,)= u,, is proved by a straightforward induction on p. In order
to carry out the induction, it is first necessary to verify that the ideal .# is closed under the
action of the squaring operations. Details will be left to the reader.

Now consider a manifold M = M?>" which satisfies the condition 4,(#") = 0. For any
generator S¢°x + u,x of #" we have

hayd(SqPx + u,x) = hy(Sq*?(dx) + u,,dx + (terms in F2") = 0.

Thus 4d satisfies the Wu relations, and hence is equal to Ay for some manifold . This
proves that M is cobordant to N x N, and hence is cobordant to some complex manifold V.

Now suppose that M is an oriented manifold. Then the difference M — ¥ is an oriented
manifold with all Stiefel-Whitney numbers zero. From the Rohlin exact sequence
2

Qy —Q, — RN,
(compare [12]) it follows that M — V is oriented cobordant to 2M, for some oriented
manifold M,.

Recall that the ring Q. can be described as the direct sum of a polynomial ring
Z[Y*, Y8, Y'2, ...] and an ideal consisting of elements of order 2. The Y*' are all complex
manifolds. (For example we can take Y* equal to P,(C) fori=1,2, 3, 5, 6; and equal to
9Pg(C) + H, 4(C) for i = 4. Compare [5], [6].) Thus every oriented manifold is cobordant
to a sum V; — ¥V, + T where ¥V;, ¥, are complex manifolds, and 27 ~ 0. Replacing M,
by such an expression, we see that M — V ~ 2M, ~ 2V, — 2V, + 0.

Thus M is cobordant to a difference of algebraic varieties, and hence (compare [4], [6])

is cobordant to an algebraic variety. This completes the proof of Theorem (2).

§2. SPIN MANIFOLDS

Let us-start by considering some examples of spin manifolds.
LeMMA (4). If m=n=0 (mod 2) then the complex hypersurface H,,(C) is a spin
manifold.

Proof. Let a, be H*(P,(C) x P,(C);Z,) be the standard generators. Then the Stiefel-
Whitney class w,(P,(C) x P,(C)) is equal to (m + 1)a + (n + 1)b. The class w,(v) of the
normal bundle of H,,,(C) is equal to (a + b)| H,,,(C), since a + b is the cohomology class
dual to this submanifold. Subtracting these two we obtain :

wyoH,,.(C) = (ma + nb)|H,,(C)
which completes the proof.
A similar argument shows that the corresponding real variety H,,(R) is orientable,
if m and n are even. Remembering that H,,(C) is cobordant to H,,(R) x H,,(R), we are
tempted towards the following:

CONIECTURE. If M is an orientable manifold then M x M is non-oriented cobordant
to a spin manifold. [Added in proof. This has been proved by P. G. Anderson: Bull. Amer.
Math. Soc. 70 (1964), 818-819.]
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As an example, consider the complex projective space P,(C).

LemMa (5). The product P, (C) x P,(C) is non-oriented cobordant to the quaternion
projective space P,(H).

Since P,(C) is orientable, and P,(H) is clearly a spin manifold, this tends to support
the conjecture.

Proof. Both P,(C) and P,(H) have a mod 2 cohomology ring which has one generator
a (of dimension 2 or 4 respectively) and one relation a"*! = 0. In each case the total
Stiefel-Whitney class is given by w = (1 + a)"*!. (Compare Hirzebruch [3].) It follows
that the Stiefel-Whitney numbers of these manifolds are given by the formula

i iy

Wai, - W [P(C)] = wyy, ... wau [P(H)] = (n + 1) (n + 1).

Together with Lemma (2), this completes the proof.

The cobordism ring Q. has been computed by Wall [12]. In dimensions less than 15
it follows from Wall’s work that Q. is generated by the classes of the manifolds P,(C),
H, «(R), P4(C), H, g(R), H,y o(R), P¢(C), and H, ,,(R) (of dimensions 4, 5, 8, 9, 11, 12, 13
respectively). But for each of these manifolds we have verified that the square is cobordant
to a spin manifold. Thus:

THEOREM (3). If M is orientable of dimension less than 15 then M x M is non-oriented
cobordant to a spin manifold.

I do not know what happens in dimensions > 15.

Conversely we may ask whether every spin manifold is non-oriented cobordant to the
square of an orientable manifold. It will turn out that this is true for spin manifolds of
dimension < 23. Again I do not know what happens in higher dimensions.

Let us look at Stiefel-Whitney numbers. Consider manifolds M which satisfy the
following:

HypoTHESIS (1). Every Stiefel-Whitney number w;, ... w, [M] which involves either
wy or w, is zero.

Clearly every spin manifold satisfies this hypothesis. Conversely we must ask:

ProBLEM. Does every non-oriented cobordism class which satisfies the hypothesis (1)
contain a spin manifold ?

We will verify that this is true in dimensions < 23,

LeEMMA (6). If M" satisfies (1) with n < 23, then every w,, ... w, [M"] involving an odd
w, is zero.

The proof, which will be outlined presently, involves a tedious case by case application
of the Wu relations. This lemma is definitely false for » = 24. (In slightly higher dimen-
sions, the lemma is probably true for 24 < n < 29; but false for n = 29.)
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Assuming Lemma (6), it follows from Theorem (2) that M is non-oriented cobordant
to a product N x N. The identity

Wh “ese Wik[N] = Wz,l wen Wzik[M]
now implies that every Stiefel-Whitney number of N which involves w, is zero. But accord-
ing to Wall [12, §9] this means that N is cobordant to an orientable manifold. Finally,

using Theorem (3), it follows that M is cobordant to a spin manifold. Thus we have
proved:

THEOREM (4). For a non-oriented cobordism class (M) of dimension < 23 the following
three conditions are equivalent

(1) each w,,... w, [M] involving w, ot w, is zero;
(2) (M) contains a spin manifold;
(3) (M) contains the square N x N of an orientable manifold.

It follows that the natural homomorphism % : Q5" -9, is zero for odd values of
n up to n = 23. The rank (over Z,) of h can be tabulated as follows for even values of .
(Compare [7].)
n | 2 4 6 8 10 12 14 16 18 20 22 24
rank Q™) 0 0 01 1 0 0 2 2 1 1 (3ord)
The ambiguity in dimension 24 can be described as follows. There exists an orientable

manifold X of dimension 24 such that every Stiefel-Whitney number involving w, is zero,
but such that

wawewaw,[X] # 0.

(This is proved by an exhaustive examination of the Wu relations: to be more precise X
can be chosen so that w,wew? = wi = w§ = wiw2 = (w,wg)? # 0, but so that all other
Stiefel-Whitney numbers are zero.) Itis not known whether or not this X is cobordant to a
spin manifold.

This description can be transformed into one involving Pontrjagin numbers as follows.
Using the Wu relation (Sg? + u,)(w,w)[X] = O one finds that

welX] = wowewi[X] # 0.
But w? is the mod 2 reduction of the Pontrjagin class p;. Therefore p3[X]= 1 (mod 2).
The description can be further transformed by considering the polynomial
se = S¢(P1» ... » Ps) = P ~ 6piP2 % ... ""76P6,

which expresses the symmetric function th‘in terms of elementary symmetric functions.
Since

s¢ =s3=pi + pip: + 3 (mod 2),
and since p$[X] = wi?[X] = 0, and similarly p7p3[X] = 0, we see that
se(P1s - » PILX] = pilX1=1 (mod 2).
Thus we are left with the following:
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ProprLEM. Does there exist a spin manifold T of dimension 24 so that si(p;, ..., ps)
[Z]1=1 (mod 2)?

The rest of this paper will be concerned with the proof of Lemma (6). We first give
two preliminary statements which are true in arbitrary dimensions

Teava (TN If M cnticfioe wnnthocic (1) thon onorv w w. [AMY invnlving w. . w- or w.

vMA (7). If M satisfies Hypothesis (1) then every w;, ... w; [M] involving w;, ws or wy

is zero also.

{MThaea -\n»:n“\nv w nracnimahly Ancie hanaligca 1y and . man intn Tarn in
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Proof. Let (wy,wy, ... ) = H*Bo;Z,) denote the ideal g

stand for an arbitrary element of H*(By;Z,).

[y o0 PR . - S
10C 1ormulac

Sql(w,x) = wyx mod(w, , w;)
Sq(wsx) = wsx mod(w; , wy, w;)
Sq*(wsx) = wox mod(w, , Wz, w3, Ws)

are easily verified. Now if every w,;x'[M] and every w,x"[M] is zero then the Wu relation

((Sq' + uy)wx)[(M] =0

...... tlant .. ALY __ N ‘LY...._,- '3 PPN Y ety
uupuca lu L W3Allivi ] = V. IICIILU LUC 10lauvll

((Sq? + up)w;x)[M] = 0
implies that wgx[M] = 0; and simiiarly with w,.
LeMMA (8). Let M satisfy (1) and suppose that the integers i, ... i are all either odd, or
equal to 4 or 8, or occur in pairs; and that at least one of the i; is odd. Then w; ... w [M]|= 0.
(For example w2w,wg[M?7] = 0.)
Proof. Suppose that i; is odd. Note that
Sqt(w;,_ 1wy, ... W) = wyw,, ... w, mod(w, , ws, Wg).
Thus the Wu relation (Sg'(w;, — ; w;, ... wy,))[M] = 0 completes the proof.

I a ana 7 4o emenmera T T nvasd an saniinal la fadiceenn s wi 311 s

vy mand mmmemnn L) A-I..
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sider thie most difficult dimension, w}:u h h appens to be 21. Consider then all partitions

i+ .. +5=21 which are not excl h Lemmas (7, 8). There turn out to be seven such

partitions, namely:
10, 11; 4,6,11; 4,7,10; 6,15; 7,14; 6,7,8; and 4,4,6,7.

To take care of the first, consider the Wu relation

2/ N\FT2as1 __ N
\WsWn) T UpWgWy JIM ] = U,

where
qu(‘WBW‘.!) = WygWyy + WgWya, and Uy = 0 mod(W;, W_a_).

This proves that w,ow,,[M] is equal to wyw,;[M] which is zero by Lemma (8). Next
consider the relation
(Sq*(wewy1) + uswewy,)[M] =0,
where _
Sq*(Wew11) = wioWyy,  Ug = w, mod(wy, Wy, W3)
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This implies that w,wew, ,[M] is equal to w yw,,[A], which we have just shown is zero.
The remaining five partitions are handled similarly, using the Wu relations corresponding to
Sq (wawewio)s STT(Wawys), Sqi(wowy ), SgP(waw,wg) and Sq(w,3w;) respectively.

The reader who has enough patience should have no difficulty in carrying out the proof

PR TR L. Sy T ]
I otner UIIIICHMUI]D = 40.
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