ON THE STIEFEL-WHITNEY NUMBERS OF COMPLEX MANIFOLDS AND OF SPIN MANIFOLDS

J. Milnor
(Received 8 October 1963)

The first section of this paper will characterize those cobordism classes in the Thom cobordism rings \Re_{*} and Ω_{*} which contain complex manifolds \dagger. The second section attempts to characterize those classes in $\boldsymbol{\Omega}_{*}$ which contain spin manifolds \dagger. The attempt succeeds only through dimension 23.

§1. COMPLEX MANIFOLDS

Conner and Floyd have proved the following remarkable theorem [1]. Let V_{R} be a 'real form' of the complex algebraic variety V_{c}, both being non-singular. Then V_{c} is nonoriented cobordant to $V_{R} \times V_{R}$.

For example the complex projective space $P_{k}(C)$ is cobordant to the product $P_{k}(R) \times P_{k}(R)$.

An interesting consequence of this result is the following.
Theorem (1). A non-oriented cobordism class contains a complex manifold if and only if it contains a square $N \times N$.

Proof. First consider the following example of the Conner-Floyd theorem. Let $H_{m n}(C)$ denote a non-singular hypersurface of degree (1,1) in the product $P_{m}(C) \times P_{n}(C)$. [In terms of homogeneous co-ordinates (w_{0}, \ldots, w_{m}) and (z_{0}, \ldots, z_{n}) with $m \leq n$ this hypersurface can be defined as the locus $w_{0} z_{0}+w_{1} z_{1}+\ldots+w_{m} z_{m}=0$. It can also be thought of as a $P_{n-1}(C)$-bundle over $P_{m}(C)$.] Then $H_{m n}(C)$ is non-oriented cobordant to the square $H_{m n}(R) \times H_{m n}(R)$ of the corresponding real variety.

These manifolds are of interest since it is known that the weakly complex cobordism ring Ω_{*}^{U} is generated (redundantly) by the complex cobordism classes of the manifolds $P_{k}(C)$ and $H_{m n}(C)$. (See $[4,6]$.)

This proves that the image of the natural ring homomorphism $j: \Omega_{*}^{U} \rightarrow \boldsymbol{n}_{*}$ is generated by cobordism classes $\left(P_{k}(R)\right)^{2}$ and $\left(H_{m n}(R)\right)^{2}$ which are squares. But the collection of all squares $(N \times N) \in \mathfrak{N}_{*}$ forms a sub-ring which will be denoted briefly by $\left(\mathfrak{N}_{*}\right)^{2}$. Thus we have proved that $j\left(\Omega_{*}^{U}\right) \subset\left(\mathfrak{N}_{*}\right)^{2}$.
\dagger All manifolds are to be smooth, compact, and without boundary. Connectedness is not required.

Now note that the cobordism ring \mathfrak{R}_{*} is generated by the cobordism classes $\left(P_{k}(R)\right)$ and ($H_{m n}(R)$). In fact:

Lemma (1). \mathfrak{n}_{*} is a polynomial ring over Z_{2} with independent generators $\left(P_{2 t}(R)\right.$) and ($H_{2^{\kappa}, 2^{2 k}}(R)$) where $t, k \geq 1$.

Proof. According to Thom [10] we must verify (1) that the manifolds listed include precisely one manifold M^{p} for each dimension p which is not of the form $2^{i}-1$, and (2) that $s_{p}\left(w_{1}, \ldots, w_{p}\right)\left[M^{p}\right] \neq 0$, where s_{p} denotes the polynomial which expresses thesymmetric function $\sum t_{i}^{p}$ in terms of the elementary symmetric functions. A straightforward computation shows that

$$
s_{m+n-1}\left(w_{1}, \ldots, w_{m+n-1}\right)\left[H_{m n}(R)\right]=(m+n)!/ m!n!
$$

(reduced modulo 2) for $m, n \geq 2$. (Compare [6] or the proof of Lemma (4)). The rest of the argument can easily be supplied by the reader.

Now let us return to the proof of Theorem [1]. Since \mathfrak{N}_{*} is generated by the $\left(P_{k}(R)\right)$ and $\left(H_{m n}(R)\right.$), it follows that $\left(\Re_{*}\right)^{2}$ is generated by $\left(P_{k}(R)\right)^{2}=\left(P_{k}(C)\right)$ and $\left(H_{m n}(R)\right)^{2}=$ $H_{m n}(C)$. This shows that $j\left(\Omega_{*}^{U}\right) \supset\left(\mathfrak{N}_{*}\right)^{2}$; which completes the proof.

Remark. This argument suggests the conjecture that every smooth manifold is diffeomorphic to a real form of some complex algebraic variety. (Compare Nash [8].)

Now consider the Stiefel-Whitney numbers of a complex manifold V. If i is odd, then the Stiefel-Whitney class $w_{i} \in H^{i}\left(V ; Z_{2}\right)$ is zero. (Compare [9, §41.8].) Hence any StiefelWhitney number $w_{i_{1}} \ldots w_{i_{k}}[V]$ which involves an odd w_{i} will be zero. Conversely:

Theorem (2). Let M be a manifold such that every Stiefel-Whitney number involving an odd w_{i} is zero. Then M is cobordant to a complex manifold. In fact if M can be oriented, then M is oriented cobordant to a complex manifold.

The proof in the non-oriented case will be based on the following.
Lemma (2). The Stiefel-Whitney numbers of a product $N \times N$ are given by

$$
w_{2 i_{1}} w_{2 i_{2}} \ldots w_{2 i_{r}}[N \times N]=w_{i_{1}} w_{i_{2}} \ldots w_{i_{r}}[N],
$$

while the number $w_{j_{1}} \ldots w_{j_{d}}[N \times N]$ is zero if some j_{h} is odd.
The proof will be left to the reader.
Now let M be a manifold such that every 'odd' Stiefel-Whitney number of M is zero. We will construct a manifold N of half the dimension so that

$$
w_{i_{1}} \ldots w_{i_{r}}[N]=w_{2 i_{1}} \ldots w_{2 i_{r}}[M]
$$

for all $i_{1} \ldots i_{r}$. This will imply that M is cobordant to $N \times N$ and hence, by Theorem [1], to a complex manifold.

Dold [2] has shown that a given collection of Stiefel-Whitney numbers actually corresponds to a manifold N^{n} if and only if the following $W u$ relations are satisfied. For each $i_{1}+\ldots+i_{k}+p=n$ we must have

$$
\left(S q^{p}\left(w_{i_{1}} \ldots w_{i_{k}}\right)\right)\left[N^{n}\right]=u_{p} w_{i_{1}} \ldots w_{i_{k}}\left[N^{n}\right] .
$$

[This is to be understood as follows. The expression $S q^{p}\left(w_{i_{1}} \ldots w_{i_{k}}\right)$ is to be expressed as a polynomial in w_{1}, w_{2}, \ldots, using the Wu formula

$$
S q^{p} w_{n}=w_{p} w_{n}+\binom{p-n}{1} w_{p-1} w_{n+1}+\ldots+\binom{p-n}{p} w_{0} w_{n+p}
$$

where $\binom{a}{r}=a(a-1) \ldots(a-t+1) / t$!. The Wu classes $u_{p}=u_{p}\left(w_{1}, w_{2}, \ldots\right)$ are defined inductively by the conditions $u_{1}=w_{1}$ and

$$
\left.u_{n}+S q^{1} u_{n-1}+S q^{2} u_{n-2}+\ldots=w_{n} \cdot\right]
$$

Formulating this more invariantly, let $\mathscr{R}^{n} \subset H^{n}\left(B_{0} ; Z_{2}\right)$ be the vector space generated by all elements of the form $S q^{p} x+u_{p} x$. The Stiefel-Whitney numbers of each manifold N determine a homomorphism

$$
h_{N}: H^{n}\left(B_{0} ; Z_{2}\right) \longrightarrow Z_{2},
$$

where $h_{N}(x)=x[N]$. Dold's theorem says that a given homomorphism $H^{n}\left(B_{0} ; Z_{2}\right) \rightarrow Z_{2}$ corresponds to a manifold if and only if it annihilates \mathscr{R}^{n}.

Define the 'doubling homomorphism' $d: H^{*}\left(B_{0} ; Z_{2}\right) \rightarrow H^{*}\left(B_{0} ; Z_{2}\right)$ by $d\left(w_{i}\right)=w_{2 i}$. Let M, of dimension $2 n$, satisfy the hypothesis of Theorem (2). Then we will show that $h_{M} d: H^{n}\left(B_{0} ; Z_{2}\right) \rightarrow Z_{2}$ annihilates \mathscr{R}^{n}. This will prove the existence of the required manifold N.

Let $\mathscr{I}=\left(w_{1}, w_{3}, w_{5}, \ldots\right) \subset H^{*}\left(B_{0} ; Z_{2}\right)$ denote the ideal generated by the odd w_{i}.
Lemma (3). The doubling homomorphism d satisfies the congruence
(1) $\quad S q^{2 i} d(x)=d\left(S q^{i} x\right) \quad \bmod I$.

Furthermore

(2) $d\left(u_{p}\right) \equiv u_{2 p} \quad \bmod I$.

Proof. In the special case $x=w_{n}$ we have

$$
S q^{2 p} d\left(w_{n}\right)=S q^{2 p} w_{2 n}=\sum_{j}\binom{2 p-2 n}{j} w_{2 p-j} w_{2 n+j}
$$

Deleting the odd terms, and using the congruence

$$
\binom{2 p-2 n}{2 s} \equiv\binom{p-n}{s} \quad(\bmod 2)
$$

this expression takes the required form

$$
\sum_{s}\binom{p-n}{s} w_{2 p-2 s} w_{2 n+2 s}=d\left(S q^{p} w_{n}\right) .
$$

Now assume that the congruence (1) has already been estalished for x and y. Then

$$
\begin{gathered}
S q^{2 p} d(x y) \equiv \sum_{i}\left(S q^{2 i} d x\right)\left(S q^{2 p-2 i} d y\right) \\
\equiv \sum_{i}\left(d S q^{i} x\right)\left(d S q^{p-i} y\right)=d S q^{p}(x y) \quad(\bmod \mathscr{I})
\end{gathered}
$$

Proceeding inductively, it follows that (1) is true for all elements of $H^{*}\left(B_{0} ; Z_{2}\right)$.

The congruence $d\left(u_{p}\right) \equiv u_{2 p}$ is proved by a straightforward induction on p. In order to carry out the induction, it is first necessary to verify that the ideal \mathscr{I} is closed under the action of the squaring operations. Details will be left to the reader.

Now consider a manifold $M=M^{2 n}$ which satisfies the condition $h_{M}\left(\mathscr{J}^{2 n}\right)=0$. For any generator $S q^{P} x+u_{p} x$ of \mathscr{R}^{n} we have

$$
h_{M} d\left(S q^{p} x+u_{p} x\right)=h_{M}\left(S q^{2 p}(d x)+u_{2 p} d x+\left(\text { terms in } \xi^{2 n}\right)\right)=0
$$

Thus $h_{M} d$ satisfies the Wu relations, and hence is equal to h_{N} for some manifold N. This proves that M is cobordant to $N \times N$, and hence is cobordant to some complex manifold V.

Now suppose that M is an oriented manifold. Then the difference $M-V$ is an oriented manifold with all Stiefel-Whitney numbers zero. From the Rohlin exact sequence

$$
\Omega_{*} \xrightarrow{2} \Omega_{*} \longrightarrow \mathfrak{N}_{*}
$$

(compare [12]) it follows that $M-V$ is oriented cobordant to $2 M_{1}$ for some oriented manifold M_{1}.

Recall that the ring Ω. can be described as the direct sum of a polynomial ring $Z\left[Y^{4}, Y^{8}, Y^{12}, \ldots\right]$ and an ideal consisting of elements of order 2. The $Y^{4 i}$ are all complex manifolds. (For example we can take $Y^{4 i}$ equal to $P_{2 i}(C)$ for $i=1,2,3,5,6$; and equal to $9 P_{8}(C)+H_{3,6}(C)$ for $i=4$. Compare [5], [6].) Thus every oriented manifold is cobordant to a sum $V_{1}-V_{2}+T$ where V_{1}, V_{2} are complex manifolds, and $2 T \sim 0$. Replacing M_{1} by such an expression, we see that $M-V \sim 2 M_{1} \sim 2 V_{1}-2 V_{2}+0$.
Thus M is cobordant to a difference of algebraic varieties, and hence (compare [4], [6]) is cobordant to an algebraic variety. This completes the proof of Theorem (2).

82. SPIN MANIFOLDS

Let us start by considering some examples of spin manifolds.
Lemma (4). If $m \equiv n \equiv 0(\bmod 2)$ then the complex hypersurface $H_{m n}(C)$ is a spin manifold.

Proof. Let $a, b \in H^{2}\left(P_{m}(C) \times P_{n}(C) ; Z_{2}\right)$ be the standard generators. Then the StiefelWhitney class $w_{2}\left(P_{m}(C) \times P_{n}(C)\right)$ is equal to $(m+1) a+(n+1) b$. The class $w_{2}(v)$ of the normal bundle of $H_{m n}(C)$ is equal to $(a+b) \mid H_{m n}(C)$, since $a+b$ is the cohomology class dual to this submanifold. Subtracting these two we obtain

$$
w_{2} H_{m n}(C)=(m a+n b) \mid H_{m n}(C)
$$

which completes the proof.
A similar argument shows that the corresponding real variety $H_{m n}(R)$ is orientable, if m and n are even. Remembering that $H_{m n}(C)$ is cobordant to $H_{m n}(R) \times H_{m n}(R)$, we are tempted towards the following:

Conjecture. If M is an orientable manifold then $M \times M$ is non-oriented cobordant to a spin manifold. [Added in proof. This has been proved by P. G. Anderson: Bull. Amer. Math. Soc. 70 (1964), 818-819.]

As an example, consider the complex projective space $P_{n}(C)$.
Lemma (5). The product $P_{n}(C) \times P_{n}(C)$ is non-oriented cobordant to the quaternion projective space $P_{n}(H)$.

Since $P_{n}(C)$ is orientable, and $P_{n}(H)$ is clearly a spin manifold, this tends to support the conjecture.

Proof. Both $P_{n}(C)$ and $P_{n}(H)$ have a mod 2 cohomology ring which has one generator a (of dimension 2 or 4 respectively) and one relation $a^{n+1}=0$. In each case the total Stiefel-Whitney class is given by $w=(1+a)^{n+1}$. (Compare Hirzebruch [3].) It follows that the Stiefel-Whitney numbers of these manifolds are given by the formula

$$
w_{2 i_{1}} \ldots w_{2 i_{k}}\left[P_{n}(C)\right]=w_{4 i_{1}} \ldots w_{4 l_{k}}\left[P_{n}(H)\right]=\binom{n+1}{i_{1}} \ldots\binom{n+1}{i_{k}} .
$$

Together with Lemma (2), this completes the proof.
The cobordism ring Ω. has been computed by Wall [12]. In dimensions less than 15 it follows from Wall's work that Ω_{*} is generated by the classes of the manifolds $P_{2}(C)$, $H_{2,4}(R), P_{4}(C), H_{2,8}(R), H_{4,8}(R), P_{6}(C)$, and $H_{2,12}(R)$ (of dimensions 4, 5, 8, 9, 11, 12, 13 respectively). But for each of these manifolds we have verified that the square is cobordant to a spin manifold. Thus:

Throrem (3). If M is orientable of dimension less than 15 then $M \times M$ is non-oriented cobordant to a spin manifold.

I do not know what happens in dimensions ≥ 15.
Conversely we may ask whether every spin manifold is non-oriented cobordant to the square of an orientable manifold. It will turn out that this is true for spin manifolds of dimension ≤ 23. Again I do not know what happens in higher dimensions.

Let us look at Stiefel-Whitney numbers. Consider manifolds M which satisfy the following:

Hypothesis (1). Every Stiefel-Whitney number $w_{i_{1}} \ldots w_{i_{k}}[M]$ which involves either w_{1} or w_{2} is zero.

Clearly every spin manifold satisfies this hypothesis. Conversely we must ask:
Problem. Does every non-oriented cobordism class which satisfies the hypothesis (1) contain a spin manifold?

We will verify that this is true in dimensions ≤ 23.
Lemma (6). If M^{n} satisfies (1) with $n \leq 23$, then every $w_{i_{1}} \ldots w_{i_{k}}\left[M^{n}\right]$ involving an odd w_{i} is zero.

The proof, which will be outlined presently, involves a tedious case by case application of the Wu relations. This lemma is definitely false for $n=24$. (In slightly higher dimensions, the lemma is probably true for $24<n<29$; but false for $n=29$.)

Assuming Lemma (6), it follows from Theorem (2) that M is non-oriented cobordant to a product $N \times N$. The identity

$$
w_{i_{1}} \ldots w_{i_{k}}[N]=w_{2 i_{1}} \ldots w_{2 i_{k}}[M]
$$

now implies that every Stiefel-Whitney number of N which involves w_{1} is zero. But according to Wall [12, §9] this means that N is cobordant to an orientable manifold. Finally, using Theorem (3), it follows that M is cobordant to a spin manifold. Thus we have proved:

Theorem (4). For a non-oriented cobordism class (M) of dimension ≤ 23 the following three conditions are equivalent
(1) each $w_{i_{1}} \ldots w_{i_{k}}[M]$ involving w_{1} or w_{2} is zero;
(2) (M) contains a spin manifold;
(3) (M) contains the square $N \times N$ of an orientable manifold.

It follows that the natural homomorphism $h: \Omega_{n}{ }^{\mathbf{S p i n}} \rightarrow \mathfrak{N}_{n}$ is zero for odd values of n up to $n=23$. The rank (over Z_{2}) of h can be tabulated as follows for even values of n. (Compare [7].)

n	1	2	4	6	8	10	12	14	16	18	20	22
24												
$\operatorname{rank} h\left(\Omega_{n}^{\text {Spin }}\right) \mid$	0	0	0	1	1	0	0	2	2	1	1	(3 or 4$)$

The ambiguity in dimension 24 can be described as follows. There exists an orientable manifold X of dimension 24 such that every Stiefel-Whitney number involving w_{2} is zero, but such that

$$
w_{4} w_{6} w_{7} w_{7}[X] \neq 0 .
$$

(This is proved by an exhaustive examination of the Wu relations: to be more precise X can be chosen so that $w_{4} w_{6} w_{7}^{2}=w_{6}^{4}=w_{4}^{6}=w_{4}^{3} w_{6}^{2}=\left(w_{4} w_{8}\right)^{2} \neq 0$, but so that all other Stiefel-Whitney numbers are zero.) It is not known whether or not this X is cobordant to a spin manifold.

This description can be transformed into one involving Pontrjagin numbers as follows. Using the Wu relation $\left(S q^{2}+u_{2}\right)\left(w_{4} w_{6}^{3}\right)[X]=0$ one finds that

$$
w_{6}^{4}[X]=w_{4} w_{6} w_{7}^{2}[X] \neq 0 .
$$

But w_{6}^{2} is the mod 2 reduction of the Pontrjagin class p_{3}. Therefore $p_{3}^{2}[X] \equiv 1(\bmod 2)$.
The description can be further transformed by considering the polynomial

$$
s_{6}=s_{6}\left(p_{1}, \ldots, p_{6}\right)=p_{1}^{6}-6 p_{1}^{4} p_{2} \pm \ldots-6 p_{6}
$$

which expresses the symmetric function $\sum t_{i}^{6}$ in terms of elementary symmetric functions. Since

$$
s_{6} \equiv s_{3}^{2} \equiv p_{1}^{6}+p_{1}^{2} p_{2}^{2}+p_{3}^{2} \quad(\bmod 2)
$$

and since $p_{1}^{6}[X] \equiv w_{2}^{12}[X]=0$, and similarly $p_{1}^{2} p_{2}^{2}[X] \equiv 0$, we see that

$$
s_{6}\left(p_{1}, \ldots, p_{6}\right)[X] \equiv p_{3}^{2}[X] \equiv 1 \quad(\bmod 2)
$$

Thus we are left with the following:

Problem. Does there exist a spin manifold Σ of dimension 24 so that $s_{6}\left(p_{1}, \ldots, p_{6}\right)$ $[\Sigma] \equiv 1(\bmod 2)$?

The rest of this paper will be concerned with the proof of Lemma (6). We first give two preliminary statements which are true in arbitrary dimensions.

Lemma (7). If M satisfies Hypothesis (1) then every $w_{i_{1}} \ldots w_{i_{k}}[M]$ involving w_{3}, w_{5} or w_{9} is zero also.
(These particular w_{i} presumably occur because w_{3}, w_{5}, and w_{9} map into zero in $H^{*}\left(B^{\text {Spin }} ; Z_{2}\right)$. Compare Thomas [11].)

Proof. Let $\left(w_{a}, w_{b}, \ldots\right) \subset H^{*}\left(B_{0} ; Z_{2}\right)$ denote the ideal generated by w_{a}, w_{b}, \ldots Let x stand for an arbitrary element of $H^{*}\left(B_{0} ; Z_{2}\right)$.

The formulae

$$
\begin{array}{ll}
S q^{1}\left(w_{2} x\right) \equiv w_{3} x & \bmod \left(w_{1}, w_{2}\right) \\
S q^{2}\left(w_{3} x\right) \equiv w_{5} x & \bmod \left(w_{1}, w_{2}, w_{3}\right) \\
S q^{4}\left(w_{5} x\right) \equiv w_{9} x & \bmod \left(w_{1}, w_{2}, w_{3}, w_{5}\right)
\end{array}
$$

are easily verified. Now if every $w_{1} x^{\prime}[M]$ and every $w_{2} x^{\prime \prime}[M]$ is zero then the Wu relation

$$
\left(\left(S q^{1}+u_{1}\right) w_{2} x\right)[M]=0
$$

implies that $w_{3} x[M]=0$. Hence the relation

$$
\left(\left(S q^{2}+u_{2}\right) w_{3} x\right)[M]=0
$$

implies that $w_{5} x[M]=0$; and similarly with w_{9}.
Lemma (8). Let M satisfy (1) and suppose that the integers $i_{1} \ldots i_{k}$ are all either odd, or equal to 4 or 8 , or occur in pairs; and that at least one of the i_{j} is odd. Then $w_{i_{1}} \ldots w_{i_{k}}[M]=0$.
(For example $w_{6}^{2} w_{7} w_{8}\left[M^{27}\right]=0$.)
Proof. Suppose that i_{1} is odd. Note that

$$
S q^{1}\left(w_{i_{1}-1} w_{i_{2}} \ldots w_{i_{k}}\right) \equiv w_{i_{1}} w_{i_{2}} \ldots w_{i_{k}} \bmod \left(w_{1}, w_{5}, w_{9}\right) .
$$

Thus the Wu relation $\left(S q^{1}\left(w_{i_{1}-1} w_{i_{2}} \ldots w_{i_{k}}\right)\right)[M]=0$ completes the proof.
We are now ready to prove Lemma (6). To avoid too much tedium, we will only consider the most difficult dimension, which happens to be 21 . Consider then all partitions $i_{1}+\ldots+i_{k}=21$ which are not excluded by Lemmas (7,8). There turn out to be seven such partitions, namely:

$$
10,11 ; 4,6,11 ; 4,7,10 ; 6,15 ; 7,14 ; 6,7,8 ; \text { and } 4,4,6,7
$$

To take care of the first, consider the Wu relation

$$
\left(S q^{2}\left(w_{8} w_{11}\right)+u_{2} w_{8} w_{11}\right)[M]=0
$$

where

$$
S q^{2}\left(w_{8} w_{11}\right) \equiv w_{10} w_{11}+w_{8} w_{13}, \quad \text { and } \quad u_{2} \equiv 0 \bmod \left(w_{1}, w_{2}\right) .
$$

This proves that $w_{10} w_{11}[M]$ is equal to $w_{8} w_{13}[M]$ which is zero by Lemma (8). Next consider the relation

$$
\left(S q^{4}\left(w_{6} w_{11}\right)+u_{4} w_{6} w_{11}\right)[M]=0
$$

where

$$
S q^{4}\left(w_{6} w_{11}\right) \equiv w_{10} w_{11}, \quad u_{4} \equiv w_{4} \bmod \left(w_{1}, w_{2}, w_{3}\right)
$$

This implies that $w_{4} w_{6} w_{11}[M]$ is equal to $w_{10} w_{11}[M]$, which we have just shown is zero. The remaining five partitions are handled similarly, using the Wu relations corresponding to $S q^{1}\left(w_{4} w_{6} w_{10}\right), S q^{2}\left(w_{4} w_{15}\right), S q^{2}\left(w_{7} w_{12}\right), S q^{2}\left(w_{4} w_{7} w_{8}\right)$ and $S q^{2}\left(w_{4}{ }^{3} w_{7}\right)$ respectively.

The reader who has enough patience should have no difficulty in carrying out the proof for other dimensions ≤ 23.

REFERENCES

1. P. CONNER and E. Floyd: Differentiable Periodic Maps, Ergebn. Math. 33, Springer, 1964. (See p. 63.)
2. A. Dold: Vollständigkeit der Wu-schen Relationen zwischen den Stiefel-Whitneyschen Zahlen differenzierbarer Mannigfaltigkeiten, Math. Z. 65 (1956), 200-206.
3. F. Hirzebruch: Uber die quaternionalen projektiven Räume, S. B. bayer. Akad. Wiss. (1953), 301-312.
4. F. Hirzerruch: Komplexe Mannigfaltigkeiten, Proceedings 1958 International Congress of Mathematicians, Cambridge (1960), 119-136.
5. J. Milnor: A survey of cobordism theory, Enseign. Math. 8 (1962), 16-23.
6. J. Milnor: On the cobordism ring Ω, and a complex analogue II (in preparation).
7. J. Minnor: Remarks concerning spin manifolds (to be published).
8. J. NASH: Real algebraic manifolds, Ann. Math., Princeton 56 (1952), 405-421.
9. N. Steenrod: The Topology of Fibre Bundles. Princeton University Press, 1951.
10. R. Thom: Quelques propriétés globales des variétés différentiables, Comment. Math. Helvet. 28 (1954), 17-86.
11. E. Thomas: On the cohomology groups of the classifying space for the stable spinor group, Bol. Soc Mat. Mex. (1962), 57-69.
12. C. T. C. Wall, Determination of the cobordism ring, Ann. Math., Princeton 72 (1960), 292-311.
13. Wu Wen-Tsün: Les i-carrés dans une variété grassmannienne, C.R. Acad. Sci., Paris 230 (1950), 918-920.

Princeton, New Jersey, U.S.A.
Princeton, University,

