
INFORMATION AND CONTROL 35, 159-171 (1977)

Structured Turing Machines

RONALD E. Pm~THER

Department of Mathematics, University of Denver, Denver, Colorado 80208

A structured decomposition theorem for Turing machines is given. The
nature of the building blocks and the form of the connections allowed suggest
a parallel to the Bohm-Jacopini theorem on structured flowcharts. Thus in a
broadest sense, there is obtained an independent machine-theoretic restatement
of the fundamental precepts of structured programming. At tile same time, the
characteristics of the decomposition offer several obvious advantages over
known results of this type. In particular, the building blocks (the "simple"
machines) are seen to perform total and regular word functions. Furthermore,
the connections themselves should prove to be useful as pedagogical tools in the
Turing machine theory and as a theoretical framework for top-down machine (or
algorithmic) design.

1. INTRODUCTION

I n virtually every branch of mathematics or computer science, a "s t ructure
theo rem" can be found at the heart of the theory. One might think of the
fundamental theorem on Abelian groups (Dean, 1966) or the Krohn-Rhodes
decomposit ion theorem (Nelson, 1968) as being typical in the areas of classical
group theory and the theory of finite state automata, respectively. In this paper
we seek such a result, a structural decomposit ion theorem for Tur ing machines.

A parallel goal is that of obtaining a machine- theoret ic analogy to the well-
known theorem of Bohm and Jacopini (1966) on structured flowcharts. Since
the announcement of this result, no single idea in computer science has attracted
more attention than that of "s t ructured programming" (Dahl, Dijkstra, and
Hoare, 1972). In essence, the Bohm-Jacopin i theorem shows that every flow-
chart admits an equivalent reformulation in terms of the basic structured
constructs of Fig. 1 (and also for convenience, if "-- then "--, and do -" until "-'),
together with the " s imple" assignment statements. This result is now so often
cited and reinterpreted that further clarification or elaboration is not necessary
here. Besides its theoretical importance, the resulting structured approach to
programming has lead to a highly successful algorithmic design procedure,
known variously as " top -down" or "s tep-wise" successive refinement (Wirth,
1973) of the problem. In addition, the structure of the resulting program or
flowchart allows one tO consider proving the correctness of the algori thm

159
Copyright © 1977 by Academic Press, Inc.
All rights of reproduction in any form reserved. ISSN 0019-9958

160 RONALD E. PRATHER

concatenation selection

begin $1 ;...; S , end if P then S 1 else S~

FIGURE 1

repetition

while P do S

(Manna, 1974), a virtual impossibility in the case of an arbitrary unstructured
flowchart of moderate size.

Here we present an independent derivation of an entirely analogous system
of machine constructs whereby one may realize each Turing-computabte
function by a structured connection of "simple" machines. I t then follows that
to a large extent, we are able to extend the attributes of structured programming
(including clarity, efficiency, simplicity, etc.) to the realm of structured machine
design. In a broader sense, one could view our result as a rephrasing of the
fundamental precepts of structured programming, identifying programs, and
Turing machines in an appropriate manner.

2. SIMPLE MACHINES VS ELEMENTARY MACHINES

In the widest interpretation, the idea of combining simpler Turing machines
into ever more complicated ones is not entirely new. Hermes (1965) introduces
certain connections built up from the elementary machines l, ~, r, which halt
after moving left one square, printing a symbol y, or moving right one square,
respectively. These are to be compared with the "simple" machines, the building
blocks of our structural decomposition theorem.

We recall (Prather, 1975) that a Turing machine Z = (S, Z, M) consists of

(i) a finite set S of "states" (with 0, 1 ~ S)

(ii) an alphabet 2J (augmented as 27 D = Z k3 {[-7})

(iii) a function M (the table of "moves")

M : (S - - {1}) × Zo -+ S × 27 o × {L,N, R}.

As used here, a Turing machine Z ordinarily begins its computation in the
initial state 0 at the left-hand end of a tape on which the words x i ~ Z* (the

STRUCTURED TURING MACHINES 161

free monoid on the alphabet 27, identity = c) are printed with the blank (•)
as a word separator. Then Z follows the moves dictated by M unless or until
the final state 1 is reached. With L, N, R interpreted as left motion, no motion,
or right motion of the read-write head on an expandable tape and with a standard
convention for adjoining blanks in the case of a "run-off," the table M induces
a relation (--~) on the set 27[] * × S X 27n * whose elements are the instantaneous
descriptions (id's) of Z. As indicated above

O x = (E , O , x) with x = x l [] x 2 [] " " [] x ~

is an n-initial i.d. whereas any i.d.

1~ = ([]% 1, Y • 9 with Y = Y~ [] Y2 [] "'" [] Y,~

is said to be an m-final i.d. More generally, any i.d. with state 1 is called a
terminal i.d., one for which the machine halts.

Realizing that

M(q, a) = (q', a', t~)

means that Z in the state q scanning the symbol a overprints the symbol a '
and moves according to /z while making a transition to state q', one can easily
anticipate the conclusion of Hermes' theory: Every Turing machine can be
realized by an appropriate "combination" of elementary machines. One imme-
diately visualizes that these combinations or connections involve state transitions
of the sort found in the state diagram representation of finite-state automata.
But this accounts for one of the main disadvantages of the Hermes scheme for
machine combinations: As in the case of general flowcharts, the connections
are wildly unstructured!

A second drawback concerns the nature of the building blocks themselves,
the so-called "elementary machines." No attempt is made to sensure that they
compute functions f : (Z*) ~ --~ (27*) m. In fact, for the choice 1, 7, r this is not the
case, at least according to any of the established conventions in this regard.
But suppose we use the terminology of Davis (1958) in saying that the Turing
machine Z is (n, m)-regular (we write Z = Z n,*~) if each n-initial i.d. encounters
a terminal i.d. only if it is m-final. This then allows us to adopt the convention
that Z = Z ~'~ computes the (partial)function

~ z : (z*)~ ~ (z*)~

as given by

5Vz(Xl ,..., x~) = (Yl ,...,Y,,) iff 0x -+ "'" -+ lg ,

with x = x l [] x 2 [] ' . . [] x ~ and y - 3,1[] y2 [] -.. [] ym as before. Then

643135/2-6

162 RONALD E. PRATHER

it is seen, by way of comparison with the elementary machines of Hermes, that
the simple machines of Section 3 are regular and total (in that the functions
they compute are total functions).

3. STRUCTURED MACHINES

The equivalence between the Turing computable and the partial recursive
functions f : (Z*)~--~ (Z*) m is well known. Most recently (Prather, 1975;
Eilenberg and Elgot, 1970; Brainerd and Landweber, 1974) there has been an
increasing trend toward choosing that particular "cryptomorphic" version of
recursive function theory which best suits the discussion at hand. Certainly
that best describes the approach taken here. We define the class of partial
recursive functions (over the alphabet Z) to be the smallest collection ~ = ~
of partial functions f: (2") n -~ (27*) m (with n, m ~ 1) containing the

(i) binary projection b: (X*) ~ --~ 2:*

b(x, y) = y;

(if) counting (or "successor") function c: Z* --+ Z*

C(y) = O" 1 if y =

= x ~ + l if y = x g i (O < i < n)

=c(x) crl if y = x a ~ ;

(iii) diagonal function d: X* --~ (X*) 2

a(x) = (x, x);

(iv) exchange function e: (Z*) 2 -+ (Z*) 2

e(x, y) ~- (y, x);

and closed under the operations of

(i') composition, (fo g)(x) = g(f (x)) ,

(ii') cylinarification, (i × f) (y , x) = (y , f (x)) ,

y times

(iii') exponentiation, f * (y , x) = f o f o ' " o f (x) ,

(iv') minimalization, (l~f)(x) = inf{y: f (x , y) = E},

for x ~ (Z*)% y ~ X*. When we say "y times" in (iii'), we refer to the natural
ordering of the words of X* as established by the counting function of (if). Thus
we identify e with 0, cr 1 with 1, etc. Similarly in (iv'), the infimum refers to this
same ordering of X*.

STRUCTURED TURING MACHINES 163

C ~ r i (O < i < n) % E]

OIO [] R 1 O R I

0 a i R 0 % R 2 [] L
3 ai+ 1 L 2 0" 1 L 1 ~r 1 N
3 a i L 3 e m L 1 [] R

E "r

0
2
q~
qrr'

P~
P, /

q, [] R 2 ~ L
2 -r L 1 ~ R
q, r R q~' Ej R
% ' r R p ~ a L
p,, "r L p,; ~ L
p j z L 0 a R

q~

t t

G
t t

qc2

P~
p~'

P;
~'cr

0 q . ' ~ R

s s -r L

S' S' ~" L
q. a R
q~' y R
q ~ R
q; O R
p o r L
p~'-c L
p'~.~ L
q~ a R

qo ' ~ R
s' ~ L
1 D R

t

qr~ a R
t t

q[] 7 R
p,~ O L
s [] L
p , , ' O L
p2 ~ L
r~ [] R

t

qo G R

FIGURE 2

I t is easily shown (Prather, 1975; Brainerd mad Landweber, 1974) that these
axioms are equivalent to the more usual ones in which primitive recursion plays
a prominent role. In particular

d o b -~ i: X* --+ X*

computes the identity function i(x) = x and with cylindrification, identity func-
tions of n arguments can be performed. We can perform arbitrary permutat ions
of n arguments through composition of exchanges, and arbitrary projections
from n arguments are also easy to realize. Recursion itself is simulated by an
appropriate use of exponentiation.

We take as our catalog of simple machines the group of tables shown in Fig. 2,
noting that by design

k uB : b ~ V c = C We = d h~e : e ,

as is easily checked. For reasons that become apparent only later, we include in
our catalog a "right inverse" for C, i.e., a Tur ing machine ~ which counts down,
so that

~ d = g with c o 8 : i.

164 RONALD E. PRATIIER

(1) serial connection (Zi = Z~ ''s* with s~ = ri+l for 1 ~< i < n)

Z = b e g i n Z~ ; Z 2 ;...; Z~ e n d

(2) parallel connection (Zi : Z~ ~'~')

Z = a l l Zt ; Z2 ;...; Z~ t o g e t h e r
: z ~ x G x . . . x z .

(3) alternative connection (Zi = Z~ .'s for i = 1, 2)

Z = i f d t h e n Z1 else Z2

(4) iterative connections (X = X ~,~)

Z = w h i l e A do X

FIGURE 3

Z = do X unt i l d

The reader can easily provide a tabular description of such a machine, allowing
that d(e) = e. In this way, all of our simple machines are total and regular.

In order to introduce the concept of structured machines, we begin with the
postulate that each simple machine is structured. Then we agree that if the Zi's
(respectively, X ' s) are structured, so are the machines Z formed according to
any of the basic connections appearing in Fig. 3. These are intended to behave
as follows:

(1) serial connection, Z = Z~1"%

~ (x) = (~ 'z l o ~ ' ~ ~ '~) (x) ;

STRUCTURED TURING MACHINES 165

(2) parallel connection, Z = ZZ~"z%

~Uz(xl, x~,..., ~-) = (~zl(~), ~z~(~),..., ~u~,(~,));

(3) alternative connection, Z = Z r's,

Wz(X) = ~zl(X) if A halts in state T

= Wz~(X) if A halts in state F;

(4) iterative connections, Z =- Z ~,~,

Wz(X) = ~xk(X) if A halts in state F after the kth cycle

= undefined if A always halts in state T,

Nz(X) = Wxk(X) if A halts in state T during the kth cycle

= undefined if A always halts in state F,

respectively. Note that in (1), (2), the case n = 2 would be sufficient; but then
our subsequent compositions would be more difficult to describe.

So far, we have only provided diagrammatic and behavioral descriptions
of these various connections. Before entering into greater detail, we point out
that the automata A are themselves Turing machines, but only elementary
recognizers. They do not print, and they always halt at the left in distinguished
states T or F, one or the other. For our purposes, they need only have the
capability of finite-state automata. In fact, in the sequel, _d simply denotes an
automaton which recognizes whether or not its tape begins with a nonblank,
symbolizing that the first word on the tape is not the null word. The only other
recognizer to be encountered is denoted -~A since it does just the opposite,
arriving in state T when its tape does begin with a blank.

The serial-parallel connections have been fully described elsewhere (Prather,
1975). In the alternative case (3), we connect

z l = z l '~ = (& , z, M1),

z 2 = z ~ '~ = (& , ~, M2),

and the recognizer A = A r,~ in forming a composite machine

Z = Z ".~ = (S, 2, M)

= i f A t h e n Z 1 e l s e Z2,

as follows. For the set of states, we take a disjoint union

S = S A v S l v S 2v{1} (0z = 0 a a n d l z = 1)

166 RONALD E. PRATHER

with the three tables merged into one and extended to include

M (T , ~) = (Ozl , Y, N) ,

M (F , 7) -~ (Oz~, 7, N) ,

U (l z l , 7) = (1, 7, N), (r e Z[])

U (l z ~ , ~,) = (1, 7' N).

Then the aformentioned behavior ~ z is easily understood.
Similarly for the iterative connections, we join X = X n,n and A ~ A n,n

in forming the composite machine

Z = Z"." = (S, 27, M)

= w h i l e A d o X ,

for which

S = S A v S x (0z = 0 A a n d l z = F)

with the extended entries:

M (T , 7) = (Ox , 7 , N)

M (l x , 9') = (Oa , r, N)
(r e ~::) .

The other iterative connection is defined analogously, and in either case, the
given behavior ~v z is once again quite evident.

4. EXAMPLES OF STRUCTURED MACHINES

The "identity machine" I = D o B is structured, as is each of the parallel

connections
n times

I n = I x l x "'" × I , (n ~ l) .

Whenever there is little possibility for confusion, we also denote these more
general identity machines by I. As a simple illustration, suppose we define
a sequence of (n, n)-regular (structured) machines C (n) by writing

C m = C,

C (k+l~ = I × C (7~).

Then it is clear from the context that I
then to write C (n) = I × C for n /> 1,
machine.

= D o B. On the other hand, if we were
we have in mind a generalized identity

STRUCTURED TURING MACHINES 167

We have ample opportunity to examine the use of more elaborate connections
in the next section. So it is perhaps advisable that we limit our attention here
to just those auxiliary machines as are found to be convenient in our exposition
of the structure theorem. Toward this end, we proceed as above in defining

B m = B,
B (7~+~) ---- (B × I) o B(~;

D m = D,
D (~+') = (D x D (~)) o (E (k+~) x I) ;

E m = E,
E (~+1) = (E (1~) × I) o (I × E).

I f at the same time, we assert that B (~) is (n q- 1, 1)-regular, D (~) is (n, 2n)-
regular, and E (~) is (n + 1, n q- 1)-regular, then once again the proper inter-
pretation of the identity machines is clear from the context. We may then
summarize the main properties of these machines with

LEMlV~. For all n ~ 1 the machines B (n), C (n), D (n), E (n) are structured.
Furthermore,

l f tB(n ' (Xl , X2 $. + 1) = $. + 1 '

~'c ' - , (x l , . . . , x , - 1 , x .) = (x~ ,. . . , x . _ ~ , e (x .)) ,

~ , . , (x ~ , x2 x .) = (x~ , x2 , . . . , x . , x l , x~ x .) ,

~ E , . , (x l , x~ ,. . . , x . + d = (x~ , x .+~ , xi) .

Proof. A straightforward verification by induction can be given in each case.

5. A STRUCTURED DECOMPOSITION THEOREM

Given the description of a Turing machine Z = (S, X, M) as a table of moves,
it may be quite difficult to ascertain and then to verify just what it is that the
machine does. The situation is quite analogous to the one we face when asked
to analyze an arbitrary flowchart. Rather than to rely entirely on the designers
(programmers) insight and ingenuity, one's understanding is greatly enhanced
if the machine (program) can be thought of as a structured composition of sub-
machines (subroutines) whose behavior is unquestionably clear. Our structure
theorem for Tur ing machines shows that this position has universal applicability,
at least in principle.

THEOREM. Every partial recursive function (necessarily realized by some
Turing machine) is realized by a structured machine, i.e., a structured connection
of simple machines.

168 RONALD E. PRATHER

Proof. The functions b, c, d, e are realized by the simple machines B, C, D, E
as already remarked. I f f , g are realized by s tructured X, Y, respectively, then
it is clear that Z = X oY has the desired behavior for realizing the composit ion

WzCx) = Wxor(X) = (Wx ° Wr)(x) = (f og)(x).

Cylindrification is also easily accomplished, for if Z ~ I × X then we have

Wz(y, x) = Wl×x(y, x) = (~Fx(y), ~gx(x)) = (y , f (x)) ,

as required.
The s tructured implementat ion of exponentiat ion is somewhat more difficult.

I f f : (2 ") ~ --~ (27*) and hvx = f for the s t ructured machine X = Xn.% then we

s e t

Y = (2 × X

Z = (whi le A do Y) o (B × I).

I t follows that Z is s tructured and

~'z(y, x) = ~,,~,o.~.o~o e~×,(y, x)
y times

= ~t'~×~(E, ~ x o ~ , o ~ x (X))

y times

= ~-i X o ~JX o ~ J x (X)

y times

= f o f o . . , of(x) = f * (y , x).

Finally, if f : (X*) n+l - + X* and we have a s tructured machine X = X n+l,x

wi th W x = f we define the machines

T = T ~'~+= = (D × I) o ((whi le A do 0) × I) o (D × I) o ECn+l~

U = U n+1"~+2 = D (~+1) o (X × I)

V ~ V n+2"1 = B (n+l)

W = W ~+~'n+l = C (~+~) o (B × I)

together with
Z = beg in T;

do begin
i f A t h e n W e l s e B × I ; U
end

unt i l -7 A;
V

end.

STRUCTURED TURING MACHINES 169

According to the lemma T, U, V, W are structured and

7,~(x, ,.. . , x ,) = (~, x~ ,..., ~ , , ~)

~ (x , ,..., ~ , + 0 = (~ (x l ,.. . , x , + 0 , ~ X,+l)

Tv(y , xl , x , , x~+0 = x~+l

7 % (y , x l x~ , x . + O = (x~ ,. . . , x~ , c (x .+O) ,

I t follows that Z is structured, and furthermore

1/Jz(X 1 , . . . , X ,) ~ - YgT o ~ d o - " u n t i i ~ A o 1/JV(X 1 , . . . , X¢~)

~ - ~ f l o " ' n n t i l ~ A o ~V (E , X 1 , . . . , X,a, E)

= Tv(e , x 1 , x,~, inf{y: Tx(Xl ,..., x , , y) = e})

= i n f { y : f (x 1 , x , , y) = ~}

= (~ f) (x~ , . . . , x ,) ,

thus implementing minimalization.

COROLLARY. Corresponding to each Turing machine Z is a structured connection

of simple machines which computes the same (partial)function. The correspondence

2" --+ Z ~ is effective.

Pro@ The main assertion follows from the theorem and the classical
equivalence between Turing machines and partial recursive functions. The
effectiveness of the correspondence f - -~ Z s is already illustrated in the proof of
the theorem. But we note that certain well-known constructions (Davis, 1958;
¥asuhara, 1971) show that the association Z - + f of partial recursive functions
with arbitrary Turing machines is also effective.

6. CONCLUDING REMARKS

I t can be argued a full-fledged canonical decomposition theorem would require
that the "simple" machines exhibit some characteristic property not shared by
all Turing machines. Thus in the fundamental theorem on Abelian groups, the
building blocks are cyclic groups, and in the Krohn-Rhodes decomposition
theorem, the "simple" machines are either two-state machines or machines whose
semigroup is a simple group. So is this respect, our theorem is somewhat less
than completely satisfactory. Nonetheless, we feel that the constructs involved
and the connections themselves should prove to be useful as pedagogical tools
in the Turing machine theory and as a framework for orderly algorithmic design.

In a broadest sense, our decomposition theorem might be viewed as a restate-
ment of the fundamental ideas of structured programming. But surely this

170 RONALD E. PRATHER

theorem is not unique of its type. Other choices of "simple" machines are quite
possible and other connection constructs could also be conceived. Quite
obviously, we were looking for those connections which would most closely
parallel the familiar structured programming constructs. As for the resulting
class of simple machines chosen, we can at least argue that for the most part,
they too are parallel to the use of the simple assignement statements of the
structured programming theory. Thus C bears a strong resemblance to the
assignment statement y + - y q- 1 whereas E is aking to the familiar three-
assignment exchange: temp +-x, x +-y , y ~-temp. An interesting question,
however, in the context of the given set of connections and machines B, C, D, E
is whether the machine C is actually necessary or whether it is a structured
connection of B, C, D, E .9

Returning once more to the analogy with structured programming and parti-
cularly the Bohm-Jacopini result, we note that a detailed proof of our corollary
would point the way toward an effective procedure for transforming any given
Turing machine into an equivalent structured machine. But surely this technique
would be no more useful than is the Bohm-Jacopini construction for trans-
forming an aribtrary flowchart into a structured flowchart, and in fact, such an
approach would miss the point completely. For it seems that the value of either
system of structured constructs lies in their applicability toward a "top-down"
algorithmic design methodology. In the cas of Turing machines, it is not impor-
tant that this approach be carried all the way down to the level of the "simple"
machines, however these are defined. It is the design method itself which offers
the advantages of clarity, simplicity, and in the right hands, even elegance and
an assurance that the machine will indeed perform as intended.

RECEIVED" June 11, 1976; REVISED: November 23, 1976

REFERENCES

BOHM, C., AND JACOPI1VI, G. (1966), Flow diagrams, turing machines and languages with
only two formation rules, Comm. A C M 9, 366.

B~AINEm~, W. S., AND LANDWERER, L. H. (1974), "Theory of Computation," Wiley,
New York.

DAr~L, O. J., DUKSTaa, E. W., AND HOARE, C. A. R. (1972), "Structured Programming,"
Academic Press, New York.

DAVIS, M. (1958), "Computability and Unsolvability," McGraw-Hill, New York.
D~AN, R. A. (1966), "Elements of Abstract Algebra," Wiley, New York.
EILENBER~, S., AND ELGOT, C. C. (1970), "Recursiveness," Academic Press, New York.
HEaMES, H. (1965), "Enumerability, Decidability, Computability," Academic Press,

New York.
MANNA, Z. (1974), "Mathematical Theory of Computation," McGraw-Hill, New York.
NELSON, R. J. (1968), "Introduction to Automata," Wiley, New York.
PRATHER, R. E. (1975), A convenient cryptomorphic version of recursive function theory,

Inform. Contr. 27, 178.

STRUCTURED TURING MACHINES 171

WIRTH, N. (1973), "Systematic Programming: An Introduction," Prentice-Hall, Engle-
wood Cliffs, N. J.

YaSUH~, A. (1971), "Recursive Function Theory and Logic," Academic Press, New
York.

Printed in Belgium

