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Structured Turing Machines 

RONALD E. Pm~THER 

Department of Mathematics, University of Denver, Denver, Colorado 80208 

A structured decomposition theorem for Turing machines is given. The 
nature of the building blocks and the form of the connections allowed suggest 
a parallel to the Bohm-Jacopini theorem on structured flowcharts. Thus in a 
broadest sense, there is obtained an independent machine-theoretic restatement 
of the fundamental precepts of structured programming. At tile same time, the 
characteristics of the decomposition offer several obvious advantages over 
known results of this type. In particular, the building blocks (the "simple" 
machines) are seen to perform total and regular word functions. Furthermore, 
the connections themselves should prove to be useful as pedagogical tools in the 
Turing machine theory and as a theoretical framework for top-down machine (or 
algorithmic) design. 

1.  INTRODUCTION 

I n  virtually every branch of mathematics or computer  science, a "s t ructure  
theo rem"  can be found at the heart  of the theory. One might  think of the 
fundamental  theorem on Abelian groups (Dean, 1966) or the Krohn-Rhodes  
decomposit ion theorem (Nelson, 1968) as being typical in the areas of classical 
group theory and the theory of finite state automata, respectively. In  this paper  
we seek such a result, a structural  decomposit ion theorem for Tur ing  machines. 

A parallel goal is that  of obtaining a machine- theoret ic  analogy to the well- 
known theorem of Bohm and Jacopini (1966) on structured flowcharts. Since 
the announcement  of this result, no single idea in computer  science has attracted 
more attention than that  of "s t ructured programming"  (Dahl, Dijkstra, and 
Hoare, 1972). In  essence, the Bohm-Jacopin i  theorem shows that  every flow- 
chart admits an equivalent reformulation in terms of the basic structured 
constructs of Fig. 1 (and also for convenience, if "-- then "--, and do -" until  "-'), 
together with the " s imple"  assignment statements. This  result is now so often 
cited and reinterpreted that  further clarification or elaboration is not necessary 
here. Besides its theoretical importance,  the resulting structured approach to 
programming has lead to a highly successful algorithmic design procedure,  
known variously as " top -down"  or "s tep-wise"  successive refinement (Wirth,  
1973) of the problem. In  addition, the structure of the resulting program or 
flowchart allows one tO consider proving the correctness of the algori thm 
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concatenation selection 

begin  $1 ;...; S ,  end  if  P then  S 1 else S~ 

FIGURE 1 

repetition 

while P do S 

(Manna, 1974), a virtual impossibility in the case of an arbitrary unstructured 
flowchart of moderate size. 

Here we present an independent derivation of an entirely analogous system 
of machine constructs whereby one may realize each Turing-computabte 
function by a structured connection of "simple" machines. I t  then follows that 
to a large extent, we are able to extend the attributes of structured programming 
(including clarity, efficiency, simplicity, etc.) to the realm of structured machine 
design. In a broader sense, one could view our result as a rephrasing of the 
fundamental precepts of structured programming, identifying programs, and 
Turing machines in an appropriate manner. 

2. SIMPLE MACHINES VS ELEMENTARY MACHINES 

In the widest interpretation, the idea of combining simpler Turing machines 
into ever more complicated ones is not entirely new. Hermes (1965) introduces 
certain connections built up from the elementary machines l, ~, r, which halt 
after moving left one square, printing a symbol y, or moving right one square, 
respectively. These are to be compared with the "simple" machines, the building 
blocks of our structural decomposition theorem. 

We recall (Prather, 1975) that a Turing machine Z = (S, Z, M) consists of 

(i) a finite set S of "states" (with 0, 1 ~ S) 

(ii) an alphabet 2J (augmented as 27 D = Z k3 {[-7}) 

(iii) a function M (the table of "moves") 

M : ( S - -  {1}) × Zo  -+ S × 27 o × {L,N, R}. 

As used here, a Turing machine Z ordinarily begins its computation in the 
initial state 0 at the left-hand end of a tape on which the words x i ~ Z*  (the 
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free monoid on the alphabet 27, identity = c) are printed with the blank (•)  
as a word separator. Then  Z follows the moves dictated by M unless or until 
the final state 1 is reached. With L, N, R interpreted as left motion, no motion, 
or right motion of the read-write head on an expandable tape and with a standard 
convention for adjoining blanks in the case of a "run-off," the table M induces 
a relation (--~) on the set 27[] * × S X 27n * whose elements are the instantaneous 
descriptions (id's) of Z. As indicated above 

O x = ( E , O , x )  with x = x  l [ ] x  2 [ ] " "  [ ] x ~  

is an n-initial i.d. whereas any i.d. 

1~ = ([]% 1, Y • 9  with Y = Y~ [ ]  Y2 [ ]  "'" [ ]  Y,~ 

is said to be an m-final i.d. More generally, any i.d. with state 1 is called a 
terminal i.d., one for which the machine halts. 

Realizing that 

M(q, a) = (q', a', t~) 

means that Z in the state q scanning the symbol a overprints the symbol a '  
and moves according to /z  while making a transition to state q', one can easily 
anticipate the conclusion of Hermes'  theory: Every Turing machine can be 
realized by an appropriate "combination" of elementary machines. One imme- 
diately visualizes that these combinations or connections involve state transitions 
of the sort found in the state diagram representation of finite-state automata. 
But this accounts for one of the main disadvantages of the Hermes scheme for 
machine combinations: As in the case of general flowcharts, the connections 
are wildly unstructured! 

A second drawback concerns the nature of the building blocks themselves, 
the so-called "elementary machines." No attempt is made to sensure that they 
compute functions f :  (Z*) ~ --~ (27*) m. In  fact, for the choice 1, 7, r this is not the 
case, at least according to any of the established conventions in this regard. 
But suppose we use the terminology of Davis (1958) in saying that the Turing 
machine Z is (n, m)-regular (we write Z = Z n,*~) if each n-initial i.d. encounters 
a terminal i.d. only if it is m-final. This then allows us to adopt the convention 
that Z = Z ~'~ computes the (partial)function 

~ z  : (z*)~ ~ (z*)~ 

as given by 

5Vz(Xl ,..., x~) = (Yl  ,...,Y,,) iff 0x -+  "'" -+  lg ,  

with x = x  l [ ] x  2 [ ] ' . . [ ] x ~  and y - 3,1[] y2 [ ]  -.. [ ]  ym as before. Then  
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162 RONALD E. PRATHER 

it is seen, by way of comparison with the elementary machines of Hermes, that 
the simple machines of Section 3 are regular and total (in that the functions 
they compute are total functions). 

3. STRUCTURED MACHINES 

The equivalence between the Turing computable and the partial recursive 
functions f :  (Z*)~--~ (Z*) m is well known. Most recently (Prather, 1975; 
Eilenberg and Elgot, 1970; Brainerd and Landweber, 1974) there has been an 
increasing trend toward choosing that particular "cryptomorphic" version of 
recursive function theory which best suits the discussion at hand. Certainly 
that best describes the approach taken here. We define the class of partial 
recursive functions (over the alphabet Z) to be the smallest collection ~ = ~ 
of partial functions f: (2") n -~ (27*) m (with n, m ~ 1) containing the 

(i) binary projection b: (X*) ~ --~ 2:* 

b(x, y )  = y;  

(if) counting (or "successor") function c: Z*  --+ Z* 

C(y) = O" 1 if y = 

= x ~ + l  if y = x g i  ( O < i < n )  

=c(x)  crl if y = x a ~ ;  

(iii) diagonal function d: X* --~ (X*) 2 

a(x) = (x, x); 

(iv) exchange function e: (Z*) 2 -+ (Z*) 2 

e(x, y) ~- ( y, x); 

and closed under the operations of 

(i') composition, ( fo  g)(x) = g( f (x)) ,  

(ii') cylinarification, (i × f ) ( y ,  x) = (y , f ( x ) ) ,  

y times 

(iii') exponentiation, f * ( y ,  x) = f o f o ' "  o f (x) ,  

(iv') minimalization, (l~f)(x) = inf{y: f (x ,  y) = E}, 

for x ~ (Z*)% y ~ X*. When we say "y times" in (iii'), we refer to the natural 
ordering of the words of X* as established by the counting function of (if). Thus 
we identify e with 0, cr 1 with 1, etc. Similarly in (iv'), the infimum refers to this 
same ordering of X*. 
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C ~ r i ( O < i < n )  % E] 
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FIGURE 2 

I t  is easily shown (Prather, 1975; Brainerd mad Landweber,  1974) that these 
axioms are equivalent to the more usual ones in which primitive recursion plays 
a prominent  role. In  particular 

d o b -~ i: X* --+ X* 

computes the identity function i(x) = x and with cylindrification, identity func- 
tions of n arguments can be performed. We can perform arbitrary permutat ions 
of n arguments through composition of exchanges, and arbitrary projections 
from n arguments are also easy to realize. Recursion itself is simulated by an 
appropriate use of  exponentiation. 

We take as our catalog of simple machines the group of tables shown in Fig. 2, 
noting that by design 

k uB : b  ~ V c = C  We = d  h~e : e ,  

as is easily checked. For reasons that become apparent only later, we include in 
our catalog a "right inverse" for C, i.e., a Tur ing machine ~ which counts down, 
so that 

~ d  = g with c o 8 : i. 
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(1) serial connection (Zi = Z~ ''s* with s~ = ri+l for 1 ~< i < n) 

Z = b e g i n  Z~ ; Z 2 ;...; Z~ e n d  

(2) parallel connection (Zi : Z~ ~'~') 

Z = a l l  Zt ; Z2 ;...; Z~ t o g e t h e r  
: z ~ x G x . . . x z .  

(3) alternative connection (Zi = Z~ .'s for i = 1, 2) 

Z = i f  d t h e n  Z1 else Z2 

(4) iterative connections ( X  = X ~,~) 

Z = w h i l e  A do  X 

FIGURE 3 

Z = do  X unt i l  d 

The  reader can easily provide a tabular description of such a machine, allowing 
that d(e) = e. In  this way, all of our simple machines are total and regular. 

In  order to introduce the concept of structured machines, we begin with the 
postulate that each simple machine is structured. Then  we agree that if the Zi's 
(respectively, X ' s )  are structured, so are the machines Z formed according to 
any of the basic connections appearing in Fig. 3. These are intended to behave 
as follows: 

(1) serial connection, Z = Z~1"% 

~ ( x )  = (~ 'z l  o ~ ' ~  . . . . .  ~ '~ ) (x ) ;  
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(2) parallel connection, Z = ZZ~"z% 

~Uz(xl, x~,..., ~-) = (~zl(~), ~z~(~),..., ~u~,(~,)); 

(3) alternative connection, Z = Z r's, 

Wz(X) = ~zl(X)  if A halts in state T 

= Wz~(X) if A halts in state F; 

(4) iterative connections, Z =- Z ~,~, 

Wz(X) = ~xk(X) if A halts in state F after the kth cycle 

= undefined if A always halts in state T, 

Nz(X) = Wxk(X) if A halts in state T during the kth cycle 

= undefined if A always halts in state F, 

respectively. Note that in (1), (2), the case n = 2 would be sufficient; but then 
our subsequent compositions would be more difficult to describe. 

So far, we have only provided diagrammatic and behavioral descriptions 
of these various connections. Before entering into greater detail, we point out 
that the automata A are themselves Turing machines, but only elementary 
recognizers. They do not print, and they always halt at the left in distinguished 
states T or F, one or the other. For our purposes, they need only have the 
capability of finite-state automata. In fact, in the sequel, _d simply denotes an 
automaton which recognizes whether or not its tape begins with a nonblank, 
symbolizing that the first word on the tape is not the null word. The only other 
recognizer to be encountered is denoted -~A since it does just the opposite, 
arriving in state T when its tape does begin with a blank. 

The serial-parallel connections have been fully described elsewhere (Prather, 
1975). In the alternative case (3), we connect 

z l  = z l  '~ = ( & ,  z,  M1), 

z 2  = z ~  '~ = ( & ,  ~, M2), 

and the recognizer A = A r,~ in forming a composite machine 

Z = Z ".~ = (S, 2, M) 

= i f  A t h e n  Z 1 e l s e  Z2, 

as follows. For the set of states, we take a disjoint union 

S = S A v S  l v S  2v{1} (0z = 0 a a n d l z  = 1) 
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with the three tables merged into one and extended to include 

M ( T ,  ~) = (Ozl , Y, N ) ,  

M ( F ,  7) -~ (Oz~, 7, N ) ,  

U ( l z l ,  7) = (1, 7, N), (r  e Z[]) 

U ( l z ~ ,  ~,) = (1, 7' N). 

Then  the aformentioned behavior ~ z  is easily understood. 
Similarly for the iterative connections, we join X = X n,n and A ~ A n,n 

in forming the composite machine 

Z = Z"."  = (S, 27, M)  

= w h i l e  A d o  X ,  

for which 

S = S A v S x  (0z = 0 A a n d l z = F )  

with the extended entries: 

M ( T ,  7) = (Ox , 7 ,  N )  

M ( l  x , 9') = (Oa , r,  N )  
(r  e ~::) .  

The  other iterative connection is defined analogously, and in either case, the 
given behavior ~v z is once again quite evident. 

4. EXAMPLES OF STRUCTURED MACHINES 

The "identity machine" I = D o B is structured, as is each of the parallel 

connections 
n times 

I n = I x l x  "'" × I ,  ( n ~ l ) .  

Whenever there is little possibility for confusion, we also denote these more 
general identity machines by I.  As a simple illustration, suppose we define 
a sequence of (n, n)-regular (structured) machines C (n) by writing 

C m = C, 

C (k+l~ = I × C (7~). 

Then  it is clear from the context that I 
then to write C (n) = I × C for n /> 1, 
machine. 

= D o B. On the other hand, if we were 
we have in mind a generalized identity 
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We have ample opportunity to examine the use of more elaborate connections 
in the next section. So it is perhaps advisable that we limit our attention here 
to just  those auxiliary machines as are found to be convenient in our exposition 
of the structure theorem. Toward this end, we proceed as above in defining 

B m = B, 
B (7~+~) ---- (B × I ) o  B(~; 

D m = D, 
D (~+') = ( D  x D (~)) o (E (k+~) x I ) ;  

E m = E, 
E (~+1) = (E (1~) × I )  o ( I  × E). 

I f  at the same time, we assert that B (~) is (n q- 1, 1)-regular, D (~) is (n, 2n)- 
regular, and E (~) is (n + 1, n q- 1)-regular, then once again the proper inter- 
pretation of the identity machines is clear from the context. We may then 
summarize the main properties of these machines with 

LEMlV~. For all n ~ 1 the machines B (n), C (n), D (n), E (n) are structured. 
Furthermore, 

l f tB(n ' (Xl ,  X2 . . . . .  $ . + 1 )  = $ . + 1 '  

~'c ' - , (x l  , . . . ,  x , - 1 ,  x . )  = (x~ ,. . . ,  x . _ ~ ,  e (x . ) ) ,  

~ , . , ( x ~ ,  x2 . . . . .  x . )  = (x~ , x2 , . . . ,  x . ,  x l ,  x~ ... . .  x . ) ,  

~ E , . , ( x l ,  x~ ,. . . ,  x . + d  = (x~ .... , x .+~ , xi) .  

Proof. A straightforward verification by induction can be given in each case. 

5. A STRUCTURED DECOMPOSITION THEOREM 

Given the description of a Turing machine Z = (S, X, M)  as a table of moves, 
it may be quite difficult to ascertain and then to verify just  what it is that  the 
machine does. The  situation is quite analogous to the one we face when asked 
to analyze an arbitrary flowchart. Rather than to rely entirely on the designers 
(programmers)  insight and ingenuity, one's understanding is greatly enhanced 
if the machine (program) can be thought of as a structured composition of sub- 
machines (subroutines) whose behavior is unquestionably clear. Our structure 
theorem for Tur ing  machines shows that this position has universal applicability, 
at least in principle. 

THEOREM. Every partial recursive function (necessarily realized by some 
Turing machine) is realized by a structured machine, i.e., a structured connection 
of simple machines. 
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Proof. The  functions b, c, d, e are realized by  the simple machines B, C, D, E 
as already remarked.  I f  f ,  g are realized by s tructured X,  Y, respectively, then 
it is clear that  Z = X oY has the desired behavior for realizing the composit ion 

WzCx) = Wxor(X) = (Wx ° Wr)(x) = ( f  og)(x). 

Cylindrification is also easily accomplished, for if Z ~ I × X then we have 

Wz(y,  x) = Wl×x(y, x) = (~Fx(y), ~gx(x)) = (y , f ( x ) ) ,  

as required.  
The  s tructured implementat ion of exponentiat ion is somewhat more difficult. 

I f  f :  ( 2 " )  ~ --~ (27*) and hvx = f for the s t ructured machine X = Xn.% then we 

s e t  

Y = ( 2 × X  

Z = (whi le  A do Y) o (B × I). 

I t  follows that  Z is s tructured and 

~'z(y, x) = ~,,~,o.~.o~o e~×,(y, x) 
y times 

= ~t'~×~(E, ~ x  o ~ ,  . . . .  o ~ x ( X ) )  

y times 

= ~-i X o ~JX  . . . .  o ~ J x ( X )  

y times 

= f o f o . . ,  of(x)  = f * ( y ,  x). 

Finally, if f :  (X*) n+l - +  X* and we have a s tructured machine X = X n+l,x 

wi th  W x = f we define the machines 

T = T ~'~+= = (D × I )  o ( (whi le  A do 0)  × I )  o (D × I )  o ECn+l~ 

U = U n+1"~+2 = D (~+1) o (X  × I )  

V ~ V n+2"1 = B (n+l) 

W = W ~+~'n+l = C (~+~) o (B × I )  

together with 
Z = beg in  T; 

do  begin  
i f A t h e n W e l s e B  × I ;  U 
end 

unt i l  -7 A; 
V 

end.  
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According to the lemma T, U, V, W are structured and 

7,~(x,  ,.. . ,  x , )  = (~, x~ ,..., ~ , ,  ~) 

~ ( x ,  ,..., ~ , + 0  = ( ~ ( x l  ,.. . ,  x , + 0 ,  ~ ..... X,+l)  

Tv(y ,  xl .... , x , ,  x~+0 = x~+l 

7 % ( y ,  x l  . . . . .  x~ , x . + O  = (x~ ,. . . ,  x~ , c (x .+O) ,  

I t  follows that Z is structured, and furthermore 

1/Jz(X 1 , . . . ,  X , )  ~ -  YgT o ~ d o - " u n t i i ~ A  o 1/JV(X 1 , . . . ,  X¢~) 

~ -  ~ f l o " ' n n t i l ~ A  o ~V (E ,  X 1 , . . . ,  X,a, E) 

= Tv(e ,  x 1 .... , x,~, inf{y: Tx(Xl  ,..., x , , y )  = e}) 

= i n f { y : f ( x  1 .... , x , , y )  = ~} 

= (~ f ) ( x~  , . . . ,  x , ) ,  

thus implementing minimalization. 

COROLLARY. Corresponding to each Turing machine Z is a structured connection 

of  simple machines which computes the same (partial)function. The correspondence 

2" --+ Z ~ is effective. 

Pro@ The main assertion follows from the theorem and the classical 
equivalence between Turing machines and partial recursive functions. The 
effectiveness of the correspondence f - -~  Z s is already illustrated in the proof of 
the theorem. But we note that certain well-known constructions (Davis, 1958; 
¥asuhara, 1971) show that the association Z - + f  of partial recursive functions 
with arbitrary Turing machines is also effective. 

6.  CONCLUDING REMARKS 

It  can be argued a full-fledged canonical decomposition theorem would require 
that the "simple" machines exhibit some characteristic property not shared by 
all Turing machines. Thus in the fundamental theorem on Abelian groups, the 
building blocks are cyclic groups, and in the Krohn-Rhodes decomposition 
theorem, the "simple" machines are either two-state machines or machines whose 
semigroup is a simple group. So is this respect, our theorem is somewhat less 
than completely satisfactory. Nonetheless, we feel that the constructs involved 
and the connections themselves should prove to be useful as pedagogical tools 
in the Turing machine theory and as a framework for orderly algorithmic design. 

In  a broadest sense, our decomposition theorem might be viewed as a restate- 
ment of the fundamental ideas of structured programming. But surely this 
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theorem is not unique of its type. Other choices of "simple" machines are quite 
possible and other connection constructs could also be conceived. Quite 
obviously, we were looking for those connections which would most closely 
parallel the familiar structured programming constructs. As for the resulting 
class of simple machines chosen, we can at least argue that for the most part, 
they too are parallel to the use of the simple assignement statements of the 
structured programming theory. Thus C bears a strong resemblance to the 
assignment statement y + - y  q- 1 whereas E is aking to the familiar three- 
assignment exchange: temp +-x,  x +-y ,  y ~-temp. An interesting question, 
however, in the context of the given set of connections and machines B, C, D, E 
is whether the machine C is actually necessary or whether it is a structured 
connection of B, C, D, E .9 

Returning once more to the analogy with structured programming and parti- 
cularly the Bohm-Jacopini result, we note that a detailed proof of our corollary 
would point the way toward an effective procedure for transforming any given 
Turing machine into an equivalent structured machine. But surely this technique 
would be no more useful than is the Bohm-Jacopini construction for trans- 
forming an aribtrary flowchart into a structured flowchart, and in fact, such an 
approach would miss the point completely. For it seems that the value of either 
system of structured constructs lies in their applicability toward a "top-down" 
algorithmic design methodology. In the cas of Turing machines, it is not impor- 
tant that this approach be carried all the way down to the level of the "simple" 
machines, however these are defined. It is the design method itself which offers 
the advantages of clarity, simplicity, and in the right hands, even elegance and 
an assurance that the machine will indeed perform as intended. 
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