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The functional MRI (fMRI) signal is an indirect measure of neuronal activity. In order to deconvolve the neuronal
activity from the experimental fMRI data, biophysical generative models have been proposed describing the link
between neuronal activity and the cerebral blood flow (the neurovascular coupling), and further the hemody-
namic response and the BOLD signal equation. These generative models have been employed both for single
brain area deconvolution and to infer effective connectivity in networks of multiple brain areas. In the current
paper, we introduce a new fMRImodel inspired by experimental observations about the physiological underpin-
nings of the BOLD signal and compare it with the generative models currently used in dynamic causal modeling
(DCM), a widely used framework to study effective connectivity in the brain. We consider three fundamental
aspects of such generative models for fMRI: (i) an adaptive two-state neuronal model that accounts for a wide
repertoire of neuronal responses during and after stimulation; (ii) feedforward neurovascular coupling that
links neuronal activity to blood flow; and (iii) a balloonmodel that can account for vascular uncoupling between
the blood flow and the blood volume. Finally, we adjust the parameterization of the BOLD signal equation for dif-
ferentmagneticfield strengths. This paper focuses on the form,motivation and phenomenology of DCMs for fMRI
and the characteristics of the variousmodels are demonstrated using simulations. These simulations emphasize a
more accuratemodeling of the transient BOLD responses— such as adaptive decreases to sustained inputs during
stimulation and the post-stimulus undershoot. In addition, we demonstrate using experimental data that it is
necessary to take into account both neuronal and vascular transients to accurately model the signal dynamics
of fMRI data. By refining the models of the transient responses, we provide a more informed perspective on
the underlying neuronal process and offer newways of inferring changes in local neuronal activity and effective
connectivity from fMRI.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Functionalmagnetic resonance imaging (fMRI) is awidely employed
non-invasive technique to assess brain function with unprecedented
spatial and temporal resolution. However, fMRI signal reflects neuronal
activity only indirectly, through the measurements of accompanying
hemodynamic processes. An increase in neuronal activity causes local-
ized changes in the cerebral metabolic rate of oxygen metabolism
(CMRO2), the cerebral blood flow (CBF), and the cerebral blood volume
(CBV). As a result, the oxygen extraction fraction (E) (i.e. the blood ox-
ygen saturation and the concentration of deoxygenated hemoglobin)
l (M. Havlicek), kamil.uludag@
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changes, which is reflected in the blood oxygenation level-dependent
(BOLD) signal.4 Therefore, knowing the causal chain of these physiolog-
ical processes is important to allow deducing the neuronal activity from
experimental fMRI data (Roebroeck et al., 2011; Valdes-Sosa et al.,
2011). As a result, a number of generative models of the fMRI signal
have been proposed during the last two decades (e.g. Friston et al.
(2000); Sotero and Trujillo-Barreto (2007), and Buxton et al. (2004)).

A prominent methodological framework that models the biophysi-
cal processes linking neuronal activity and themeasured BOLD response
is dynamic causal modeling (DCM) (Friston et al., 2003;Marreiros et al.,
2008; Stephan et al., 2007, 2008). DCM employs a generative or forward
model developed specifically to enable statistical inference about effec-
tive connectivity (defined as the influence one brain area exerts over
another (Friston, 1994)) between brain areas from indirect BOLD
4 Note that the fMRI signal asmeasuredwith standardGREMRI sequence is also directly
dependent on CBV in addition to the BOLD effect (Uludağ et al., 2009). Nevertheless, in the
following,wewill continue to use both terms (i.e. fMRI and BOLD signal) synonymously in
accordance with current nomenclature.
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measurements. The inversion of this model using a Bayesian inference
approach allows one to determine local neuronal and vascular parame-
ters in addition to connectivity parameters among brain areas (Friston
et al., 2003, 2007).

Standard DCM for fMRI (which we will refer to as S-DCM here) is
based on an approximation of neuronal dynamics with one excitatory
state per brain region-of-interest (Friston et al., 2003; Stephan et al.,
2007). The neurovascular coupling (NVC), linking neuronal activity
and CBF, was designed to include negative feedback between the
blood flow level and neuromediators inducing blood flow changes
(Friston et al., 2000). The blood flow signal then causes a blood volume
and oxygenation response as described by the balloon model (Buxton
et al., 1998b), albeit under the assumption of steady-state coupling be-
tween flow and volume. Marreiros et al. (2008) extended the standard
DCM by entertaining a two-state neuronal model comprising excitatory
and inhibitory neuronal populations in each area or node (termed
2S-DCM in the following). Stephan et al. (2008) further allowed for
nonlinear interactions between the neuronal states of different areas.
A revision of the nonlinear BOLD equation (Stephan et al., 2007) consid-
ered a re-parameterization based on coefficients derived by Obata et al.
(2004). In this form, with or without the aforementioned extensions of
the neuronalmodel, DCMhas been used for the analysis of fMRI data for
more than a decade.5

In this paper, we discuss some limitations of the generative models
utilized in current DCMs and motivate model extensions that are
inspired by several robust experimental observations in animal electro-
physiology and human/animal fMRI, namely:

1. Both local field potentials (LFPs) and multi-unit activity (MUA)
neuronal responses to sustained stimuli typically have an initial
peak (overshoot) followed by a decay to a lower steady-state plateau
level during stimulation and a deactivation dip (‘neuronal post-
stimulus deactivation’) after the end of stimulus (Hyder et al.,
2010; Logothetis, 2002; Logothetis and Wandell, 2004; Shmuel
et al., 2006).

2. A change in the neuronal activity starts a cascade of biochemical
processes, comprising many neurovascular agents (for recent
overview see Riera and Sumiyoshi (2010)) that transform neuronal
activity to CBF changes in a predominantly feedforward direction
(Attwell et al., 2010; Attwell and Iadecola, 2002; Cauli and Hamel,
2010; Uludağ et al., 2004). Importantly, these neurovascular agents
are known to be active during the entire period of neuronal activa-
tion (Gordon et al., 2008; Lecrux et al., 2011; Takano et al., 2006;
Zonta et al., 2003); i.e., if the level of neuronal activation is altered,
the level of vasoactive signal changes as well. This indicates a close
relationship between the neuronal activity and CBF changes (in the
healthy brain).

3. A CBF post-stimulus undershoot, if present at all, is usually weaker
than the BOLD post-stimulus undershoot. There are cases where
a post-stimulus undershoot is observed in both CBF and BOLD re-
sponses (Mayhew et al., 2014; Sadaghiani et al., 2009), but also cases
where it is only present in the BOLD response (Obata et al., 2004).

4. Several studies report a slow return of venous CBV to baseline, compa-
rable in duration to the BOLDpost-stimulus undershoot,whichpersists
despite a more rapid return of CBF to baseline (Chen and Pike, 2009;
Huber et al., 2014; Kim and Ogawa, 2012; Mandeville et al., 1998).

5. A post-stimulus BOLD undershoot is a commonly but not always
observed feature of the BOLD response that may last twice as long as
the stimulus duration (Frahm et al., 1996; Krüger et al., 1996). It is
known that the duration and magnitude of the post-stimulus BOLD
5 In thiswork, wedo not consider other DCMversions and extensions such as stochastic
DCM (Li et al., 2011).
nonlinear DCM (Stephan et al., 2008) or spectral DCM (Friston et al., 2014), as they all use
the same physiological forward model as either S-DCM or 2S-DCM. In other words, any
changes in the physiological forward model proposed here are also applicable to these
extensions.
undershoot is dependent on the stimulus type and duration
(Bandettini et al., 1997; Hoge et al., 1999; Sadaghiani et al., 2009).

6. In many fMRI data-sets obtained using sustained stimuli, an initial
overshoot is observed before the CBF or BOLD signal settles down to
a new steady-state value. This adaptive profile of both CBF and BOLD
responses is dependent on the type of stimulus and is usually thought
to be associated with the neuronal overshoot (see above) (Boynton
et al., 1996; Hoge et al., 1999; Sadaghiani et al., 2009). Both the over-
shoot and the post-stimulus undershoot in the BOLD signal are now
believed to reflect different neuronal information (Krekelberg et al.,
2006; Mullinger et al., 2013; Sadaghiani et al., 2009) in addition to
the vascular contributions — and may thus provide an extra window
on brain processes and physiology in both healthy and diseased
subjects.

In summary, the observed BOLDdynamics reflect both neuronal and –
potentially uncoupled – vascular dynamics. It is the aim of any generative
model of the BOLD signal to accuratelymodel the neuronal activity and to
effectively disentangle the neuronal and vascular parameters.

In the following, we describe the current DCM generative models
and compare themwith a new family of DCMsmotivated by aforemen-
tioned physiological observations (P-DCM). The proposed extensions in
P-DCM concern: i) an adaptive two-state neuronal model that accounts
for a wide range of neuronal time courses during stimulation and post-
stimulus deactivation; ii) a NVC model that links neuronal activity to
blood flow in a strictly feedforward fashion; and iii) a balloon model
that can account for a vascular uncoupling between blood flow and
blood volume due to viscoelastic properties of venous blood vessels.

Theory: from neuronal activity to the BOLD signal

Dynamic causal modeling

DCM assumes model of distributed neuronal activity — and
relates this activity to measurable quantities. This generative model en-
tails two types of causal relationships: one between (but also within)
neuronal regions representing distributed neuronal interactions
(the neuronal model), while the other is a physiological and physical
transformation of the neuronal to the measured signal (the biophysical
transformation model).

In the case of fMRI data, DCM relies on four basic components that
together create the complete forward model: (1) neuronal activity;
(2) neurovascular coupling; (3) hemodynamic states; and (4) the
BOLD signal (Fig. 1). As the generative models within the DCMs can
also be applied to model a single ROI, we will first start with models of
a single hemodynamic region (or node) and then consider the effective
connectivity among regions.

Neuronal models

Single-state (S-DCM)
In S-DCM (Friston et al., 2003), the neuronal activity is modeled

using a single-state that summarizes the synaptic activity in a cortical
region of a single (excitatory) neuronal population:

dxE tð Þ
dt

¼ −σ � xE tð Þ þ c � u tð Þ: ð1Þ

This differential equation models temporal changes in the neuronal
state xE(t) that are driven by exogenous input u(t) (e.g. sensory stimuli).
The strength of the input influence, which is proportional to the ampli-
tude change of the neuronal signal, is encoded by the parameter c. The
temporal scaling of neuronal responses to the exogenous input is con-
trolled by the intrinsic decay parameter σ (i.e. self-connection). In par-
ticular, σ controls the rate of exponential growth/decay of the neuronal
activity during and after stimulation. This parameter is enforced to be



Table 1A
Recommended parameter values for P-DCM and their plausible ranges (in brackets).

Parameter Name Value

Intrinsic neuronal connectivity
σ (Hz) Excitatory self-connection 0.5 (0.1–1.5)
μ (Hz) Inhibitory–excitatory connection 0.4 (0–1.5)
λ (Hz) Inhibitory gain factor 0.2 (0–0.3)

Neurovascular coupling
φ (Hz) Decay of vasoactive signal 0.6
ϕ (Hz) Gain of vasoactive signal 1.5
χ (Hz) Decay of blood inflow signal 0.6

Hemodynamic model
tMTT (sec) Mean transit time 2 (1–5)
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Fig. 1. A schematic illustration of the causal chain between the neuronal and the BOLD response that underlies P-DCM. The neuronal model (1) reflects the excitatory–inhibitory balance,
which evokes hemodynamic changes via feedforward neurovascular coupling (2) and causes changes in blood inflow. Changes in blood inflow are accompanied by changes in blood
outflow, blood volume and deoxyhemoglobin content (3). The rate of blood outflow is influenced by the change in the blood volume. Changes in blood volume and deoxyhemoglobin
content are then reflected in the BOLD response (4).
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negative to ensure that the dynamic system is stable, i.e. neuronal signal
will return to the baseline after the end of the stimulus.6

Two-state (2S-DCM)
The single-state neuronal model was extended by Marreiros et al.

(2008) by adding an inhibitory neuronal subpopulation within each re-
gion. That is, it models both excitatory (glutamatergic) and inhibitory
(GABAergic) connections within each cortical region — making it
more realistic from the physiological point of view. This model is repre-
sented by a system of two coupled linear differential equations:

dxE tð Þ
dt

¼ −σ � xE tð Þ−μ � xI tð Þ þ c � u tð Þ;
dxI tð Þ
dt

¼ xE tð Þ−xI tð Þ:
ð2Þ

The first equation summarizes the dynamics of excitatory neurons
xE(t), while the latter models the activity of inhibitory neurons xI(t).
As before, the excitatory self-connection σ is constrained to be negative,
but in contrast to the single-state, it isfixed to 0.5 (in SPM12). The inhib-
itory self-connection is also fixed to the value of − 1. This negativity
constraint ensures stability (i.e., the real parts of the eigenvalues of the
system's Jacobian are negative); in other words, the neuronal dynamics
eventually collapse to a stable steady-state. In addition, the excitatory–
inhibitory connection is also fixed to the value of 1. The effect of neuro-
nal inhibition is introduced by negative feedback between the inhibito-
ry and excitatory state, which is scaled by the parameter μwith a default
prior value of μ=1/8. The negative inhibitory–excitatory connection in
combination with the positive excitatory–inhibitory connection results
in complex eigenvalues, which determine the oscillatory frequency of
this dynamic system; it is about 0.04 Hz for the default setting.

Adaptive two-state (P-DCM)
To overcome the limitations of the two-state model (see Results

section), we introduce a new two-state neuronal model, which allows
formoreflexible and adaptive neuronal responses— similar to observed
physiological recordings (for example, as obtained from invasive and
non-invasive electrophysiology). The newneuronalmodel can be partly
related to the model used in Buxton et al. (2004), which was defined
6 Usually, positivity or negativity of connections is imposed using log-normal priors, i.e.
the parameters from normal distributions are transformed via an exponential function,
which is multiplied by a scaling parameter that defines the mean of log-normal distribu-
tion (see also Supplementary Material S5). For example, for negative constraints, we have
−σ expð~σÞ, and the variable ~σ is sampled from the normal distribution.
as a discrete model with continuous component model neuronal
inhibition. Here we consider continuous models for both excitatory
and inhibitory states:

dxE tð Þ
dt

¼ −σ � xE tð Þ−μ � xI tð Þ þ c � u tð Þ;
dxI tð Þ
dt

¼ λ � xE tð Þ−xI tð Þð Þ:
ð3Þ

The dynamics of the excitatory neuronal state are described by the
same equation as above. In contrast to 2S-DCMand S-DCM, the excitato-
ry self-connection σ is free but not region-specific. This assumption is
consistent with an early version of DCM for fMRI (Friston et al., 2003).
The dynamics of the inhibitory state are driven by the excitatory state
and scaled with inhibitory gain factor λ. This gain factor allows control-
ling both the relative amplitude of the inhibitory activity with respect to
the excitatory activity and its temporal smoothness. Differences in tem-
poral smoothness between excitatory and inhibitory activity result in
temporary imbalance that can cause adaptation of the neuronal re-
sponse. How much this temporary imbalance is reflected in the excit-
atory activity is controlled by the inhibitory–excitatory connection μ.
As such, the overall dynamic interaction (or balance) between excitato-
ry and inhibitory activity is controlled by both the inhibitory gain factor
λ and the inhibitory–excitatory connection μ (see Table 1A for their
values). This means, that these parameters introduce adaptation and
τ (sec) Viscoelastic time 4 (0–30)
α Grubb's exponent 0.32
E0 Oxygen extraction fraction at rest 0.4

Physical BOLD signal model (Part I)
V0 (%) Venous blood volume fraction 4



7 Note that the CBV and deoxyhemoglobin in the balloonmodel refer almost exclusively to
changes in the venous part of tissue vasculature. However, the total CBV (Huber et al., 2014;
Kim and Ogawa, 2012), which is usually the variable determined in experiments, represents
a weighted sum of arterial, capillary and venous CBV that is not directly considered in the bal-
loon model. In general, the arterial, capillary and venous CBV are causally linked. While the
changes in arterial and capillary CBV follow closely the dynamic change in CBF, the change
in venous CBV can bemore delayedwith respect to CBF (see below the CBF–CBVuncoupling).
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refractory effects to neuronal response; i.e. how fast the activity of excit-
atory neuronal response drops from its initial peak to the plateau level
and how fast it returns from the post-stimulus dip to the baseline. Addi-
tionally, strengths of μ and λ connections are relative to the strength of
σ, which determines the overall temporal scaling of the neuronal dy-
namics. For example, a decrease of σ will lead to a decrease in λ and μ
(see Supplementary Material S1 for more detailed analysis of this
multi-dimensional parameter space). Finally, it is also worth noting
that the new two-state model can be reduced to the old two-state
model by setting λ = 1 or to the single-state model by setting μ = 0.

Neurovascular coupling

Neurovascular coupling links changes in neuronal activity to
changes in CBF and CBV. There are many neurovascular agents that
are involved in transforming neuronal activity to hemodynamic
changes (Riera and Sumiyoshi, 2010). It is beyond the scope of the cur-
rent article to discuss those. Please see specialized reviews on that topic;
e.g. (Attwell et al., 2010; Cauli et al., 2004; Devor et al., 2007; Lauritzen,
2005; Riera and Sumiyoshi, 2010).

S-DCM and 2S-DCM differ only in their neuronal model (and the en-
suing connectivity model). Both are identical in NVC, vascular dynamics
and the observation model.

Feedback based neurovascular coupling (S-DCM and 2S-DCM)
Based on the empirical evidence that the relationship between neuro-

nal activity and blood flow is roughly linear (Miller et al., 2001), Friston
et al. (2000) introduced an NVC model assuming a linear drive between
neuronal activity and blood flow change. In thismodel, the neural activity
creates an inducing signal s(t) that drives blood flow f(t) in a linear way,
with f(t) responding like a damped harmonic oscillator. That is, the flow
changes are evoked by the inducing signal (feedforward) and the level
of flow in turn changes the inducing signal (feedback):

ds tð Þ
dt

¼ − κ � s tð Þ−γ � f tð Þ−1ð Þ þ xE tð Þ;
df tð Þ
dt

¼ s tð Þ:
ð4Þ

Regulated by rate constants γ and κ, it produces damped oscillations
with a frequency about 0.09Hz (consistentwith ultra-slow endogenous
fluctuations in BOLD signals (Biswal et al., 1995; Fox et al., 2005;
Fransson, 2005) and empirical observations of the vasomotor or
V-signal; see Discussion). This mathematical formulation implies that
the bloodflow exhibits a post-stimulus undershoot evenwith noneuro-
nal post-stimulus deactivation. At first glance, this form seems suitable
for short stimuli, where the increase of neuronal activity leads to in-
crease of the inducing signal, which in turn results in an increase of
CBF. However, for sustained stimulation, the neuronal activity settles
to the steady-state plateau (and so does CBF), while the inducing signal
s(t) is altered only at the beginning and the end of stimulation. Addi-
tionally, anymanipulation of the CBF baseline with no neuronal activity
change (e.g. using vasodilatory agents) leads to opposite changes in s(t),
which is physiologically implausible (see SupplementaryMaterial S2 for
more details). Furthermore, the formulation of feedback based NVC
(4) should not be confused with the hypothesis that CBF is locally con-
trolled by the level of tissue concentrations of oxygen and glucose deter-
mined by baseline CBF, metabolism and neuronal activity (see review
by Attwell et al. (2010) and Supplementary Material S2).

Several studies which manipulated blood O2 (Lindauer et al., 2010)
and glucose (Powers et al., 1996) concentrations have shown that O2

and glucose do not regulate blood flow according to the negative-
feedback hypothesis (Attwell et al., 2010). It is currently believed that
neurovascular coupling is regulated by predominantly feedforward
mechanisms (within the range of stimulus evoked responses in healthy
human subjects). This means that neurons either signal directly to
blood vessels via synapses or extra-cellular diffusionor activate astrocytes
to release vasoactive agents onto the vessels (Attwell and Iadecola, 2002;
Cauli et al., 2004; Devor et al., 2007; Lauritzen, 2005; Masamoto and
Kanno, 2012; Uludağ et al., 2004; Zonta et al., 2003). Additional evidence
for the feedforwardmechanism is provided by hypercapnia experiments,
which show that increasing baseline CBF onlyminimally affects stimulus-
induced CBF change (Brown et al., 2003; Li et al., 2000; Zappe et al.,
2008b): The negative feedback hypothesis predicts a much smaller
stimulus-induced CBF change with higher baseline CBF values.

Feedforward neurovascular coupling (P-DCM)
Following these arguments, therefore, we consider an NVC model

for P-DCM based strictly on feedforward mechanisms. Thus, we have
chosen (under the constraint that the dynamical system linking synap-
tic activity and blood flow is linear) the most parsimonious model that
represents these mechanisms:

da tð Þ
dt

¼ −φ � a tð Þ þ xE tð Þ;
df tð Þ
dt

¼ ϕ � a tð Þ−χ � f tð Þ−1ð Þ:
ð5Þ

Here, a(t) is a vasoactive signal that transforms the neuronal response
xE(t) to the blood flow response f(t). Although the NVC is modeled to be
driven only by excitatory neuronal activity, the contribution of inhibitory
activity to it is introduced indirectly through interactions between the
two neuronal populations. Eq. (5) represents a simple (dynamic) convo-
lution kernel, which acts as a positively constrained low-pass filter of the
neuronal dynamics. This is achieved using three regulatory constantsφ,ϕ
and χwhich control the response decay and can delay its peak by about
3–5 s with respect to the neuronal signal, as observed experimentally.
Parameterization of this NVC was adjusted to approximate the gamma
convolution kernel previously used to link the neuronal response to
blood flow (Buxton et al., 2004). These regulatory constants are fixed in
this paper to produce about 3 s delay of the CBF response peak, with re-
spect to a short input impulse (for specific values see Table 1A). However,
if CBFmeasurements are available together with the BOLD signal, thenχ
can be optimized as a free parameter.

The basic physiological interpretation of this model is that the neuro-
nal activity starts a cascade of biochemical processes that – for neuronal
excitation/inhibition – leads to arterial vasodilatation/vasoconstriction
associated with increased/decreased CBF (Devor et al., 2007). Effectively,
this means that the vasoactive signal and blood flow are accurate repre-
sentations of low-pass-filtered neuronal responses. As a consequence,
in contrast to the feedback basedNVCused in S-and2S-DCM, anobserved
CBF post-stimulus undershoot is always related to neuronal deactivation
(Masamoto et al., 2008).

Hemodynamic model

The hemodynamic model used in DCMwas motivated by the balloon
model (Buxton et al., 1998b). This model assumes that post-capillary
vessels are represented by an expandable venous compartment (i.e. a
balloon) that is fed by the output of the capillary bed, f(t); i.e. by the
output of the NVC. The coupled equations of the original balloon model
represent mass balance for blood volume and deoxyhemoglobin as they
pass through the venous balloon7:

dv tð Þ
dt

¼ 1
tMTT

f tð Þ− f out v; tð Þ½ �; ð6Þ
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dq tð Þ
dt

¼ 1
tMTT

f tð Þ E fð Þ
E0

− f out v; tð Þ q tð Þ
v tð Þ

� �
: ð7Þ

The two dynamical variables are the blood volume v(t) and
deoxyhemoglobin content q(t) within the venous balloon, normalized
to their values at rest. Here, the rate of change of the blood volume
v(t) is modeled as a difference between the blood inflow f(t) and
the blood outflow fout(v). The rate of change of deoxyhemoglobin
q(t) is modeled as a difference between the rate of delivery of
deoxyhemoglobin into the venous balloon and the clearance rate of
deoxyhemoglobin from the tissue. The time dimension of these
equations is scaled by the time constant tMTT; i.e., the mean transit
time that blood takes to pass the veins.

This biomechanical model is based on two functions: oxygen extrac-
tion fraction, E( f), and blood outflow, fout(v). Based on the physiological
notion of limited oxygen delivery (Buxton and Frank, 1997), a large in-
crease of blood inflow is required to support a small increase in oxygen
metabolism (CMRO2). In addition, studies with suppressed hemody-
namic response have shown that oxygen extraction from the blood is
as slow as the typical hemodynamic response (Masamoto et al., 2008;
Zappe et al., 2008a). Thus, these studies suggest a tight temporal cou-
pling between CMRO2 and CBF, albeit with a mismatch in their respec-
tive amplitudes (see Discussion section for elaboration and limitation
of this concept). Therefore, we model E( f) in S-, 2S- and P-DCM to be
a fixed nonlinear function of blood inflow (Buxton and Frank, 1997):

E fð Þ ¼ 1− 1−E0ð Þ1= f ; ð8Þ

where E0 is the net oxygen extraction at rest. Normalized CMRO2 is then
simply expressed as f ⋅ E( f)/E0, which is implicit in Eq. (7). The relation-
ship between blood outflow and blood volume can also differ between
the steady-state and transient periods.

Balloon model — steady-state (S-DCM, 2S-DCM)
Steady-state models are concerned primarily with magnitude

changes. Grubb et al. (1974) found that the steady-state relationship be-
tween CBF and CBV could be described by a power law, so that during
steady-state the outflow follows a simple nonlinear relation:

f out vð Þ ¼ v1=α ; ð9Þ

where αwas empirically found to be about 0.38 (Grubb et al., 1974). In
other words, CBV change is a (slightly non-linear) scaled version of CBF
change. Although this relationship is valid for steady-state conditions,
it does not hold during transient responses. Nevertheless, S-DCM and
2S-DCM assume that the steady-state flow-volume relationship (using
the value of α = 0.32) is also valid during the transient responses.

Balloon model — viscoelastic effect (P-DCM)
Mandeville et al. (1998) experimentally demonstrated that the

above Grubb relationship between blood volume and blood outflow
holds during the plateau of the positive response but not during the
BOLD undershoot period; i.e., there is a different transient relation
fout(v, t) in the transition periods between the steady-states. This key
observation was crucial for the development of the balloon model,
since it allows for the possibility that the post-stimulus BOLD under-
shoot is primarily a passive biomechanical effect of the blood vessels
rather than a metabolic effect (Buxton, 2012). This can be modeled by
adding a dynamic viscoelastic effect to the steady-state blood outflow
equation (Buxton et al., 1998a, 2004):

f out v; tð Þ ¼ v1=α þ τ � dv tð Þ
dt

¼ 1
τ þ tMTT

� tMTT � v tð Þ1=α þ τ � f tð Þ
� �

:

ð10Þ
With this form, the balloon initially resists a change in blood volume,
but eventually settles into a new steady-state that conforms to the
power law model in Eq. (9). The viscoelastic time constant τ controls
the duration of this transient adjustment. For a nonzero value of τ, the
outflow follows a different curve during balloon inflation and deflation,
contributing to BOLD response overshoot and undershoot, respectively.
In P-DCM, we include the viscoelastic effect and follow the original bal-
loon model; i.e., allow for temporal uncoupling of CBF and venous CBV.

Therefore,we propose in P-DCM that theBOLDpost-stimulus under-
shoot (but also response overshoot) can reflect contributions from
both: (i) neuronal post-stimulus deactivation carried through the
blood flow and (ii) a vascular uncoupling due to a slow recovery of
the venous CBV.

Physical BOLD signal model

To connect the above hemodynamic model with experimental fMRI
data acquired with the BOLD contrast, Buxton et al. (1998b) introduced
a quantitative model of the BOLD signal change as a function of blood
susceptibility and volume:

y ¼ V0 k1 1−qð Þ þ k2 1−
q
v

� �
þ k3 1−vð Þ

h i
: ð11Þ

Here, the first term describes the extravascular signal as pure func-
tion of deoxyhemoglobin; the second term describes the intravascular
signal given by the ratio between deoxyhemoglobin and blood volume;
and the third term describes the volume-weighted balance between ex-
travascular and intravascular signals. V0 is the resting blood volume
fraction and the parameters k1, k2 and k3 are dimensionless constants
reflecting baseline physiological properties of brain tissue and acquisi-
tion parameters of the gradient echo (GE) sequence. Although V0 varies
over the brain, its actual value is usually not relevant for the DCM
formulation because the value of V0 is just a scaling factor of the BOLD
signal, which can be compensated by the scaling constant of neuronal
activity. The k1, k2 and k3 parameters are dependent on the magnetic
field strength:

k1 ¼ 4:3ϑ0 � E0 � TE;
k2 ¼ ε � r0 � E0 � TE;
k3 ¼ 1−ε:

ð12Þ

The term ε denotes the ratio of intra- to extra-vascular fMRI signal
contributions. Its exact value, however, has been somewhat controver-
sial in the literature for fMRI data obtained with GE sequences at 1.5 T
(see the discussion in Stephan et al. (2007)). Previous studies have
assumed values of ε in the range 0.4–1.43. Due to this ambiguity, ε is
treated as a free parameter in standard DCMs. The term ϑ0 is the
(field-dependent) frequency offset at the surface of a blood vessel for
fully deoxygenated blood and has a value of 40.3 s−1 at 1.5 T. Finally,
r0 is the sensitivity (i.e. regression slope) of changes in intra-vascular
signal relaxation rate with changes in oxygen saturation, which is
fixed to r0 = 25 s−1 in standard DCMs based on estimates for 1.5 T
(Buxton et al., 1998b; Obata et al., 2004). TE is the echo time (in ms).

The above coefficients of the fMRI-BOLD signal equation have not
systematically been derived for GE or for spin-echo (SE)MRI acquisition
methods at field strengths N3 T. The recent results by Uludağ et al.
(2009), however, allow one to determine these parameters for different
field strength and acquisitionmethods. They also suggest revised values
for these parameters at 1.5 T and 3 T with GE (see Table 1B): The term
ϑ0 is simply (linearly) proportional to magnetic field strength. The ε
values for macro- and micro-vasculature are taken from Fig. 3c for SE
and 5c for GE in Uludağ et al. (2009). As can be seen, ε becomes smaller
with field strength for both SE and GE, and ε is larger for SE than for GE.
For GE, the intra-vascular signal becomes negligible for field strength
≥7 T, which leads to a linearization of BOLD signal equation. Moreover,
themeasured BOLD signal is expected to have εmore onmacro-vascular



Table 1B
Field strength dependence of the BOLD signal parameters.

Physical BOLD signal model (Part II)

Field
strength (T)

ϑ0 ε for GE
(macro–micro)

r0 for
GE

ε for SE
(macro–micro)

r0 for SE /1000

1.5 40.3 0.1263–1.3210 15 14.9693–60 0.0171
3 80.6 0.1291–0.5648 108 1.92–5.4598 0.0684
4 107.5 0.0295–0.1263 157 1.0668–2.7567 0.1216
4.7 126.3 0.0103–0.0463 191 0.7857–1.6963 0.1679
7 188.1 0 – 0.3390–0.3967 0.3725
9.4 252.5 0 – 0.0640–0.2602 0.6717
11.7 314.3 0 – 0.0133–0.1970 1.0406
14.1 378.8 0 – 0.0029–0.1573 1.4900
16.4 440.6 0 – 0.0006–0.1280 2.0446
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than micro-vascular side. The term r0 for SE and GE can be derived from
linearizing Eqs. (8) and (9) in Uludağ et al. (2009). Finally, the optimal
TE values are also subject to variation with different field strengths and
their specific values are given by the acquisition (user-specific) protocol.
Therefore, they are not included in the Table 1B (see also Supplementary
Material S4 for further demonstration).

Theory: effective connectivity of brain areas

In the previous section, we have focused on a single region —
modeling the link between neuronal and hemodynamic responses
and the fMRI signal. However, DCM is usually used to study effective
connectivity among different brain areas. In fMRI, connectivity pat-
terns can be distorted by the sluggishness of the hemodynamic re-
sponse and by hemodynamic variability (Roebroeck et al., 2011)
in different areas and even nearby voxels. DCM tries to disentangle
the neuronal connectivity from these hemodynamic confounds. In
the following, we will discuss the inter-area connectivity models
in the three different DCMs.

Single-state connectivity model (S-DCM)

The original neuronal model, assuming only an excitatory neuronal
population, has a simple form that allows for bilinear interactions be-
tween neuronal states and experimentally controlled (and therefore
known) inputs. Although we restrict our description only to the stan-
dard bilinear form, all neuronal connectivity models (including the
ones below) can be extended to also include nonlinear interactions as
described by Stephan et al. (2008). The bilinear model is represented
by a multiple-input multiple-output system that is described by a set
of differential equations written in matrix form as:

dXE tð Þ
dt

¼ ℑXE tð Þ þ CUd tð Þ;

where
ℑi j ¼ Ai j þ ΣM

m¼1B
mð Þ
i j um tð Þ; f or i ≠ j; and

ℑii ¼ −σ exp Aii þ ΣM
m¼1B

mð Þ
ii um tð Þ

� �
:

ð13Þ

This differential equationmodels temporal changes in amultivariate
neuronal state XE(t) = [xE1(t), …, xEN(t)]T, where 1, …, N indexes
regions-of-interest (ROIs), resulting from a sum of three effects. First,
the off-diagonal element matrix of Aij encodes the fixed (context
independent) strength of connections between brain regions, whereas
the diagonal elements of Aii scale the self-connection σ that was
described above to ensure stability and decay of neuronal responses.8
8 Note that the scaling of σ via log-normal transformation was introduced in later ver-
sions (the SPM12 implementation). In earlier implementations, σ was directly expressed
by diagonal elements of A and B − σ remains negative.
Second, thematrix B(m) represents the context-dependentmodulations
of connections induced by (modulatory) exogenous inputs um(t).
Above, we chose to group these A and Bmatrices into the total connec-
tivity matrix ℑ to simplify the notation. Third, the matrix C encodes the
influence of the (driving) exogenous inputs Ud(t) = [ud1(t),…, udN(t)]T

to the system.
The strength of connections (in units of Hz) among regions is rela-

tive to the excitatory self-connections. This means that we deal with
normalized parameters. They can have either positive or negative
values; i.e., they generate either positive or negative neuronal responses
at the terminal node of the feedforward connection, or they positively or
negatively modulate the neuronal response via feedback connections.
Finally, the usual interpretation of positive connections is that they rep-
resent neuronal excitation, whereas negative connections represent
neuronal inhibition.

Two-state connectivity model (2S-DCM)

The standard two-state neuronal model (Marreiros et al., 2008),
which added an inhibitory neuronal subpopulation to the excitatory
neuronal subpopulationwithin each region, has the followingmultivar-
iate form to model bilinear neuronal interactions between different
brain regions:

dXE tð Þ
dt

¼ ℑþXE tð Þ þ ℑ−XI tð Þ þ CUd tð Þ;
dXI tð Þ
dt

¼ XE tð Þ−XI tð Þ;

where
ℑþ
i j ¼ exp Ai j þ ΣM

m¼1B
mð Þ
i j um tð Þ

� �
=8;ℑ−

i j ¼ 0;g for; i ≠ jand

ℑþ
ii ¼ −σ I;

ℑ−
ii ¼ − exp Aii þ ΣM

m¼1B
mð Þ
ii um tð Þ

� �
=8:

ð14Þ

The long-range extrinsic connections aremodeled as excitatory. This
is in accordance with known anatomy: the vast majority of long-range
connections are mediated by excitatory neurons (Markram et al.,
2004). The main differences with respect to the single-state neuronal
model are twofold: First, although the extrinsic connections are
assumed to be excitatory, the activity of the excitatory neuronal state
also carries an indirect contribution of the inhibitory state due to the dy-
namic local interactions between the twoneuronal populations. Second,
the activity is propagated to other regions though the connectivity
matrix ℑij

+ and its off-diagonal elements (i.e. extrinsic connections)
are constrained to positive values (highlighted by + superscript),
whichmeans that thismodel lacks a neuronalmechanism to express in-
hibitory effects of one area over another or simply to explain neuronal
deactivation (see below).

The model allows for region specific modulation of inhibitory to ex-
citatory connections, encoded in the diagonal matrix elements ℑii−, by
context dependent inputs. Notice that for zero diagonal elements Aii

with the absence of additive modulatory diagonal elements Bii(m), ℑii− is
equivalent to above inhibitory–excitatory connection with default
value− μ=−1/8. Next, the excitatory self-connections on the diagonal
of matrix ℑii

+ (i.e. σI, where I is identity matrix) have fixed values in
newer implementations (e.g. SPM12 code R5672). This means that
they are neither region-specific nor can be modulated by context-
dependent input.

Adaptive two-state connectivity model (P-DCM)

In developing the new adaptive two-state neuronal connectivity
model, we wanted to overcome the limitations of the standard DCM
models described above, tomore accurately explain neuronal responses
commonly observed in both direct electrophysiological recordings and
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indirect fMRI measurements. To this end, we consider the following
multivariate form of the new two-state model:

dXE tð Þ
dt

¼ ℑXE tð Þ þ ℑ−XI tð Þ þ CUd tð Þ;
dXI tð Þ
dt

¼ G XE tð Þ−XI tð Þð Þ;

where
ℑi j ¼ Ai j þ ΣM

m¼1B
mð Þ
i j um tð Þ;

ℑ−
i j ¼ 0;

Gi j ¼ 0;

9=
; for i≠ j; and

ℑii ¼ −σ exp ~σ þ ΣM
m¼1B

mð Þ
ii um tð Þ

� �
;

ℑ−
ii ¼ −μ exp ~μ i þ ΣK

k¼1b
kð Þ
μi uμk tð Þ

� �
;

Gii ¼ λ exp ~λi þ ΣL
l¼1b

lð Þ
λi uλl tð Þ

� �
:

ð15Þ

As in 2S-DCM, the long-range connections in matrix ℑij are modeled
between the excitatory neuronal populations. However, these connec-
tions can be both positive and negative, which lead to either increase
or reduction of neuronal activity in the target area, respectively. Then,
the total connectivity matrix ℑ thus has a very similar form as in the
original single-state model (Friston et al., 2003), including the additive
modulatory effects encoded inmatrix B(m) and controlled by themodu-
latory inputs um(t). Clearly, this is a simplification with respect to the
long-range neuronal connections; however, the complexity of the neu-
ronal model must be tailored to the amount of information present in
the experimental fMRI data. Moreover, to make this neuronal model
generalizable to broad variations in experimental conditions and obser-
vations,we allowalso the local connections– responsible for controlling
the balance between excitatory and inhibitory neurons – to bemodulat-
ed by context dependent inputs uμk(t) and uλl(t). These inputs scaled by
parameters bμi(k) and bλi

(l) canmodulate the inhibitory-excitatory connec-
tions and inhibitory gain factors, respectively. Note that all these param-
eters can be region-specific. In general, introducing modulation of
intrinsic connections can be used tomodel different neuronal dynamics
during sustained stimulation and during post-stimulus intervals. For
example, one can imagine that there is a strong adaptation profile dur-
ing stimulation, followed by minimal or no post-stimulus deactivation
(see experimental data below).

Simulations and experimental data

In this section, we describe the simulations to characterize the basic
phenomenology of themodels, paying special attention to the empirical
aspects of neuronal, neurovascular and hemodynamic responses
detailed in the Introduction. We first consider the responses of a single
region and then the responses of a simple network. Finally, the impor-
tance of introducing new physiologically more informed models is
demonstrated using an experimental BOLD-fMRI example.

Impulse response functions in a single ROI

To illustrate the variety of time courses within a single region of
interest (ROI) that can be produced by S-DCM, 2S-DCM and P-DCM,
we describe responses of the dynamic system to a boxcar input function
with 1 s (short) and 30 s (long) durations, respectively. These responses
were calculated by numerical integration of dynamic systems using
local linearization (Ozaki, 1992) in theMATLAB software (MathWorks),
with integration step in Δt = 0.01 sec.

The parameters used to simulate neuronal and hemodynamic re-
sponses can be found in Table A.1. These were chosen to give a basic
idea of the response variability supported by specific DCMs. Note that
the amplitude of the input function that drives the neuronal model
was always adjusted to produce ~50% CBF response change, a typical
magnitude in human functional stimulation experiments. Finally, all
S-, 2S- and P-DCM assumed a parameterization of the BOLD signal
equation given for 3 T field strength (see Tables 1A,1B), acquired with
a GE sequence and TE=35 ms (simulationswith different TE's produce
very similar results – data not shown – within a range of 30 to 45 ms).

Connectivity simulations

To examine the basic properties of connectivity models and how
they are reflected in the BOLD signals, we generate BOLD responses by
assuming a simple neuronal network of three connected regions
(Fig. 2A). In this network, the R1 region is driven by exogenous input
(i.e. two repetitions of simple boxcar function of 30 s duration) and
the activity from region R1 is propagated to regions R2 and R3. Between
R1 and R2 regions, we consider a strong positive feedforward connec-
tion, which persists during both periods. We also introduce a positive
feedback connection through a modulatory input, which is active
during the first stimulation period, but also after the first stimulus
offset. In contrast, between R1 and R3 regions, we consider a negative
feedforward connection. Specific values for connections of this network
are displayed in Fig. 2A.

First, we simulated all neuronal connectivity models with values of
extrinsic and intrinsic excitatory connections reported in Fig. 2A, and
then also considered a scenario where these connections were half the
size. By doing this, we were able to compare BOLD responses given
faster (scenario 1) and slower (scenario 2) neuronal dynamics. This
has partially historical reasons; earlier versions of DCMs considered
fast neuronal dynamics but later – with the introduction of stochastic
DCM (Daunizeau et al., 2009; Friston et al., 2008, 2010; Havlicek et al.,
2011) that allowed modeling of endogenous neuronal activity – the
self-inhibitory connections in the excitatory state were adjusted to
account for slower dynamics. In our connectivity simulations, only the
neuronal parameters were varied (see Fig. 2B) and the neurovascular
and hemodynamic parameters were kept constant. However, to dem-
onstrate the sole effect of neuronal dynamics on the BOLD responses,
the CBF–CBV uncoupling was (artificially) minimized by setting τ = 0.
A summary of all parameters used to calculate the neuronal and hemo-
dynamic responses defined by different models can be found in
Table A.2. As for the single region simulations, S-, 2S- and P-DCM as-
sumed a parameterization of BOLD signal equation for 3 T field strength,
acquired with GE sequence and TE= 35 ms.

Evaluation of model evidence using experimental data

We illustrate the relevance of the different physiological mecha-
nisms embedded within the different DCMs on single ROI experimental
fMRI responses during a visual task. In short, the visual task involved
alternation between static and flickering checkerboards organized in
blocks (each 55 s long) and interleaved with resting periods (each
110 s long). The functional data were measured with an ASL sequence
at 3 T providing both BOLD and CBF responses. Significantly activated
voxels from the left V1 region of visual cortex were selected for the pur-
pose ofmodel comparison. Details about data acquisition, preprocessing
and ROI selection can be found in Supplementary Material S5.

For model comparison, we restrict our analysis only to the BOLD re-
sponses averaged over all trials of the two conditions. To this end, each
model is driven by two inputs representing static and flickering visual
stimulation and selected intrinsic neuronal connections were modulat-
ed by four unique modulatory inputs. These modulatory inputs are spe-
cifically designed to distinguish between stimulus and post-stimulus
intervals in each condition (see Fig. 2C for schematic illustration). This
means that we allow for different parameterization of neuronal
model, between conditions but importantly also between stimulus
and post-stimulus intervals. In particular, in S-DCM we modulate the
excitatory self-connection (σ); in 2S-DCM the inhibitory–excitatory
connection (μ); and in P-DCM the excitatory self-connection (σ) and
inhibitory–excitatory connection (μ). The inhibitory gain factor (λ) is
estimated as well, but it is (in this case) assumed constant over all
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conditions and time intervals (see Fig. 2C). Further, while S-DCM and
2S-DCM allowed fitting of the decay parameter (κ) in the feedback
based NVC, the decay parameter (χ) of the feedforward NVC was
fixed. All DCMs allowed fitting themean transit time (tMTT) and the rel-
ative intra to extra-vascular signal contribution (ε). In P-DCM, we addi-
tionally enabled fitting of the viscoelastic time (τ). For default values of
all new model parameters see Table 1A. Models were inverted using a
Variational Bayesian algorithm (Friston et al., 2007) implemented in
SPM12 and compared on the basis of themodel log-evidence difference
(approximated by the difference between Variational free energies of
the different models; see Supplementary Material S5).

Results

Impulse response functions in a single ROI

The curves in Figs. 3 and 4 illustrate the variety of time courses that
can be produced by S-DCM, 2S-DCM and P-DCM, respectively. In each
figure, the time courses of neuronal, CBF, CBV, and BOLD responses are
shown in separate panels.

S-DCM
In Fig. 3A, the neuronal response (to a short stimulus) based only on

excitatory activity increases during stimulation interval and exhibits
decay to the baseline during post-stimulus interval. The CBF response
rises more slowly than the neuronal activity and, for different values
of the signal decay constant κ, demonstrates post-stimulus CBF under-
shoots that vary from very strong (~20% compared to the positive
peak) to negligible. The CBV response is slightly delayed with respect
to CBF response due to themean transit time of tMTT=2 s. The dynam-
ics of CBV follow the dynamics of the CBF response very closely, includ-
ing its non-neuronal dynamic transients. Note that the recovery to
baseline of the BOLD signal is slower than that of CBF and CBV, in
discrepancy with experimental data (see e.g. Sadaghiani et al. (2009),
Chen and Pike (2009) or Huber et al. (2014)). In addition, the BOLD sig-
nal undershoot is smaller than that of CBF. It is worth noting that tMTT

can affect the presence of post-stimulus undershoot as it is observed
in the BOLD response: for tMTT N 3 s, there is no BOLD post-stimulus
undershoot, even though the post-stimulus undershoot would still be
present at the level of CBF and CBV (see results from experimental
data below).

In Fig. 4A, we show the time courses for the samemodel parameters
but induced by sustained stimulation. Here, the neuronal response first
exponentially grows until it reaches (in ~5 s) a steady-state plateau and
then it exponentially decays after stimulus cessation. A small initial
overshoot and post-stimulus undershoot in the CBF responses are
conveyed to the CBV and less to the BOLD responses. Note that varying
the feedback parameter in NVC has only a small effect on the resulting
BOLD responses.
2S-DCM
In Fig. 3B, the neuronal response to a short impulse stimulation ex-

hibits richer dynamic transients compared to the single-state model.
This was achieved by altering the inhibitory–excitatory connection
parameter μ. These neuronal responses mainly affect the CBF return to
baseline and the CBF response width. However, they only have a negli-
gible influence on the CBF post-stimulus undershoot amplitude.
Dynamic transients of CBF responses are conveyed further to CBV and
BOLD responses,with the BOLD responses again showing slightly small-
er post-stimulus undershoot compared to the CBF responses. Note that
even though we have varied the neuronal post-stimulus deactivation
from strong (~25% compared to the positive peak) to none, these neuro-
nal variations are not reflected in the post-stimulus BOLD undershoot
but only slightly in the BOLD response width. This is because the
inhibitory activity is very closely coupled to the excitatory activity and
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its dynamics are not further regulated (only its contribution to the
excitatory activity via μ).

In Fig. 4B, we can see the effect of neuronal inhibition on the excit-
atory activity during sustained stimulation that results in adaptively re-
ducing the neuronal activity to its plateau and in a brief deactivation
after stimulus cessation. However, the two-state model results in only
weak and brief adaptive responses and post-stimulus deactivations.
These transients are small compared to the main signal change. This is
also true for transients seen in CBF, CBV and BOLD responses, which
again originate almost entirely from the feedback basedNVC. In general,
the range of possible BOLD signal dynamic transients for different
neuronal time courses is very restrictive.
P-DCM
In Fig. 3C, neuronal responses produced by the new adaptive two-

state model are shown for the short stimulus, where we have varied
the values of the inhibitory gain factor λ and the inhibitory–excitatory
connection μ. P-DCM effectively models post-stimulus neuronal
deactivation, which may vary from weak (or even none) to strong and
long lasting. The CBF responses represent only delayed and temporally
smoothed versions of the neuronal responses.

The top panel of Fig. 3C shows the CBV and BOLD responses for a
tight coupling between CBF and CBV during both steady-state and tran-
sient periods; i.e., setting viscoelastic time constant τ=0 s as in S- and
2S-DCM. In this case, the post-stimulus BOLD undershoot is smaller
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than CBF post-stimulus deactivation, in contradiction to e.g. Chen and
Pike (2009) or Krüger et al. (1999). Moreover, a difference in post-
stimulus undershoots results from neuronal modulation (see e.g.
Fig. 5A in Yeşilyurt et al. (2010)). The bottom panel of Fig. 3C shows
CBV and the BOLD signal for the case of uncoupling between CBF and
CBV during transient periods, i.e. considering viscoelastic time constant
τ N 0 s, as in the original balloon model. For simplicity, the value of τ
was varied only for one neuronal response input (thick line, left).
With larger τ values, the return of CBV response to the baseline becomes
slower, which in turn results in stronger post-stimulus BOLD under-
shoot. In fact, this response combines both a faster component caused
by the neuronal signal with a slower component caused by vascular
uncoupling (see e.g. Fig. 6A in Kim and Ogawa (2012)).
Fig. 4C displays the neuronal response to sustained stimulation,
which exhibits a decrease to steady-state value after an initial overshoot
and a post-stimulus undershoot (see e.g. Fig. 18A–D in Logothetis
(2002) and Fig. 3A, D, G in Shmuel et al. (2006)). These neuronal tran-
sients are again reflected in the CBF, CBV and BOLD responses (see
Fig. 4C, top). Both the initial overshoot and the post-stimulus deactiva-
tion are reflected in the CBF response, albeit smoothed and attenuated
(see e.g. Fig. 5B in Sadaghiani et al. (2009) or Fig. 6C in Huber et al.
(2014)). For τ = 0 (top panel), in the BOLD response, these transients
are less visible than in CBF and CBV. In contrast, for τ N 0 (bottom
panel), the BOLD response exhibits even stronger transients. Note that
although both the neuronal activity and the BOLD response have an
initial overshoot before settling to a steady-state (which typically is
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interpreted as neuronal adaptation), the BOLD response overshoot has
both neuronal and vascular contributions, with the latter being the
main contributor for large τ values. Importantly, the post-stimulus
undershoot in the BOLD response is stronger than in the CBF response,
resembling the experimental observations (e.g. see Fig. 3E and F in
Chen and Pike (2009)).
Connectivity

Fig. 5 shows the simulation results from the neural network in
Fig. 2A for the different DCMs.
S-DCM
For feedforward positive and negative connections, respectively, the

single-state neuronal model is able to model both increases and de-
creases of neuronal activity in the target areas R2 and R3 (see Fig. 5,
top row). The positive modulation of feedback connection between R2
and R1 leads to an increase of neuronal activity and BOLD amplitude in
both R2 and R1 areas and to decrease of activity in area R3. While the
faster neuronal propagation of the neuronal activity (solid line), gener-
ated within the first simulation scenario, still enables the NVC to intro-
duce small transients in the BOLD response, the slower neuronal
dynamics (dashed line) cancels its effect, resulting in no over- and
undershoot in the BOLD response. The same behavior can also be seen
in area R3 that exhibits neuronal deactivation during the stimulation
period.
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2S-DCM
The two-state neuronal mechanism employed in 2S-DCMallows the

excitatory activity to be locally regulated by the inhibitory activity.
While this can introduce small transients at the neuronal level, their
presence is barely transferred to the BOLD response (see Fig. 5, middle
row). Moreover, in case of slower neuronal dynamics (dashed line),
these transients become negligible and BOLD responses are transient-
less as well. The positive modulation of feedback connection between
R2 and R1 areas has a very similar effect on the first two areas to that
in S-DCM. Most importantly, 2S-DCM is not able to express a decrease
of the neuronal activity below the baseline in the R3 area, because all
excitatory connections are positively constrained. As such, 2S-DCM
can potentially suffer from very low explained signal variance if both
activations and deactivations are present in themeasured BOLD signals.
P-DCM
We can see that with positive and negative feedforward connec-

tions, respectively, the adaptive two-state neuronal model of P-DCM is
able to express both an increase and decrease of neuronal activity in
target areas R2 and R3 (see Fig. 5, bottom row). In contrast to S- and
2S-DCM, significant neuronal transients are present in cases of both
faster (solid line) and slower (dashed line) neuronal dynamics and
in the BOLD responses. Practically, the slower neuronal dynamics intro-
ducemore delay and smoothness into the observed neuronal and BOLD
responses. In this particular setting, all regions exhibit post-stimulus
neuronal deactivation and also a post-stimulus BOLD undershoot that
has a neuronal origin. Furthermore, the negative response in R3 first
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decreases sharply with stimulus onset and then adaptively increases
during stimulation. After stimulation offset, it exhibits an increase of
the neuronal activity above the baseline. The associated negative
BOLD response initially decreases and is followed by an adaptive
increase during the stimulation period and a post-stimulus BOLD over-
shoot after stimulus offset (examples of these responses in experimen-
tal data can be found e.g. in Fig. 3 of Shmuel et al. (2006) or in Fig. 4 of
Huber et al. (2014)). This post-stimulus BOLD overshoot mirrors the
post-stimulus BOLD undershoot that follows the positive BOLD re-
sponse. As such, the simulated dynamics of the negative neuronal and
BOLD responses are in good agreement with experimental observations
obtained with both electrophysiological and fMRI recordings (Huber
et al., 2014; Shmuel et al., 2006). The feedback excitatory connection be-
tween R2 and R1 leads to stronger adaptive neuronal responses during
stimulation and post-stimulus deactivation, both reflected in the BOLD
responses. Further, note that even though all regions had the same
setting of local balance betweenexcitatory and inhibitory neuronal pop-
ulations, the amplitude of the transient responses varies between re-
gions. This is because the local balance is further disturbed through
the remote excitatory connections, which can lead tomore pronounced
transients — as seen in area R2.

Experimental data

The results obtained by fitting S-DCM to BOLD data are displayed
in Fig. 6A. One can see that fitted BOLD responses (in red) can repre-
sent the positive part of the measured signal in terms of the main
amplitude change (see Fig. 6A). Modulation of the excitatory self-
connection (σ) gained different values for different conditions
(σ = 1.10 during static stimuli, followed by σ = 1.15 after static
stimuli, and σ = 0.33 during flickering stimuli, followed by σ =
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profile in measured positive BOLD response during static stimuli and
strong post-stimulus BOLD undershoot after flickering stimuli. Fur-
ther, even though there are small transients present in CBF and
BOLD responses especially to static stimuli, these are independent
of stimulus type. They are produced by feedback based NVC. These
transients are not present in CBF and BOLD responses during flicker-
ing stimuli due to smaller σ = 0.33.

The results offitted BOLD responses obtainedby2S-DCMare visually
quite similar to S-DCM(see Fig. 6B). However, the underlying story at the
neuronal level is quite different. Modulation of the inhibitory–excitatory
connection during the static condition resulted in a relatively strong con-
tribution of the inhibitory activity to the excitatory activity during both
the stimulation and the post-stimulus interval (μ = 0.55 and μ = 0.39
respectively). Nevertheless, these modulations had small effect on tran-
sients in CBF and BOLD responses. Transients in modeled CBF and
BOLD responses are still mostly generated via negative feedback based
NVC and they cannot explain large adaptation in measured positive
BOLD response. In the case of the flickering condition, the effect of inhib-
itory activity is smaller (μ = 0.15), which agrees well with the fact that
the plateau of the BOLD response remains relatively flat during the stim-
ulation interval. Although there is stronger involvement of the inhibitory
activity (μ = 0.85) during the post-stimulus interval, it has negligible
effect on modeled post-stimulus BOLD undershoot and thus the large
post-stimulus undershoot in measured BOLD response cannot be
explained by this model.

P-DCM provides very accurate fits of the BOLD responses for
both experimental conditions (see Fig. 6C). During static stimuli, the
neuronalmodel is capable of representing a large adaptation of the neu-
ronal response through a strong contribution of the inhibitory activity
(μ = 0.44) with respect to excitatory-self connection (σ = 0.73). The
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inhibitory activity by itself exhibits slower temporal dynamics (not
shown) controlled by the inhibitory gain factor (λ = 0.04). Thus,
the adaptive profile of the observed BOLD response mainly has a
neuronal origin. Next, during the post-stimulus interval, the excitatory
self-connection is about the same as during the stimulation
interval (σ=0.73) but the contribution of inhibitory activity is smaller
(μ = 0.15). This results in a small (but prolonged) neuronal post-
stimulus deactivation. This neuronal deactivation is also reflected in
the CBF response and contributes to the post-stimulus BOLD under-
shoot. Additional contribution to the small post-stimulus BOLD under-
shoot is caused by vascular uncoupling (τ = 15.71 s). During
flickering stimuli, we can see that there is no contribution of the inhib-
itory activity to neuronal response (μ=0.00); i.e. the profile of positive
response during flickering stimuli is defined by excitatory activity only
σ = 0.74, which is about the same as during static stimuli. Although
modeled neuronal and CBF responses (displayed in blue and green,
respectively) show flat plateau, the positive BOLD response exhibits
small overshoot due to the vascular uncoupling. Note that the vascular
uncoupling is constant over all stimulus and post-stimulus intervals
(estimated τ = 15.71 s). Finally, during the post-stimulus interval,
the excitatory self-connection is smaller (σ = 0.44) and the contribu-
tion of inhibitory activity is increased (μ = 0.35), causing strong
and long lasting post-stimulus neuronal deactivation. This post-
stimulus deactivation is reflected in CBF response and represents the
main contribution to the post-stimulus BOLD undershoot. Overall, in
this experimental example, the transients seen during the static and
flickering stimulations (i.e. adaptation during stimulation for static
and post-stimulus undershoot for flickering) are dominated by the
neuronal processes. It is important to realize that modeled neuronal
dynamics during post-stimulus intervals still reflect properties of
presented stimuli and that they can exhibit large differences dependent
on stimulus type, resulting in broad variation of very small to very large
post-stimulus BOLD undershoot.

Quantitative evaluation of the three DCMs using Bayesian model
comparison based on log-evidencedifference (Fig. 6D) suggests positive
evidence that 2S-DCM is better than S-DCM (withΔF=1.55 that corre-
sponds to Bayes factor of 4.7 (Kass and Raftery, 1995)) and very strong
evidence that P-DCM is superior to 2S-DCM (with ΔF = 42.55 that
corresponds to Bayes factor of ~ 3.0 ⋅ 1018). Note that P-DCM is selected
as a clear winningmodel even though its complexity (i.e. the number of
free parameters) is about twice as high as the complexity of S-DCM or
2S-DCM in this case.

Discussion

In this paper, we have introduced a new generative model for the
fMRI signal inspired by existing experimental data on neuronal ac-
tivity, neurovascular coupling, hemodynamics and fMRI physics
(listed in the Introduction section). This novel physiological frame-
work was applied to DCM of fMRI data (P-DCM), which updates pre-
vious DCMs using current ideas about the physiological
underpinnings of the BOLD signal. P-DCM models the hemodynamic
response to changes in neuronal activity as a chain of causal process-
es: the balance between excitatory and inhibitory neurons drives the
neurovascular coupling which induces changes in CBF in a strictly
feedforward manner. The oxygen metabolism, although mechanisti-
cally independent from the CBF response, is tightly related to the
CBF. Changes in CBF trigger changes in (venous) CBV. Due to the bio-
mechanical properties of blood vessels, CBV can have a different time
course than the CBF during the transient states (as described by the
original balloon and Windkessel models). Note that although CBF
and CBV are causally linked, their dynamics can be different, which
is often referred to as “uncoupling”. The BOLD signal then reflects
both transient and steady-states originating in both (‘active’) neuro-
nal (E–I balance) and (‘passive’) vascular dynamics. Last but not
least, at the neuronal level, the long-range extrinsic connections
communicate via excitatory projection neurons between different
cortical areas in a way that accounts for both neuronal activations
and deactivations.

P-DCM represents a fundamental departure from current DCM
models (S-DCM and 2S-DCM) used in fMRI analysis. The critical dis-
tinction between P-DCM, on the one hand, and S-DCM and 2S-DCM,
on the other hand, is that P-DCM is also concerned with modeling
dynamic transients between steady-states, while S-DCM and 2S-
DCM are mainly concerned with modeling amplitude changes be-
tween baseline and activation states. In a subsequent paper, we
will show that accurately modeling the BOLD signal transients also
affects connectivity parameter estimates.

Maintaining E–I balance is essential for normal brain functioning.
For instance, if the inhibitory neurons are blocked pharmacological-
ly, cortical activity can become epileptic (Dichter and Ayala, 1987).
The neuronal transients originate in a temporary loss of balance
between excitatory and inhibitory populations (Haider et al.,
2006). It is now generally believed that modeling E–I balance – as
an underlying source of the BOLD response (Logothetis, 2008) – is
crucial for relating the neuronal and hemodynamic responses. It
has been suggested that neuronal transients (i.e. initial overshoot
and post-stimulus deactivation) can reflect the number and type of
activated cells, i.e. the neuronal preference, in stimulus processing
(Krekelberg et al., 2006). Importantly, it has also been shown that
neuronal transients are reflected in the BOLD response (Logothetis,
2008; Shmuel et al., 2006) and that their changes can modulate the
BOLD signal post-stimulus undershoot (Mullinger et al., 2013;
Sadaghiani et al., 2009). We were able to demonstrate that our new
adaptive two-statemodel can generate a large repertoire of neuronal
responses to both short and sustained stimuli (Figs. 3 and 4). This al-
lows it to model neuronal responses with an initial peak followed by
a decay to a lower steady-state plateau level and post-stimulus deac-
tivation — as commonly observed in experimental data. Moreover,
the new model also facilitates modeling of negative neuronal re-
sponses with shapes similar to the experimental observations
(Huber et al., 2014; Mullinger et al., 2014; Shmuel et al., 2006).

In accordance with recent observations that neurovascular cou-
pling is mediated by a feedforward mechanism (Attwell et al.,
2010; Devor et al., 2007; Lauritzen, 2005), we have proposed a new
NVC model that is strictly feedforward in nature. This feedforward
NVC in P-DCM was designed to transpose the neuronal transients
into the CBF response. In contrast, the NVC in S-DCM and 2S-DCM in-
volves CBF feedback introducing CBF transients not present in the
neuronal activity. Since different neuronal properties can be distin-
guishable – especially during transient periods between steady-
states (by comparing adaptive profiles or post-stimulus deactiva-
tions) – the feedforward mechanism can, in principle enable the
characterization of E–I balance through non-invasive hemodynamic
signals (Boynton et al., 1996; Hoge et al., 1999; Sadaghiani et al.,
2009). In Figs. 3–5, we have shown that in P-DCM the neuronal tran-
sients, such as initial overshoot or post-stimulus deactivation, are
reflected in the CBF response, and that they can contribute signifi-
cantly to the dynamic transients observed in the BOLD response.
This is an important departure from the previous DCM models,
where neuronal transients (if generated locally) do not contribute
much to the BOLD response overshoot and undershoot.

In addition to the transient responses of neuronal origin, the
BOLD response can also exhibit transients mainly originating from
vascular uncoupling between CBF and CBV. Here, during transient
periods, CBV lags after CBF, which introduces an additional over-
shoot and post-stimulus undershoot into the BOLD response. Al-
though this phenomenon is consistently observed in experimental
data that measure CBV, CBF and BOLD signal (Chen and Pike, 2009;
Huber et al., 2014; Kim and Ogawa, 2012; Mandeville et al., 1998),
standard DCM models do not take this physiological effect into ac-
count. In P-DCM, we incorporated this additional mechanism,
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which enables modeling both the active neuronal and the passive
vascular contributions to BOLD response transients.

Our results obtained through simulations and by fitting P-DCM to
experimental data predict that if the vascular effect is present
together with the neuronal transients, then the CBF response will ex-
hibit weaker and shorter post-stimulus deactivation than the BOLD
post-stimulus undershoot. That is, even in the case of no CBF post-
stimulus deactivation, there can still be a post-stimulus BOLD under-
shoot, caused solely by vascular uncoupling (e.g. Sadaghiani et al.
(2009), Krüger et al. (1999)). Similarly, if there is post-stimulus de-
activation in CBF, which is larger than, or comparable to, the size of
BOLD post-stimulus undershoot, then the post-stimulus BOLD un-
dershoot is caused solely by neuronal deactivation or together with
a minimal contribution from vascular uncoupling. In the latter case,
there would also be a clear post-stimulus undershoot in the CBV re-
sponse. In all cases, the size of post-stimulus BOLD undershoot also
scales with the stimulus duration. All these properties of our model
are in good agreement with experimental observations (Donahue
et al., 2009; Huber et al., 2014; Kim and Ogawa, 2012). Note that
the initial overshoot in the BOLD response during stimulation can
have both neuronal and vascular contribution, which can be some-
times misinterpreted to be solely related to neuronal adaptation.
Finally, in the Supplementary Material S4, we show that the size of
BOLD transients caused by vascular uncoupling can increase with
stronger magnetic fields and with larger α values (defining the
steady-state CBF–CBV relationship).

The neuronal connectivity model employed in P-DCM combines
the properties of the single-state and standard two-state models:
(1) we kept the simple mechanism employed in S-DCM to express both
the increase and decrease of neuronal activity around the baseline, by
allowing connections with both positive and negative effects; and (2) as
in 2S-DCM, we consider the excitatory activity as being locally regulated
by inhibitory activity and extrinsic connections aremade between the ex-
citatory units; however, with additional (local) control over the balance
between excitatory and inhibitory activity. In contrast to the previous
models,we also introduced additional possibility ofmodulation of all in-
trinsic connections — that could be employed if there is interest in
comparing neuronal transients (i.e. adaptive profile and post-
stimulus deactivation) between different experimental conditions
(see below). We have illustrated the properties of the P-DCM
connectivity model on a simple three-node network example.
There we have shown that in contrast to S- and 2S-DCM, within the
network of brain areas, P-DCM can produce significant dynamic tran-
sients in both positive and negative BOLD responses that are com-
monly observed in fMRI data (Huber et al., 2014; Shmuel et al.,
2006). This example does not cover all possible scenarios and
does not provide a complete comparison of different models. For in-
stance, we did not include cases where S-DCM employs a negative
(feedback) connection between two regions, which can introduce
transients in the neuronal responses. As a matter of fact, the neuro-
nal model in P-DCM considers both local (through inhibition) and re-
mote (through negative connections that are not necessarily related
to neuronal inhibition) causes of neuronal activity decreases.
Whether local or remote mechanisms are more involved in adapting
the neuronal response during stimulation and post-stimulus interval
depends on experimental conditions, since both are physiologically
plausible.

BOLD-fMRI experimental data served to further demonstrate
qualitative and quantitative differences between P-DCM and other
two DCMs in application to single ROI responses. Using modulation
of excitatory self-connection and inhibitory–excitatory connection
together with globally estimated inhibitory gain factor and
viscoelastic time constant, P-DCM accurately fitted response
transients during visual stimulations. This experimental data pro-
vides direct evidence that it is necessary to consider both active neu-
ronal and passive vascular causes of the BOLD response transients.
The model comparison unveiled that S-DCM and 2S-DCM have
much lower model evidence mainly because they lack the very
basic physiological mechanisms behind the response transients,
which makes these models rather unphysiological. From a quantita-
tive perspective, Bayesian model comparison showed that P-DCM is
in this case clearly the winning model compared to S-DCM and 2S-
DCM.

Nevertheless, P-DCM is still a simplified biophysical model of brain
tissue processes, and therefore cannot capture all experimentally
observed physiological effects of the underlying neuronal, metabolic
and vascular processes. However, we have included the most com-
mon effects that are observed in fMRI data and modeled them with
an adequate level of simplification given the physiological informa-
tion content of fMRI data. Importantly, the complexity of the model
is tailored so it can be inverted effectively (i.e. preclude overfitting)
and remains identifiable (i.e. preclude large posterior parameter
correlations).

Limitations and constraints

1. In P-DCM, we have abolished the negative feedback in the
neurovascular coupling to eliminate transients in CBF not present
in neuronal activity (even though there might be some cases out-
side of normal human physiology where the feedback based NVC
occurs). That is, CBF represents a positively constrained convolu-
tion of neuronal activity, resulting in CBF being a smoothed ver-
sion of neuronal activity. However, we note that there are also
some observations that the CBF signal exhibits oscillations that
are independent of variations induced by evoked neuronal activi-
ty. These slow fluctuations (~ 0.1 Hz), sometimes called Mayer
waves, have been attributed to mechanisms such as blood pres-
sure feedback from baroreceptors or spontaneous neurogenic
mechanisms (Morris et al., 2010; Ress et al., 2009). Note that
these Mayer waves were also part of a working hypothesis to mo-
tivate the feedback based NVC used in S- and 2S-DCM (Friston
et al., 2000). In principle, this independent vasomotor component
of the CBF response could be additionally modeled, however
there is no evidence that this vasomotor signal contributes to
undershoot of the induced BOLD response.

2. We assumed in P-DCM, as in standard DCM, that the CBF and
CMRO2 are tightly coupled during both steady-state and transient
periods, as suggested by the oxygen limitation model (Buxton and
Frank, 1997) and experimental observations (Nagaoka et al., 2006;
Sheth et al., 2004; Zappe et al., 2008a). However, as the NVC is not
primarily driven by metabolic demand and metabolic by-products
but by neuromediators, oxygen metabolism (or oxygen extraction
from the blood, to be precise) and CBF might have different
dynamical properties. This has been suggested, for example, by
Lu et al. (2004) and van Zijl et al. (2012) as a mechanism for the
post-stimulus BOLD undershoot. However, as the effect of CBV
and CMRO2 are exchangeable with respect to the BOLD signal
dynamics, we argue that for modeling purposes, it is sufficient to
consider only one of these two physiological mechanisms. Note
that it is currently not technically possible to measure CMRO2

changes directly with a high temporal resolution (but see Vazquez
et al. (2012) for a promising approach). Thus, all fMRI results
reporting delayed recovery of CMRO2 – as a contributor to the
post-stimulus BOLD undershoot – are based on indirect evidence
rather than direct observations.

3. In P-DCM, both CBF and CMRO2 are driven by excitatory neuronal
activity, which reflects E–I balance (since excitatory activity in-
duces inhibitory activity, which in turn, suppresses excitatory ac-
tivity). However, there is also a recent ‘speculative hypothesis’
(see Buxton et al. (2014) and references therein) that the
coupling ratio between CBF and CMRO2 is sensitive to different as-
pects of neuronal activity. For example, if there is a strong
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involvement of inhibitory activity, CBF increases more relative to
CMRO2 because of the vasodilatory effect of the inhibitory mech-
anisms. If established, this additional mechanism could be incor-
porated in the future in P-DCM through modulation of the
coupling ratio of CBF and CMRO2 by inhibitory activity.

4. We assume apower-law relationship betweenCBF andCBVduring the
steady-state: CBV=CBFα, with α being fixed to 0.32 as in other DCMs
for fMRI, which is slightly lower than the original value (α=0.38) es-
timated by Grubb et al. (1974). This assumption means that a CBF in-
crease of 50% corresponds to a CBV increase of about 12% (see also
Appendix A). However, one should be aware that there is still no con-
sensus about this value. For instance, in the human brain, Chen and
Pike (2010) estimated a substantially lower (α = 0.18), whereas
others report values in the range 0.29–0.64 (Rostrup et al., 2005). In
the anesthetized animal brain, reported values are in the range 0.24–
0.38 (Lu et al., 2009). A recent study by van Raaij et al. (2012) indicates
a similar α value as Grubb et al. (1974) in cortical gray matter, but a
significantly different value (α = 0.75) in subcortical gray matter. In
general, it is expected that in the initial phase of the hemodynamic re-
sponse and for short stimulus durations, the largest portion of CBV
changes occurs at the level of arteries/arterioles; i.e., CBV changes
less with respect to CBF (smaller α) (Kim and Kim, 2011; Vanzetta
et al., 2005). However, for longer stimulus duration, the venous CBV
changes start playing a more significant role, so the CBV changes
more with respect to CBF (higher α), accompanied by a slower rise
and decay time constants. Increasing α also increases the degree of
nonlinearity in the flow-volume behavior. By considering the value
of 0.32, we are around the middle of the range of reported values,
which should be suitable for common stimulus durations and it
makes the hemodynamic model only mildly nonlinear. Nevertheless,
all models can easily incorporate other values of α (see e.g. Supple-
mentary Material S4).

5. We have made several assumptions regarding the flexibility of our
model. Parameters controlling the delay and smoothness of CBF
response to neuronal activation were considered fixed in the
new NVC for the simulations of the experimental data (adjusted
to produce ~3 s delay in the case of a short stimulus). Although
we do not expect these parameters to varymuch in healthy brains,
in the diseased brain the vascular regulatory mechanisms are po-
tentially altered, which could require a different parameterization
of the NVC (Iadecola, 2004). In general, it does not seem reason-
able to allow larger variance of these parameters if we rely only
on BOLD data, because their changes would be correlated with
changes of the mean transit time (tMTT) and partly with the visco-
elastic time constant (τ). However, the correlated effects of these
parameters on the predicted BOLD response could be constrained
using ASL data, which allows a simultaneous measurement of CBF
and BOLD signals. Similarly, if we rely only on the BOLD signal, we
might sometimes run into identifiability problems between the
parameters controlling neuronal transients (μ, λ) and the τ pa-
rameter controlling the vascular uncoupling, because (in certain
ranges) these mechanisms can produce a similar BOLD under-
shoot. Also in this case, the identifiability should be greatly im-
proved using ASL data, or by experimentally modulating the
neuronal transients. We will examine this issue in a following
paper.

6. Considering the model complexity, S-DCM and 2S-DCM are
equipped with the following free (intrinsic) parameters: one pa-
rameter in the neuronal models (σ in S-DCM and μ in 2S-DCM);
one parameter in the feedback based NVC (κ); one parameter in
the hemodynamic model (tMTT); and one parameter in the BOLD
signal model (ε). That is, in total four region-specific parameters
are utilized to adjust the dynamics of the BOLD response. In con-
trast, in P-DCM we assume the following free parameters: three
parameters in the adaptive two-state neuronal model (σ, μ, λ);
zero parameters in the new NVC; two parameters in
hemodynamic model (tMTT, τ); and one parameter in the BOLD
signal model (ε) — in total, six free parameters. However, the ex-
citatory self-connection σ is considered global, so in terms of con-
nectivity analysis, it will not multiply by the number of ROIs.
Moreover, since the strengths of the other neuronal parameters
(μ, λ) are relative to σ (see Supplementary Material S1), it could
be that in the future we will be able to identify functional depen-
dencies between these parameters and slightly reduce the num-
ber of free neuronal parameters in P-DCM. Furthermore, the
intra- to extra-vascular ratio ε could be fixed as well, given a
more accurate parameterization of the BOLD equation for a
given field strength. Note that the responses in Figs. 3C–4C were
generated by varying only three parameters (two neuronal and
one viscoelastic time constant) demonstrating the great flexibility
of the P-DCMmodel, but for regular data fitting (model inversion)
we must also fit the mean transit time tMTT. Therefore, the P-DCM
can account for large variations in the BOLD signal by using four
free parameters. Nevertheless, in the experimental example
above, we have shown, that despite the increase in complexity,
P-DCM has higher model evidence than S-DCM and 2S-DCM.

Future prospects

In this paper, we have focused on the theoretical motivation and
phenomenology of the new P-DCMmodel— and the associated benefits
with respect to S-DCM and 2S-DCM. The analysis of experimental data
served as an illustrative example, demonstrating the utility for further
application. In a subsequent paper, we will provide a detail statistical
evaluation of these models, based on Bayesian model comparison
(Penny et al., 2010), applied to networks of multiple brain areas of
fMRI data. Experimental fMRI data will be used to show in detail that
the newmodel provides a better explanation of observed physiological
responses, especially in the context of multimodal imaging. Currently,
we are testing P-DCM on simultaneous electrophysiological recordings
of neuronal activity and the BOLD signal and on simultaneous measure-
ments of CBF, CBV and BOLD signals. In the future, we will extend this
model to other fMRI measurements such as ASL that measures both
CBF and BOLD signal, and vascular space occupancy (VASO) that mea-
sures both CBV and BOLD signal.

Summary

DCM is a widely used approach for inferring effective connectivi-
ty in neuronal networks from measured fMRI data. The generative
model can also be used to deconvolve a single ROI or voxel time-
course. However, until now, DCM variants relied on simplistic as-
sumptions about the physiological link between the neuronal and
BOLD responses. In this paper, we have presented a more informed
physiological framework for DCM; namely, P-DCM, inspired by
many recent experimental observations. P-DCM includes basic phys-
iological mechanisms that are necessary to account for the wide rep-
ertoire of measured BOLD responses that are modeled insufficiently
by previous models. The dynamic BOLD responses may provide a
window on the underlying neuronal and hemodynamic processes,
provided they can be modeled adequately. P-DCM allows for a com-
prehensive modeling of the neuronal and vascular processes, and of-
fers a new way of inferring changes in neuronal activity and effective
connectivity from fMRI signals.
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Table A.1
Parameter values intrinsic neuronal connections, neurovascular coupling, and hemodynamic model used for single-ROI simulations.

S-DCM 2-DCM P-DCM

Short & long Short & long Short Long

S1 S2 S3 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

Neuronal model

σ (Hz) 1 1 1 0.5 0.5 0.5 0.5 1 1 1 1 1 1 1 1
μ (Hz) – – – 0.125 0.35 0.65 1.1 0.8 0.2 0.5 2 1 0.3 0.35 0.65
λ (Hz) – – – – – – – 0.2 0.2 0.15 0.2 0.2 0.2 0.1 0.1
Neurovascular coupling

κ (Hz) 0.64 0.5 0.9 0.64 0.64 0.64 0.64 – – – – – – – –
γ =0.32 Hz (both S-DCM and 2S-DCM)
φ = 0.6 Hz, χ = 1.5 Hz, ϕ =0.6 Hz (P-DCM)

Hemodynamic model

α =0.32, tMTT =2 s, E0 =0.4 (same for S-DCM, 2S-DCM and P-DCM)
τ = 0s (P-DCM: S1-S4 for both short and long stimuli),
S1a: τ =3 s, S1b: τ =8 s, S1c: τ =15 s, S1d: τ =27 s (P-DCM for both short and long stimuli)

S-DCM: S1 – solid thick line; S2 – dotted line; S3 – dashed line.
2S-DCM: S1 – solid thick line; S2 – solid thin line; S3 – dashed line; S4 – dot-dashed line.
P-DCM: S1 – solid thick line; S2 – solid thin line; S3 – dashed line; S4 – dot-dashed line; S1a – solid thick line;
S1b – dotted line; S1c – dot-dashed line; S1d – dashed line.

Table A.2
Parameter values of intrinsic neuronal connections, neurovascular coupling, and hemodynamic model used in connectivity simulations reported in Fig. 5.

S-DCM 2S-DCM P-DCM

Slow Fast Slow Fast Slow Fast

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

Neuronal model

σ (Hz) 0.5 0.5 0.5 1 1 1 0.5 0.5 0.5 1 1 1 0.5 0.5 0.5 1 1 1
μ (Hz) – – – – – – 0.125 0.125 0.125 0.25 01.25 0.25 0.2 0.2 0.2 0.4 0.4 0.4
λ (Hz) – – – – – – – – – – – – 0.15 0.15 0.15 0.15 0.15 0.15

Neurovascular coupling

κ =0.64 Hz, γ =0.32 Hz (both S-DCM and 2S-DCM)
φ = 0.6 Hz, χ = 1.5 Hz, ϕ =0.6 Hz (P-DCM)
Neurovascular coupling

α =0.32, tMTT =2 s, E0 =0.4 (all S-DCM, 2S-DCM and P-DCM)
τ =0 s (P-DCM)

Slow – dashed line; Fast – solid line.
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Appendix B. Supplementary data
Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.07.078.
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