A THREE-PHASE PARALLEL ALGORITHM FOR SOLVING LINEAR RECURRENCES

Kuo-Liang Chung
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan 10764, R. O. C.
Ferng-Ching Lin
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan 10764, R. O. C. Yeong-Nan Yeh Institute of Mathematics, Academia Sinica, Taipei, Taiwan 11529, R. O. C.

(Received May, 1990)

Abstract

We present in this paper a three-phase parallel algorithm on the unshuffle network for solving linear recurrences. Through a detailed analysis on the special matrix multiplications involved in the computation we show that the first n terms of an m th order linear recurrence can be computed in $O\left(m^{3} \log \frac{n}{m}\right)$ time using $\Theta\left(\frac{n}{m} \log \frac{n}{m}\right)$ processors. For the usual case when m is a small constant, the algorithm achieves cost optimality.

1. INTRODUCTION

Linear recurrences form an important class of computational problems which arise in many different application areas. Some parallel algorithms have been proposed before for solving linear recurrences. Stone and Kogge [5,6] first presented a recursive-doubling method to solve recurrences through a tricky divide-and-conquer reformulation of the recurrences into ones which use two indices. Based on a depth-width tradeoff in overlaid tree structure, Carlson and Sugla $[1,2]$ presented a network containing multiple shuffle-exchange connections to compute the first n terms of a first-order linear recurrence in $O(n / p)$ time using $\Theta(p \log p)$ processors. Chung, Lin and Chen [3,7] presented a three-phase algorithm on the unshuffle network [8] for solving the firstand second-order linear recurrences, which reduces the $\Theta(n)$ processors used in [8] to $\Theta(n / \log n)$ while retaining the time complexity $O(\log n)$.

Consider the mth-order linear recurrence:

$$
\begin{equation*}
x_{i}=a_{i, 1} x_{i-1}+a_{i, 2} x_{i-2}+\cdots+a_{i, m} x_{i-m}+b_{i} \tag{1.1}
\end{equation*}
$$

Given $a_{i, j}, b_{i}, 1 \leq i \leq n-1,1 \leq j \leq m$, and the initial values $x_{0}, x_{-1}, \ldots, x_{i-m}$, we want to compute all the values $x_{i}, 1 \leq i \leq n-1$. For ease of exposition, we assume that n is a power of $2, n>m$, and n / m is also a power of 2 .

The recurrence in (1.1) can be converted into a first-order recurrence with the aid of companion matrices. Let $Z_{i}=\left[x_{i}, \ldots, x_{i-m+1}, 1\right]^{t}$ and

$$
K_{i}=\left(\begin{array}{cccccc}
a_{i, 1} & a_{i, 2} & \ldots & a_{i, m-1} & a_{i, m} & b_{i} \\
1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1
\end{array}\right),
$$

which is an $(m+1) \times(m+1)$ matrix. We may write (1.1) as $Z_{i}=K_{i} Z_{i-1}$. Given Z_{0} and $K_{i}, 1 \leq$ $i \leq n$, the problem becomes to compute $Z_{i}, 1 \leq i \leq n-1$, because x_{i} equals the first component of Z_{i}. That is, our task is to compute all the prefix products of $Z_{n-1}\left(=K_{n-1} K_{n-2} \ldots K_{1} Z_{0}\right)$. Note that it takes $O(m n)$ time to compute all Z_{i} sequentially because the companion matrix-vector multiplication (CM-V) $K_{i} Z_{i-1}$ can be completed in $O(m)$ time, due to the special structure of the companion matrix K_{i}.

When parallel processing is involved, this good computation property of CM-Vs disappears. In the past, the complexity analysis was oversimplified by considering a matrix-matrix or matrixvector multiplication as a one-time step and the parameter m was ignored [5,6]. Based on the three-phase algorithm on unshuffle networks [3,7], we present in this paper a parallel algorithm for solving general linear recurrences. We shall show sharper complexity results in terms of the three parameters n, m and the number of processors used. The performance of a parallel algorithm can be measured by Cost $=$ Number of Processors \times Execution Time. The minimum cost achievable by our algorithm is $\Theta\left(m^{2} n\right)$ with $\Theta\left(m^{3} \log \frac{n}{m}\right)$ execution time and $\Theta\left(\frac{n}{m \log \frac{n}{m}}\right)$ processors. Usually, m is a small constant in applications. In such a case, our algorithm achieves optimal cost $\Theta(n)$ with $O(\log n)$ time and $\Theta(n / \log n)$ processors.

2. THE UNSHUFFLE NETWORK

Due to the associativity of multiplication, the three multiplications in $Z_{3}=K_{3} K_{2} K_{1} K_{0}$, where $K_{0}=Z_{0}$, can be performed in any order. Fig. 2.1 shows a possible computation tree for Z_{3}. The white nodes in the leftmost stage 0 are used for preparing input data only. The black nodes in stages 1 and 2 perform the multiplication.

Figure 2.1. A computation tree of Z_{3}.
If we combine the computation trees for $Z_{i}, 0 \leq i \leq 7$, an overlaid tree network, as shown in Fig. 2.2, is obtained for computing all the prefix products of Z_{7}. For general n, there are $\log n+1$ stages of nodes in the network. If each node is implemented by a processor, the number of processors is as large as $n(\log n+1)$, which is going to be reduced to $\theta\left(\frac{n}{m \log \frac{n}{m}}\right)$ later.

The multi-stage unshuffle network which can be used to simulate the overlaid tree network is depicted in Fig. 2.3, where $S_{i, j}$ and $P_{i, j}, 0 \leq i \leq n-1,1 \leq j \leq \log n$, are simple devices and processors respectively. Let $q_{0} q_{1} \ldots q_{l-1}(l=\log n)$ be the binary representation of i. The output line of $P_{i, j}$ is connected to $S_{q_{I-1} q_{0} q_{1} \ldots q_{I-2}, j+1}$ to provide the unshuffle data routing mechanism. The simple device $S_{i, j}$ is capable of producing two copies of its input and sending them to $P_{i, j}$ and $P_{i+1, j}$ except that the bottom $S_{n-1, j}$ has only one receiver $P_{n-1, j}$. For tracing the data passing in the network, each simple device is labelled by a number inside the parentheses to indicate where its data originate. The function of white nodes in a stage of Fig. 2.2 can be controlled by a proper masking mechanism in Fig. 2.3. For example, $P_{0,1}$ in stage 1, which is masked by a cross mark, merely transmits data to the next stage; $P_{0,2}$ and $P_{4,2}$ in stage 2 are masked also. Similarly, in stage 3, $P_{0,3}, P_{2,3}, P_{4,3}, P_{6,3}$ are masked.

Since the interconnection patterns between the stages of the multi-stage unshuffle network are all identical, we can compress all the stages together to obtain a single-stage unshuffle network as shown in Fig. 2.4, which has only n processors. After each iteration of execution, the processors feed the intermediate results back to the simple devices as inputs for the next iteration. The

Figure 2.2. Overlaid tree network for computing all prefix values of Z_{7}.

Stage 1 Stage 2 Stage 3

Figure 2.3. The multi-stage unshuffle network.
masking on the network at different iterations is exactly what we have described for different stages of the multi-stage network.

3. THE THREE-PHASE ALGORITHM

In the following, a modified three-phase algorithm is proposed to reduce the number of processors further. We start with an unshuffle network of $k(\leq n)$ processors with a bidirectional connection between each pair of P_{i} and S_{i}. To each processor P_{i} attach a local memory, which is a linear array of memory blocks $C_{i, j}, 0 \leq j \leq n / k-1$, as depicted in Fig. 3.1 for $n=8$ and $k=4$.

Figure 2.4. The single-stage unshuflie network.

Figure 3.1. The reduced unshuflle network.
According to the value of mask register M_{i} resided in P_{i}, which is set by the masking mechanism, P_{i} takes one of the following actions:
$M_{i}=0: \quad P_{i}$ sends the contents of its working storage Q_{i} to S_{i}. (Note that if only a one-way connection from S_{i} to P_{i} is allowed, sending data from P_{i} to S_{i} requires $O(\log k)$ communication steps.)
$M_{i}=1: \quad P_{i}$ receives data from S_{i} and transmits them to $S_{q_{1-1} q_{0} q_{1} \ldots q_{1-2}}$, where $l=\log k$.
$M_{i}=2: \quad P_{i}$ performs the multiplication on its two input data and sends the result to $S_{q_{1-1} q_{0} q_{1} q_{l-2}}$.
$M_{i}=3$: Except P_{0} which receives input data from S_{0}, P_{i} receives input data from S_{i-1}. The routing mechanism is forced to stop and the network goes to another phase of computation.
In the three-phase unshuffle network with k processors, the input data $Z_{0}, K_{1}, \ldots, K_{n-2}$, K_{n-1} are evenly divided into k pipes. Each local memory stores a pipe of data. The first pipe $Z_{0}, K_{1}, \ldots, K_{f_{t}-2}, K_{\frac{1}{t}-1}$ is stored in the memory associated with P_{0}. For $i \geq 2$, the ith pipe of data $K_{\frac{(i-1) n}{k}}, K_{\frac{(i-1) n+1}{k}+\ldots, K_{\frac{i n}{k}-1}}$ is stored in the memory associated with P_{i-1}. Algorithm 3.1 describes how the network works. A computation step in the algorithm may contain a matrixmatrix or matrix-vector multiplication.

Algorithm 3.1.

Phase 1. (Local prefix computations)
Each P_{i} sequentially computes n / k prefix products from its corresponding pipe of data and stores them in its local memory. The working storage Q_{i} has the final prefix product computed from the pipe of data and sends a copy to the working storage R_{i} in S_{i}.
Phase 2. (Global prefix computations)
All the processors work together using the unshuffle routing mechanism for prefix product computations. After $\log k$ steps, the working storage R_{i} holds the value $Z_{(i+1) n / k}, 0 \leq i \leq k-1$. Phase 3. (Final adaptations)

Each P_{i} except P_{0} receives the prefix product from S_{i-1}. The n / k prefix products obtained in phase 1 are sequentially modified by performing a multiplication with the received prefix product.

We use $Z_{7}=K_{7} K_{6} \ldots K_{0}$ as an example to illustrate the algorithm. Let $n=8$ and $k=4$. Initially, the 8 input data (7 companion matrices and a vector) for Z_{7} are evenly divided into 4 pipes, each containing 2 data. The cells $C_{0,0}$ and $C_{0,1}$ have the data K_{0} and K_{1} respectively. The cell $C_{i, j}$ has the data $K_{2 i+j}$ for $1 \leq i \leq 3,0 \leq j \leq 1$. We denote the product $K_{i} \ldots K_{j}$ by $F_{i, j}$ for $i \geq j \geq 0$.

Phase 1.

Each individual P_{i} computes $F_{2 i, 2 i}$ and $F_{2 i+1,2 i}$ and stores them in its local memory sequentially. That is, P_{0} computes all the prefix values of $F_{1,0} ; P_{1}$ computes all the prefix values of $F_{3,2}$, and so on. The memory block $C_{i, j}$ saves $F_{2 i+j, 2 i}$. After 2 steps in this phase, we have

$$
\begin{array}{ll}
C_{3,0}=F_{6,6}, & C_{3,1}=F_{7,6}, \\
C_{2,0}=F_{4,4}, & C_{2,1}=F_{5,4}, \\
C_{1,0}=F_{2,2}, & C_{1,1}=F_{3,2}, \\
C_{0,0}=F_{0,0}, & C_{0,1}=F_{1,0},
\end{array}
$$

and

$$
Q_{3}=F_{7,6}, \quad Q_{2}=F_{5,4}, \quad Q_{1}=F_{3,2}, \quad Q_{0}=F_{1,0} .
$$

Then, for all i, M_{i} becomes 0 and the contents of Q_{i} are sent to R_{i}.
Phase 2.
The global prefix computations are controlled by the unshuffle routing mechanism. During the first iteration, $M_{0}=1$ and $M_{i}=2$ for $i=1,2,3$. Once the P_{i} 's complete their multiplications, the contents of R_{i} 's become

$$
\begin{aligned}
& R_{3}=F_{7,6} \bullet F_{5,4}=F_{7,4}, \\
& R_{2}=F_{5,4} \bullet F_{3,2}=F_{5,2}, \\
& R_{1}=F_{3,2} \bullet F_{1,0}=F_{3,0}, \\
& R_{0}=F_{1,0} .
\end{aligned}
$$

During the second iteration, $M_{i}=2$ for all i except $i \equiv 0 \bmod 2$ for which $M_{i}=1$. Once the P_{i} 's complete their multiplication operations again, the contents of R_{i} 's become

$$
\begin{aligned}
& R_{3}=F_{7,4} \bullet F_{3,0}=F_{7,0}, \\
& R_{2}=F_{5,2} \bullet F_{1,0}=F_{5,0}, \\
& R_{1}=F_{3,0}, \\
& R_{0}=F_{1,0} .
\end{aligned}
$$

Let k be 2^{h}. In general, during the j th iteration, $1 \leq j \leq h, M_{i}=2$ for all i, except $i \equiv 0 \bmod$ $\left(2^{h+1-j}\right)$ for which $M_{i}=1$. After this phase of computation, R_{i} saves $F_{2 i+1,0}$, a prefix value.

Phase 9.

During the first step of this phase, $M_{i}=3$ and each P_{i} except P_{0} receives input data from S_{i-1}. The contents of Q_{i} 's become

$$
Q_{3}=F_{5,0}, \quad Q_{2}=F_{3,0}, \quad Q_{1}=F_{1,0}, \quad Q_{0}=F_{1,0}
$$

The unshuffle routing mechanism is forced to stop and each P_{i} sequentially modifies the contents of $C_{i, j}, j=0,1$, by performing the multiplication $C_{i, j} \bullet Q_{i}$. The final results are

$$
\begin{array}{ll}
C_{3,0}=F_{6,6} \bullet F_{5,0}=F_{6,0}, & C_{3,1}=F_{7,6} \bullet F_{5,0}=F_{7,0} \\
C_{2,0}=F_{4,4} \bullet F_{3,0}=F_{4,0}, & C_{2,1}=F_{5,4} \bullet F_{3,0}=F_{5,0} \\
C_{1,0}=F_{2,2} \bullet F_{1,0}=F_{2,0}, & C_{1,1}=F_{3,2} \bullet F_{1,0}=F_{3,0} \\
C_{0,0}=F_{0,0}, & C_{0,1}=F_{1,0} .
\end{array}
$$

4. ANALYSIS OF THE ALGORITHM

In phase 1 of the three-phase algorithm, the good computation property of CM-Vs is reserved only in the first data pipe; the multiplications on the other pipes lose the property gradually. For the second pipe, it needs $(m+1)$ time to compute $K_{\frac{n}{k}+1} K_{\frac{n}{k}}\left(=K_{\frac{n}{k}+1}^{\prime}\right)$, needs $(2 m+1)$ time to compute $K_{\frac{n}{k}+2} K_{\frac{n}{k}+1}^{\prime}\left(=K_{\frac{n}{k}+2}^{\prime}\right)$, and in general needs $i(m+1)$ time to compute $K_{\frac{p}{h}+i} K_{\frac{n}{k}+i-1}^{\prime}$. Similar situations happen to the other pipes. One can also see the gradual change of time complexity in the steps of phases 2 and 3.
Theorem 4.1. With the three-phase algorithm on k processors, the first n terms of an m thorder linear recurrence can be computed in $O\left(\frac{m^{2} n}{k}+m^{3} \log k\right)$ time when $n / k>m$ and in $O\left(\frac{m n^{2}}{k^{2}}+m^{2} \log \frac{n}{m}\right)$ time when $n / k \leq m$.
Proof. For simplicity, we write $m+1$ as m without affecting the result of the analysis. There are two cases to be considered.
CASE 1. $n / k>m$.
Let $T_{1}(m, n, k)$ be the time to complete the local computations in phase 1 , then

$$
\begin{align*}
T_{1}(m, n, k) & =\left(\sum_{i=1}^{m-1} i m\right)+\left(\frac{n}{k}-1-m+1\right) m^{2} \\
& =m^{2}\left(\frac{n}{k}-\left(\frac{m}{2}+\frac{1}{2}\right)\right) \tag{4.1}
\end{align*}
$$

The first term sums up the time slices for computing the companion matrix-unsaturated matrix multiplications (CM-UMs) until the resultant matrices are saturated. The time needed for the remaining computations is counted in the second term. During these steps, companion matrixsaturated matrix multiplications (CM-SMs) are performed.

Let $T_{2}(m, n, k)$ be the time to complete the global prefix computations in phase 2 , then

$$
\begin{align*}
T_{2}(m, n, k) & =m^{3}(\log k-1)+m^{2} \\
& =m^{3} \log k-m^{3}+m^{2} \tag{4.2}
\end{align*}
$$

The first term is the time needed to compute all the SM-SMs. The second term is the time to compute a SM-V at the last step.

Let $T_{3}(m, n, k)$ be the time to complete the adaptations in phase 3 , then

$$
\begin{align*}
T_{3}(m, n, k) & =\left(\sum_{i=1}^{m-1} i m\right)+\left(\frac{n}{k}-m+1\right) m^{2} \\
& =m^{2}\left(\frac{1}{2}+\frac{n}{k}-\frac{m}{2}\right) \tag{4.3}
\end{align*}
$$

The first term sums up the time to compute all the UM-Vs. The second term is the time for computing all the SM-Vs.

By combining (4.1), (4.2) and (4.3), we know that the total execution time is

$$
\begin{aligned}
\sum_{i=1}^{3} T_{i}(m, n, k) & =m^{2}\left(\frac{n}{k}-\left(\frac{m}{2}+\frac{1}{2}\right)\right)+m^{3} \log k-m^{3}+m^{2}\left(\frac{1}{2}+\frac{n}{k}-\frac{m}{2}\right) \\
& =O\left(\frac{m^{2} n}{k}+m^{3} \log k\right)
\end{aligned}
$$

CASE 2. $n / k \leq m$.
We also try to calculate $T_{i}(m, n, k), i=1,2,3$. First, since all the computations in phase 1 are CM-UMs,

$$
\begin{align*}
T_{1}(m, n, k) & =\left(\sum_{i=1}^{n / k-1} i m\right) \\
& =\frac{m n}{2 k}\left(\frac{n}{k}-2\right) . \tag{4.4}
\end{align*}
$$

For phase 2,

$$
\begin{align*}
T_{2}(m, n, k) & =\frac{m n^{2}}{k^{2}}\left(\sum_{i=0}^{(\log m k / n)-1} 4^{i}\right)+m^{3}\left(\log k-\log \frac{m k}{n}+1-1\right)+m^{2} \\
& =\frac{m n^{2}}{k^{2}}\left(\frac{\left(\frac{m k}{n}\right)^{2}-1}{3}\right)+m^{3} \log \frac{n}{m}-m^{3}+m^{2} \tag{4.5}
\end{align*}
$$

The first term sums up the time slices for computing the UM-UMs until the resultant matrices are saturated. The second term is the time needed to compute the SM-SMs. The third term is the time to compute a SM-V at the last step. Finally, for phase 3,

$$
\begin{align*}
T_{3}(m, n, k) & =\left(\sum_{i=1}^{n / k} i m\right) \\
& =m \frac{n}{2 k}\left(\frac{n}{k}+1\right) \tag{4.6}
\end{align*}
$$

which is the time needed to compute all the UM-Vs in phase 3.
By combining (4.4), (4.5) and (4.6), we know that the total execution time is

$$
\begin{aligned}
\sum_{i=1}^{3} T_{i}(m, n, k) & =\frac{m n}{2 k}\left(\frac{n}{k}-2\right)+\frac{m n^{2}}{k^{2}}\left(\frac{\left(\frac{m k}{n}\right)^{2}-1}{3}\right)+m^{3} \log \frac{n}{m}-m^{3}+m^{2} \\
& =\frac{2 m n^{2}}{3 k^{2}}-\frac{2 m^{3}}{3}+m^{3} \log \frac{n}{m}+m^{2}-\frac{m n}{2 k} \\
& =O\left(\frac{m n^{2}}{k^{2}}+m^{3} \log \frac{n}{m}\right)
\end{aligned}
$$

We may use $k=n$ processors in the network to achieve the minimum execution time $T_{2}(m, n, k)$ $=O\left(m^{3} \log n\right)$. However, this time complexity can also be met by using fewer processors.
Theorem 4.2. For solving m th-order linear recurrences, the minimum cost achievable by the three-phase algorithm is $O\left(m^{2} n\right)$ with $O\left(m^{3} \log \frac{n}{m}\right)$ execution time and $\Theta\left(\frac{n}{m \log \frac{n}{m}}\right)$ processors.

Proof.
From (4.1), (4.2) and (4.3), the computation cost for the first case is

$$
\begin{aligned}
\operatorname{Cost}_{1} & =k\left(\sum_{i=1}^{3} T_{i}(m, n, k)\right) \\
& =2 m^{2} n+k m^{3} \log \frac{k}{4}+O\left(k m^{2}\right) .
\end{aligned}
$$

Let $k^{\prime}=k / 4$, then

$$
\operatorname{Cost}_{1}=2 m^{2} n+4 k^{\prime} m^{3} \log k^{\prime}+O\left(k^{\prime} m^{2}\right) .
$$

Now we consider the equation:

$$
c_{1} m^{2} n=4 k^{\prime} m^{3} \log k^{\prime} \quad \text { for some constant } c_{1} .
$$

We can use a bootstrapping technique [4] to choose $k=4 k^{\prime}=\Theta\left(\frac{n}{m \log \frac{5}{m}}\right)$ to determine the minimum value of Cost_{1} as $O\left(m^{2} n\right)$. In addition, the computing time is $O\left(m^{3} \log \frac{n}{m}\right)$ for this case.

From (4.4), (4.5) and (4.6), the computation cost for the second case is

$$
\begin{aligned}
\operatorname{Cost}_{2} & =k\left(\sum_{i=1}^{3} T_{i}(m, n, k)\right) \\
& =\frac{2}{3} \frac{m n^{2}}{k}-\frac{2 k m^{3}}{3}+k m^{3} \log \frac{n}{m}-\frac{m n}{2}+m^{2} k \\
& =\frac{2}{3} \frac{m n^{2}}{k}-k\left(\frac{2 m^{3}}{3}-m^{3} \log \frac{n}{m}-m^{2}\right)-\frac{m n}{2} .
\end{aligned}
$$

Let Cost $_{2}=h(m, n, k)$. Since $\frac{\partial^{2} h(m, n, k)}{\partial k^{2}}=\frac{4 m n^{2}}{3 k^{3}}>0, h(m, n, k)$ is a convex function in k. We might choose the critical point $k=\frac{n}{\sqrt{m\left(\frac{3}{2} m \log \frac{n}{m}+\frac{7}{2}-m\right)}}$ (see Fig. 4.1), which satisfies $\frac{\partial h(m, n, k)}{\partial k}=$ $-\frac{2 m n^{2}}{3 k^{2}}-\frac{2 m^{3}}{3}+m^{3} \log \frac{n}{m}+m^{2}=0$, to minimize the value of Cost_{2}. However, the value is illegal because the premise says that $k \geq \frac{n}{m}$. Therefore, the minimal value of Cost_{2} is $O\left(n m^{2} \log \frac{n}{m}\right)$ when we choose $k=\frac{n}{m}$. The time complexity is also $\Theta\left(m^{3} \log \frac{n}{m}\right)$. Since the cost is higher than that for case 1 , we have to abort this case.

Figure 4.1. The convex function h.

5. CONCLUSION

We have proposed a three-phase algorithm on the unshuffle network to solve linear recurrences. Because the good computation property of CM-Vs in sequential computation cannot be retained in parallel computation, when m is large the optimal cost $O(m n)$ of the problem is not met by our algorithm. The minimum cost achievable by the algorithm is $O\left(m^{2} n\right)$ with $O\left(m^{2} \log \frac{n}{m}\right)$ execution time and $\Theta\left(\frac{n}{m \log _{m}^{m}}\right)$ processors. However, for the usual case when m is a small constant, the algorithm does achieve the optimal cost $O(n)$ with $O(\log n)$ execution time and $\Theta\left(\frac{n}{\log n}\right)$ processors.

References

1. D. A. Carlson and B. Sugla, Time and processor efficient parallel algorithms for recurrence equations and related problems, Proc. 1984 Int. Conf. on Parallel Processing, IEEE Computer Society Press, Washington D. C., 310-314 (1984).
2. D. A. Carlson and B. Sugla, Adapting shuffle-exchange like parallel processing organizations to work as syatolic arrays, Parallel Computing 11 (1), 93-106 (1989).
3. K. L. Chung, F. C. Lin, and W. C. Chen, Parallel computation of continued fractions, under revision for J. of Parallel and Distributed Computing.
4. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, (1989).
5. P. M. Kogge and H. S. Stone, A parallel algorithm for the efficient solution of a general class of recurrence equations, IEEE Transactions on Computers C-22 (8), 786-793 (1973).
6. P. M. Kogge, Parallel solution of recurrence problems, IBM J. Research and Development, 138-148 (1974).
7. F. C. Lin and K. L. Chung, A cost-optimal parallel tridiagonal system solver, to appear in Parallel Computing.
8. H. S. Stone, Introduction to Compater Architecture, Science Research Associates, Chicago, IL, (1980).
