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1. INTRODUCTION

Throughout this paper let R denote a ring with unity and M a unital right
module over R. Defined in the literature are two important extensions for
the module M. Echmann and Schopf [1] has given us the injective hull of M
which we will denote by I(M); Lambek [6], the rational completion of M
which we will denote by M. There is always a containment relation
M C M CI(M). One problem is to determine whether or not the rational
completion of a module is injective without computing it, that is, when does
M = I(M)? A partial solution has been given by R. E. Johnson [5]. He has
shown that if the right singular ideal of a ring is zero, then its rational
completion is injective. One purpose of this paper is to give necessary and
sufficient conditions for the rational completion of a module to be injective;
these conditions involve only the module A4 and the ring R.

It is well-known that the existence of the injective hull of a module involves
some form of Zorn’s lemma. There is no known ‘‘computational procedure”
to construct the injective hull of a module. However, we are able to give
necessary and sufficient conditions which depend only on R and M for a right
ideal of R to be an annihilator of I(}1).

For a module M, a right ideal K of R is said to be M-dense if for each
x € R — K the draw back x 'K == {y € R : xy € K} lies above the annihilators
of M, that is, mx 'K £ (0) for all me M — (0) (Theorem 2.5). A right
ideal L of R is an annihilator of the injective hull of M if and only if for each
xe R — L, the draw back x 1L is not M-dense; equivalently, for cach
x € R — L there does exist y € R and m € M — (0) such that m(xy)~1 L == (0).
If each R-homomorphism from a right ideal of R into M has an extension
whose domain is M-dense, then we say that the module M has the dense

* Portions of this paper are a part of the author’s doctoral dissertation under the
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extension property (Theorem 2.2). The rational completion of a module is
injective if and only if the module has the dense extension property.

In Section 4, we apply our results to rings. Following Jans {3] we define
a solid Goldie ring to be a ring R with the maximum condition on annihilators
of the injective hull of R; recall a Goldie ring is a ring which has the maximum
condition on right annihilators of R and contains no infinite direct sum of
right ideals. Solid Goldie rings are Goldie rings. Jans states [3, p. 38] that it is
not known if all Goldie rings are solid Goldie rings. An “intrinsic” description
of a solid Goldie ring is given which enables us to give an example of a Goldie
ring which 1s not a solid Goldie ring.

If R is a subring of O and the unity of R is the unity of Q, then R is a right
order in Q if

(a) every nonzero divisor of R is a unit in Q and

(b) every element ¢ € O can be written ¢ = ab™', where a, be R, and b
is a nonzero divisor of R.

Jans [3] followed by Mewborn and Winton {7] have given necessary and
sufficient conditions for a ring R to be a right order in a quasi-Frobenius ring.
We also state similar conditions. Our conditions are entirely “intrinsic”
in that they are stated in terms of R, not /(R), and also nothing is mentioned
about the existence of nonzero divisors; however we do use Goldie’s
theorem [2] on orders in semiprime Artinian rings. We prove that R is a right
order in a quasi-Frobenius ring if and only if R is a solid Goldie ring with the
dense extension property and the prime radical of R is the right singular
ideal of R.

2. RatioNaL COMPLETION AND INJECTIVITY

Throughout this paper R will always denote a ring with unity. All modules
are right unital modules over R. Let A, B denote modules. For be B — A4
we define b4 == {xe R : bx € A}. A is essential in B means that each non-
zero submodule of B has nonzero intersection with 4. Also, I(4) denotes the
injective hull of the module 4.

DeriniTioN 2.1, Let M be an R-module. A right ideal K of R is said
to be M-dense provided that m e I(M) — (0) implies mK + (0). That is,
K lies above the annihilators of I{M).

LemMa 2.2, Assume that K is a right ideal of R and that for some
xe R — K, 'K is not M-dense. Then there does exist p e I(M) such that
PK = (0) and px +# 0. Thus, K is not M-dense.
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Proof. By the hypothesis m(x 1K) = (0) for some meI(M) — (0). Let
J(xr 4 k) = mr for all ke K, r € R. This map from xR -+ K into I(M) is
well defined since m(x~1K) = (0) and is a scalar map since I(M) is injective.
Thus, for some p e I(M) we have f(y) = py for all y in the domain of f,
pK - (0) and px +# 0.

ProposiTionN 2.3. (1) Let M be an R module and K be a right ideal of R.
The following are equivalent:

(a) K s M-dense.
(b) Forall x € R, x 'K 15 M-dense.

(c) For each x € R and each m € M — (0) there does exist r € R such that
xr € K and mr #+ Q.

(2) The finite intersection of M-dense right ideals is again M-dense.

Proof. From Lemma 2.2, (a) implies (b). Clearly, (b) implies (c). Now,
(c) implies (a) for if iK == (0), where i € (M) — (0), then letm = ix € M — (0)
for some x € R. Therefore, mx 1K - (0), a contradiction. For part (2),
suppose that K and N are M-dense. If p € I{(M) — (0), then pk 5 0 for some
ke K and thus pk(k~tN) = (0) which implies that p(N N K) = (0). There-
fore, N N K is M-densc.

For module M let H be the ring of R-homomorphism from I{M ) into I{M).
The rational completion of M, which we denote by M, is defined to be the
set 1 l(M):if fe H and f(M) = (0), then f(/) = 0}, see Ref. [6]. The
rational completion of M is precisely the set {ieI(M) : 1M 15 M-dense}.
To see this we show that the complements of the above two sets are identical.
If fell, f(M) - (0) and f(») = 0, where y € I(M), then f(y) v IM = (0)
and y 'M is not M-dense. If p(y M) = (0) for some p, y € I(M) — (0), then
the mapping # from yR + M into /(M) where A(yr + m) = pr for re R,
m € M has an extension &' € H such that /(M) = (0) and K'(y) +- 0.

DeriNiTION 2.4.  Let L be a right ideal of R and let M be an R-module.
We say that an R-homomeorphism g from L into M has a dense extension if it
has an extension whose domain is M-dense, that is, there does exist an
M-dense right ideal L’ D L and an R-homomorphism g’ from L’ into M such
that ¢’ and g agree on L. M has the dense extension property if each R-homo-
morphism from a right ideal of R into M has a dense extension.

"TueOREM 2.5.  The rational completion of a module is injective if and only
if the module has the dense extension property.

Proof. If M = I(M), then for each R-homomorphism g from a right
ideal L into M there does exist m & M such that g(x) = max for all x L.
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Let L' = m M. L 2L and L' is M-dense since m € M. The map g’ where
g'(%) = mx for all x €L’ extends g.

We now show that M is injective. Let f be an R-homomorphism from a
right ideal L into M and f(x) = gx for all xe L, g I(M). If g I(M) — M,
then apply the hypothesis to the map A from ¢*M into M, where A(x) = gx
for all x € ¢~'M. Thus, & has a dense extension %’ and for some m e I(1),
R(y) == my e M. Since m~M contains the domain of /" which is M-dense,
m M 1s M-dense. Therefore, (m — ¢y mIM £ 0 and (m — ¢)z £ 0 for
some zem M. M is essential in I(M) and we have for some re R,
(m — q) zr € M — (0). However, mzr € M forces gzr € M and thus 27 € ¢7'M.
This implies (h" — k) 27 == (m — ¢) 2 == 0, a contradiction. Hence g& M
and M is injective.

3. ANNIHILATORS AND RaTroNaLLy CLOSED IDEALS

Let 4, B, and M be R-modules. We say that B is an M-rational extension
of 4 provided that 4 C B and if f is any R-homomorphism from a submodule
of B into M and the kernel of f2 .4, then f must be the zero map. Also,
a submodule A of B 1s said to be M-rationally closed if A has no proper
M-rational extensions in B [6]. Let A" = {b € B : b14 is M-dense}. With the
use of (2) of Proposition 2.3, we see that A" is an R-module and is catled the
M-rational closure of A in B.

Lemma 3.1, (1) Assume that A is a submodule of B. The following are
equivalent:

(a) A is M-rationally closed in B.
(b) IfbeB — A, then b4 is not M-dense.
() 4:=4.

(2) Assume NC M C B. Then N' € M' if and only if b-'N is not M-dense for
some be M — N.

Proof. (a) implies (b) for if A is M-rationally closed in B, then for each
b e B — A there does exist an R-mapping g from bR I 4 into M such that
gb)ye M — (0) and g(A4) = (0). Thus, g(d)(>24) = (0) and the result
follows. (b) implies (c) is clear. For (¢) implying (a), we note that for each
b<c B — A there does exist a nonzero ¢ € I(M) such that i(b-24) = (0). Let
y &R such that ¢y € M — (0). The map g from byR + 4 into M, where
g(byr + a) == iyr for all r € R, a € A has the property that g(4) = (0) and
g(by) # 0 which completes the proof. Part (2) is straight-forward and the
details are omitted.
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A right ideal K of R is said to be an annihilator of I(M) if there does exist
a subset S of I(M) such that K - {x e R : Sx == 0}.

Turorem 3.2.  The annihilators of the injective hull of a module M are
precisely the M-rationally closed right ideals of R. That is, a right ideal K is an
annihilator of I(M) if and only if x~ 'K is not M-dense for all vc R — K.

Proof. Let K be a right ideal of R. 1f K is an annihilator of I(M), then for
each x € R — K there does exist some m e (M) such that mK == (0) and
mx == 0. Clearly max(x—K) == (0) and 1K is not M-dense. It follows from
part (1), (b) of Lemma 3.1 that K 1s M-rationally closed. Assume that K is
an M-rationally closed in R and let S = {mel(M):mK -- (0)}. For
x € R — K the hypothesis implies thati(x 1K) - (0) for some ¢ e [(M) — (0).
By Lemma 2.2 there does exist some p € [(M) such that pK -~ (0) and px -2 0.
Thus, pe Sand {ze R: S5z -= 0} ~ K.

In the following section we will use the corollary below.

CoroLLary 3.3, Let M be an R-module. The following are equivalent:

(1)  The collection of M-rationallv closed right ideals of R satisfies the
maximum condition.

(2) FEach sequence K,C K,C K,C ... of right ideals of R with the
property that K; ¢ K, | implies k7'K; is not M-dense for some k; e K;.; — K;
becomes constant.

(3) Let H = {reR:mr = 0 for all me [(M)}. The factor ring R/H is a
right finite-dimensional ring and each sequence L, C L, L, C ... of essential
right ideals of R, where L; T L, | implies for some xeL, | —L;, x 'L, is not
M-dense becomes constant.

Proof 1t follows from (2) of Lemma 3.1 that statements (1) and (2) are
equivalent. We now show that (2) implies (3). Clearly H is an ideal of R.
If right ideals A, B of R contain H and A/H -~ B/I{ is direct, there does exist
m € I(M) such that mb = O for some b€ B — H and the map f from 4 + bR
into I(M), where f(a -+ br) == mr, ac A is well defined since mH - - (0).
There does exist p ¢ I(M) such that pA = (0), pb ++ 0, and 4" (1 4- B)".
It ncw follows that R/H is right finite dimensional. Finally, we prove (3)
implies (1) by using an indirect argument. If 4" € 4,’ € Ay’ ... is a sequence
of M-rationally closed right ideals of R, then dim 4,/H = dim 4,,,/H for
some 7 and all j 2= 1. There does exist a right ideal B 2 H such that the sum
A;/H + B/H is direct and essential in R/H; thus, A, + B is essential in R
since A, + BO H. It is straightforwarded to check that (A, -+ B)Y &
(A;1 -+ B) € ..., a contradiction.
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4. GoLpiE Rixcs Are Not SoLip GOLDIE RINGS

In this section we give an example of a Goldie ring which is not a solid

Goldie ring.

LExampLE.  Let R be the vector space over the two-element field with a set of
base elements {1} {y*: & > 0} U {x, : i > 0} where ¢, & are positive integers.
Define multiplication on R as follows: For all y?y/ = y**/ 7, j,k we have x,x; =0,
yx; = 0, &, 9% = x;_;. if k <7 and x;y* = O otherwise, 15 = bl = b for all
base elements 5. R is right finite dimensional since xR 4 yR is essential.
The prime radical P of R is generated by {x; , %, , x5 ,...}. If S'is a subset of R
and 7(S) = (0), then 7(S) is of the form P 4 y*R; Ris a Goldie ring. Consider
the sequence xRCx,RCx,RC ..., where a7Y(v,R) == yR -+ P. Since
a (¥R -+ P) = (0), it follows from (2) of Corollary 3.3 that R does not
satisfy the maximum condition on annihilators of J(R). One can also show
that R is not left finite dimensional and does not have the maximum
conditions on left annihilators of R.

We point out that if the right singular ideal of R is zero, then R is a solid
Goldie ring if and only if it is a Goldie ring.

5. OrpERs IN Quasi-FroBeENTUS RINGS

Throughout this last section we will write dense instead of R-dense. Thus,
a right ideal K of R is dense if for each x, y € R — (0) there does exist s € R
such that xz +# 0 and yz ¢ K. Also, we will say that a right ideal K of R
is rationally closed instead of saying K is [(R)-rationally closed (equivalently,
K is an annihilator of I(R)). Q will always denote the complete ring of right
quotients of R[5, p. 94] and Z(Q) (Z(R)) the right singular ideal of Q (of R).
Our first major goal is to establish a general setting for which R will be a right
order in Q. If Z(Q) is rationally closed and is the Jacobson radical of Q,
Q/Z(0) is a semiprime Artinian ring and R/Z(R) is semiprime, then R will
be a right order in Q. We will need the proposition below.

ProrosiTioN 5.1. Let K be a rationally closed ideal of R.

(1) If D is a dense right ideal of R and D D K, then D|K is dense in R/K.

(2) If Bis aright ideal of R, BD K and B|/K is rationally closed in R/ K,
then B is rationally closed in R.

(3) If Ris a solid Goldie ring, then R/K is also a solid Goldie ring.

(4)  The complete lattice of rationally closed right ideals of R which contain
K is order 1somorphoric to the complete lattice of rationally closed right ideals



102 SHOCK

of R/K if and only if for each right ideal D D K we have D/K dense in R/K,
implying D 1s dense in R.

Proof. (1) Let D be a dense right ideal of R and DD K. Let
a+ K +#0-+ K, b+ K be given in R/K. Since ¢'D N b'D is dense,
alaD N b1DYZ K because K is rationally closed and 1K is not
dense. There does existr € a7 1D N b 'Dsuch that (a + K)(r -=- K) # 0 4+ K
and (b + K)(r + K)e (D -+ K). (2) This follows from the fact that if x-1B
were dense, where x € R — B, then (x + K)1B/K would be dense in R/K
by part (1), this would be a contradiction. The remaining part of the
proposition is now straightforward and the details are omitted.

It H 1s an ideal of Q, then the ring map f from R/(H N R) into Q/H, where
S+ (Hn R)y == r = His injective and f(R/(H N R)) is a subring of Q/H.
We denote f(R/(H N R)) by R/H. If R is a subring of S, then S is called a
ring of right quotients of R if for every (0) # s S, s 1R is a dense right ideal
of R and s(s7tR) +# (0) [5, p. 99].

Lemma 5.2, If H is a rationally closed 1deal of Q, then Q/H is a ring of
right quotients of RjI1.

Proof. Suppose g — H. We must show that (¢ — H) ' R/ H is dense
in R/H and (g -+ H)[(¢ -+ )" R{II] +# (0) ++ H. Since ¢7'R is dense in R,
q-'R 4 H/H is dense in Q/H by (1) of Proposition 5.1. Since f{ is rationally
closed in Q and ¢ € R — H there does exist 7 € I(R) such that /4 - (0) and
ig = 0. If ¢ 'R C H, then ig(¢71R) == (0), a contradiction. Therefore, there
does exist ¥ € R such that ¢r € R but ¢ ¢ H and we have our result.

TueorEM 5.3.  Suppose that Z(Q) is the Jacobson radical of Q) and is
rationally closed. If Q]Z(Q) 15 a semiprime Artinian ring and R[Z(Q) is a
semiprime ring, then R is a right order in Q.

Proof. R|Z(R) is a right order in Q/Z(Q); this follows from Lemma 5.2,
Q/Z(Q) being a semiprime Artinian ring and from Goldie’s theorem on right
orders in semiprime Artinian rings. If D is a dense right ideal of R, then
D+ Z(R)/Z(R) 1s dense in R/Z(Q) and contains an invertible element
d + Z(Q) in Q/Z(Q). Thus, | = m - xd - n -+ dx for some m, ne Z(Q).
Since | -~ m and | — n are units in Q, d is invertible in Q. To complete the
theorem it suffices to show that nonzero divisors of R are invertible in Q.
If b is a nonzero divisor of R and by € Z(Q), where y € R — (0), then
r(by) =~ r(y) which implies that y € Z(R). Thus b -I- Z(Q) is a right nonzero
divisor in R/Z(Q) and it follows as before that & is invertible in Q.

Remark. 1t is known that Qp is an injective R-module if and only if Q is a
self-injective ring [5, p. 95]. It follows from Theorem 2.3 that Q is a self-



INJECTIVITY, ANNIHILATORS AND ORDERS 103

injective ring if and only if R has the dense extension property. If Z(R) = (0),
then each essential right ideal is dense and R has the dense extension property.
Thus, if Z(R) = (0), then Q is a self-injective ring {4]. Also, it is not difficult
to show that R is a solid Goldie ring if and only if Q is a solid Goldie ring.

We define a ring R to be quasi-Frobenius if R is a (right) self-injective ring
and is right Artinian. There are many characterizations of quasi-Frobenius
rings and we will use the one stated by C. Faith [1]:

Lemma 5.5. A self-injective solid Goldie ring is quasi-Frobenius.

Proof. See Ref. [1].

THeEOREM 5.6. R is a right order in a quasi-Frobenius ving if and only if R
is a solid Goldie ring with the dense extension property and the prime radical of R
is the right singular ideal of R.

Proof. Suppose R is a right order in a quasi-Frobenius ring Q. Clearly,
Ry is an essential submodule of O . From the remark following Lemma 5.2,
Oy 1s self-injective since Qy is. Q is the complete ring of right quotients of R
and thus R is a solid Goldie ring with the dense extension property. R/Z(R)
is a right order in Q/Z(Q), since R is a right order in Q and Q/Z(Q) 1s a semi-
prime Artinian ring. By an order theorem of A. W. Goldie [2], R/Z(R) is
semiprime. Z(R) is nilpotent since Z(Q) is and we have Z(R) = prime radical
of R. We now prove the other implication. Q is a self-injective solid Goldie ring
and is a quasi-Frobenius by Lemma 5.5. The hypothesis of Theorem 5.3 is
satisfied and R is a right order in Q.
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