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Ca2+ channels that underlie mitochondrial Ca2+ transport first reported decades ago have now just
recently been precisely characterized electrophysiologically. Numerous data indicate that mito-
chondrial Ca2+ uptake via these channels regulates multiple intracellular processes by shaping cyto-
solic and mitochondrial Ca2+ transients, as well as altering the cellular metabolic and redox state. On
the other hand, mitochondrial Ca2+ overload also initiates a cascade of events that leads to cell
death. Thus, characterization of mitochondrial Ca2+ channels is central to a comprehensive under-
standing of cell signaling. Here, we discuss recent progresses in the biophysical and electrophysio-
logical characterization of several distinct mitochondrial Ca2+ channels.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Overview

The identification of ion channels responsible for Ca2+ transport
across the inner mitochondrial membrane has been a long and
arduous journey. Following early findings that isolated mitochon-
dria sequester cytosolic Ca2+ [1–3], extensive research focused on
characterizing the different forms and properties that dictate mito-
chondrial Ca2+ uptake [4–7]. Mitochondrial Ca2+ uptake depends
strongly on the mitochondrial inner membrane potential and is po-
tently inhibited by both ruthenium red compounds and lantha-
nides [4,6]. The rate of mitochondrial Ca2+ uptake, measured in
isolated mitochondria exhibits a sigmoidal dependence on extra-
mitochondrial Ca2+ concentration that saturates at �200 lM, a half
maximal activation concentration at �10 lM, and a Hill coefficient
of �2 [4,6]. Undoubtedly, these measurements are strongly influ-
enced by both mitochondrial membrane potential and matrix
Ca2+ accumulation [6]. Ca2+ uptake was initially considered to re-
sult from a single transport mechanism mediated by the mitochon-
drial Ca2+ uniporter (MCU), principally due to near complete
inhibition by ruthenium red and lanthanides. However, subse-
quent studies have clearly identified additional Ca2+ uptake path-
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ways (channels, Fig. 1), including the rapid mode of uptake
(RaM) [8,9] and the mitochondrial ryanodine receptor (mRyR)
[10–12]. These pathways exhibit kinetics, Ca2+ dependence
(Fig. 2), and pharmacology that distinguish them from the MCU
(Table 1).

Substantial indirect evidence indicates that ion channels are in-
volved in mitochondrial Ca2+ uptake. For example, mitochondrial
Ca2+ uptake depends on the inner mitochondrial membrane poten-
tial and Ca2+ transport is not coupled to the movement of other
ions [4,6,13,14]. In fact, the term ‘‘Ca2+ uniporter” was originally
proposed as a counterpart to other known mitochondrial antiport
systems such as the K+/H+, Na+/Ca2+, and H+/Ca2+ exchangers
[4,14]. These original studies predicted the Ca2+ transport rate
across the mitochondrial inner membrane to be low compared to
that of conventional ion channels [4,6]. Thus, mitochondrial Ca2+

uptake mechanisms were collectively described under the guise
of a ‘‘Ca2+ uniporter”, which eluded arguments of classification as
either carrier or channel. However, recent innovative electrophys-
iological recordings more directly address this fundamental ques-
tion and resulted in a detailed characterization of mitochondrial
Ca2+ channels. Electrophysiological recordings using patch clamp
techniques or lipid bilayer systems have advantages over conven-
tional Ca2+ uptake measurements using fluorescence probes. Spe-
cifically, single channel recordings provide exquisite details
regarding channel selectivity, conduction, and temporal resolution
lsevier B.V. All rights reserved.
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Fig. 2. Ca2+ dependence of the major mitochondrial Ca2+ influx pathways. Relative
activity of RaM (blue), mRyR (red), and the MCU (black) is estimated based on
respective Ca2+ dependencies assuming a constant membrane potential and
electrochemical gradient across the mitochondrial inner membrane. MCU is
modeled according to patch clamp data of Kirichok et al. [43] and fitting with a
Hill equation, 1/(1 + (Km/x)n), where Km is the half-maximal concentration (19 mM)
for activation, x is the extra-mitochondrial Ca2+ concentration, and n is the Hill
coefficient (0.6). mRyR is modeled based on the Ca2+ dependent activation and
inhibition of RyR1 channels using a modified Hill equation, c1 � (1/(1 + (Ka/
x)n)) � (1 � 1/(1 + (Ki/x)n)), where c1 is a constant (0.0045) to enforce a fivefold
faster Ca2+ transport by mRyR compared to the MCU at 1 lM extra-mitochondrial
Ca2+ according to the UV flash-induced mitochondrial Ca2+ uptake experiments of
Beutner et al. [10], Ka (2 lM) is the half-maximal concentration for Ca2+ dependent
activation, Ki (20 lM) is the half-maximal concentration for Ca2+ dependent
inhibition, x is the extra-mitochondrial Ca2+ concentration, and n is the Hill
coefficient (4). RaM is modeled based on the same modified Hill’s equation, c2 � (1/
(1 + (Ka/x)n)) � (1 � 1/(1 + (Ki/x)n)), where c2 is a constant (0.00049) to enforce a 50-
fold faster Ca2+ transport of RaM compared to the MCU at 50 nM extra-mitochon-
drial Ca2+ according to the findings of Buntinas et al. [8], Ka (20 nM) is the half-
maximal concentration for Ca2+ dependent activation, Ki (100 nM) is half maximal
concentration for Ca2+ dependent inhibition, x is the extra-mitochondrial Ca2+

concentration, and n is the Hill coefficient (4).

Fig. 1. Mitochondrial Ca2+ channels/transporters and role in mitochondrial func-
tion. Mitochondrial Ca2+ uptake is determined by the mitochondrial Ca2+ uniporter
(MCU), rapid mode of uptake (RaM), and ryanodine receptor (mRyR, or RyR1). The
mitochondrial permeability transition pore (mPTP), Na+/Ca2+ exchanger (mNCX),
H+/Ca2+ exchanger (mHCX, encoded by Letm1), and DAG activated cation channels
(DCC) contribute to Ca2+ efflux. Mitochondrial Ca2+ uptake contributes to (a)
shaping cytosolic Ca2+ signals and triggering metabolic coupling by enhancing
mitochondrial ATP synthesis, (b) stimulation of Ca2+ dependent dehydrogenases of
the TCA cycle [34] to increase NADH/FADH production used to feed electrons
through the electron transport chain (ETC) and (c) activation of the ATP synthase
[35]. However, mitochondrial Ca2+ overload can trigger (d) mPTP activation, (e) ROS
generation, and cell death. Voltage dependent anion-selective channels (VDAC)
provide a pathway for Ca2+ and metabolite transport across the mitochondrial outer
membrane. MIM and MOM; mitochondrial inner and outer membranes,
respectively.
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of channel gating (tens of microseconds) [15]. More importantly,
the membrane voltage and concentration of Ca2+ ions on both sides
of membrane, which affect Ca2+ transport rate, are tightly
controlled. Thus, direct measurements of Ca2+ currents using these
electrophysiological methods eliminates complications derived
from Ca2+ flux itself or activation of other Ca2+ sensitive channels.
Large conductance channels in the inner and outer mitochondrial
membrane have been identified using electrophysiological meth-
ods [16]. Delays in definitive identification of native mitochondrial
channels are primarily a result of significant technical challenges
due to the small size of isolated mitochondria and mitoplasts
(mitochondria in which the inner membrane is exposed). Further-
more, a low channel density, small unitary conductance, high Ca2+

selectivity, and low open probability of some mitochondrial chan-
nels provide additional technical challenges. Detailed consider-
ation of the biophysical properties of these channels is discussed
in subsequent sections of this review.

The Ca2+ concentration within the mitochondrial matrix is also
regulated by a variety of Ca2+ efflux mechanisms (Fig. 1) including
the mitochondrial Na+/Ca2+ and H+/Ca2+ exchangers, neither of
which have yet to be characterized electrophysiologically [7,14].
Depending on the concentration of Na+, H+ and Ca2+ across the
mitochondrial inner membrane, these exchangers contribute to
either Ca2+ uptake or release. Significant matrix Ca2+ efflux also oc-
curs during opening of the mitochondrial permeability transition
pore (mPTP) and the role of subconductance transient openings of
the mPTP has also been discussed previously [17,18]. This review
will focus the properties of mitochondrial Ca2+ uptake channels.
2. Mitochondrial Ca2+ channels and signaling

Mitochondrial Ca2+ channels play important roles in a myriad of
intracellular signaling pathways in physiological and pathological
conditions, which is more extensively reviewed elsewhere [7,17].
Mitochondrial Ca2+ uptake through these channels contributes to
shaping beat-to-beat oscillations of cytosolic Ca2+ signals in heart
cells [19–21]. More interestingly, mitochondrial Ca2+ uptake ac-
tively controls Ca2+ mobilizing mechanisms by regulating the
Ca2+ concentration in the microdomain adjacent to the endoplas-
mic reticulum (ER) or plasma membrane in a variety of cell types.
Ca2+ dependent activation or inactivation of plasma membrane and
ER Ca2+ channels is strongly modulated by mitochondrial Ca2+ up-
take [22,23]. Interestingly, privileged ER-mitochondrial communi-
cation is facilitated by electron dense tethering structures that
physically connect mitochondria to the ER [24,25]. Subsarcolem-
mal mitochondria regulate the rate of sarcolemmal L-type Ca2+

channel inactivation in cardiomyocytes [26]. In addition, store
operated Ca2+ channels, in which store depletion triggers oligomer-
ization of ER Ca2+ sensor stromal interacting molecules (STIM1)
and subsequent activation of Orai1/TRPC channels in the plasma
membrane [27,28], are also regulated by mitochondrial Ca2+ up-
take [29–32]. Finally, mitochondrial Ca2+ uptake and release mod-
ulates synaptic transmission by regulating presynaptic Ca2+ levels
that underlie neuronal post-tetanic potentiation [33]. Thus, mito-
chondrial Ca2+ uptake channels play a critical role in regulating
many essential cellular functions.

Mitochondrial Ca2+ channels are important regulators of cellular
bioenergetics [34,35] (Fig. 1). During heart failure, dysregulation of
mitochondrial Ca2+ handling is associated with contractile dysfunc-
tion [36]. Mitochondrial Ca2+ uptake activates several dehydrogen-
ases [34] in the TCA cycle and ATP synthase [35]. In an elegant series
of experiments, Brandes and Bers used real-time measurements of
NADH auto-fluorescence to demonstrated Ca2+ activation of the
TCA cycle during electrical stimulation of intact cardiac trabeculae
[37]. When the frequency of electrical stimulation increased from
0.25 to 2 Hz, mitochondrial NADH levels initially decreased upon
mitochondrial Ca2+ uptake, but then quickly recovered. Alterna-
tively, when the frequency of stimulation was reduced from 2 to



Table 1
Comparison of mitochondrial Ca2+ channel biophysical properties. Properties of MiCa are taken from Kirichok et al. [43], mCa1 and mCa2 from Michels et al. [44], mRyR from
Altschafl et al. [12], DCC from Chinopoulos et al. [63], and VDAC from [64,67]. Single channel conductance values of MiCa, mCa1, mCa2 were obtained in the presence of
symmetrical 105 mM Ca2+, mRyR in symmetrical 300 mM Cs+ (225 pS in 150 mM Cs+ from our unpublished mitoplast patch clamp data), DCC and VDAC in symmetrical 150 mM
KCl. Relative Ca2+ permeability value of mRyR is adapted from that of RyR1 in skeletal muscle [55]. Channel activity of mRyR exhibits long lasting subconductance openings in the
presence of <10 lM ryanodine and is blocked at >100 lM ryanodine. RuR indicates ruthenium red. DIDS indicates 4,40-diisothiocyano-2,20-disulfonic acid.

Single channel
conductance

Ion selectivity Voltage
dependence

Molecular
identity

Inhibitors Activators Other properties

MCU
MiCa 2.6–5.2 pS Highly Ca2+ selective Inward

rectifying
– RuR, Ru360 –

mCal 13.7 pS Highly Ca2+ selective Inward
rectifying

– RuR, Ru360 Spermine

mCa2 7.67 pS Highly Ca2+ selective Inward
rectifying

– Relatively insensitive
to Ru360

Spermine

mRyR 500–800 pS
(225 pS)

Cation selective, PCa/PK = �6/1 Linear RyR1 >100 lM Ryanodine <10 lM Ryanodine
Impera toxin A

RaM – – – – RuR spermine Only known as a
kinetic mode

DCC 202 pS Slightly cation selective,
Ca2+ selectivity is not defined

Linear – 1 mM La3+ DAG

VDAC 700 pS Anion or cation selective states
PCa/PCl = 0.02–0.38

Closed at
>±40 mV

VDAC 1, 2, 3 DIDS, RuR, Ru360 – Outer membrane
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0.25 Hz, NADH levels increased above control levels. A mathemati-
cal model was developed to validate ‘‘push” and ‘‘pull” models,
which are based on Ca2+ activation of dehydrogenases and ADP-in-
duced increase in respiration. Both models were required for the
best mathematical reconstitution of time dependent changes in
mitochondrial NADH dynamics [38]. Importantly, we found that
inhibition of mitochondrial Ca2+ uptake inhibits ADP-induced state
3 respiration [11]. These findings indicate that mitochondrial Ca2+

channels act as metabolic transducers that operate by controlling
Ca2+-dependent changes in mitochondrial ATP production required
to meet dynamic changes in cytosolic energy needs [11]. Finally,
mitochondrial Ca2+ is also a key regulator for the generation of reac-
tive oxygen species (ROS), which intimately link to physiological re-
dox signaling [39]. Under pathological conditions, however,
mitochondrial Ca2+ overload contributes to excessive generation
of ROS [17,39,40], activation of the mPTP [18,41], and initiation of
cell death [42].
3. Mitochondrial Ca2+ uniporter (MCU)

The mechanisms of mitochondrial Ca2+ uptake are often studied
in suspensions of isolated mitochondria where the control of mem-
brane potential and ion concentrations is limited. Patch clamp
studies overcome these limitations by directly controlling both
membrane voltage and ion concentrations across the mitochon-
drial inner membrane. Mitoplasts prepared from COS-7 cells and
macroscopic ‘‘whole-mitoplast” patch clamp recordings revealed
a highly Ca2+ selective (<2 nM Ca2+ affinity) and inwardly rectifying
current, named MiCa [43]. Inward MiCa currents exhibit partial
Ca2+-independent inactivation at negative voltages. Macroscopic
MiCa current density is large, reaching 55 pA/pF at �160 mV in
the presence of 100 lM extra-mitochondrial [Ca2+], approximately
the local Ca2+ concentration within ER-mitochondrial microdo-
mains. Interestingly, inward MiCa currents saturate at >105 mM
Ca2+ with a half maximal concentration of �19 mM, and a Hill coef-
ficient of �0.6. These findings indicate that Ca2+ influx capacity
through this pathway is enormous. Maximal Ca2+ flux through sin-
gle MiCa channels with 105 mM extramitochondrial Ca2+ is
�5 � 106 ions/s, which is comparable to that of most ion channels.
Does this flux truly correspond to activity of the MCU? Indeed, the
half maximal concentration and estimated MiCa flux rate is higher
(�2 � 104 ions/s, [4,6]) and the Hill coefficient lower compared to
that previously reported for the MCU [6]. However, these differ-
ences could be due to the more uniform control of membrane po-
tential and ion concentrations in patch-clamp experiments that are
necessarily lacking in the biochemical measurements [6,43]. The
permeability of MiCa to various divalent cations exhibits a similar
rank order (Ca2+ � Sr2+�Mn2+ � Ba2+, and Mg2+ being imperme-
able) as that previously reported for MCU. In addition, inhibition
by nanomolar concentrations of ruthenium red, and the purified
and more specific inhibitor Ru360, further support the notion that
MiCa represents the electrophysiological correlate of the MCU. In
inside-out patches, single channel MiCa activity exhibits character-
istics remarkably similar to that observed macroscopically [43].
Specifically, channel open probability was high at negative volt-
ages and decreased strongly with depolarization, reflecting the in-
wardly rectifying whole-mitoplast MiCa current. However,
multichannel currents recorded from inside out patches do not ex-
hibit the same inactivation properties as that observed in whole-
mitoplast recordings. With symmetrical 105 mM CaCl2, single
MiCa channel activity exhibits multiple subconductance states be-
tween 2.6 and 5.2 pS (Fig. 3A) with an estimated channel density of
�10–40 channels per lm2. Thus, the single channel recordings and
estimated Ca2+ fluxes strongly support the notion that MiCa repre-
sents a bona fide Ca2+-permeable ion channel and not a carrier.

Recently, two voltage dependent Ca2+ channels in human heart
mitoplasts, named mCa1 and mCa2, were characterized electro-
physiologically in patch clamp experiments [44]. Both mCa1 and
mCa2 exhibit high Ca2+ selectivity, maximal conductance at
105 mM Ca2+, and half saturation at 15.1 and 19.6 mM Ca2+,
respectively. Like MiCa, mCa1 is inhibited by nanomolar Ru360
and exhibits increased open probability at negative voltages. How-
ever, mCa1 has a higher mean unitary conductance (13.7 pS) and
exhibits multiple conductance states (10.1, 16.5, and 21.3 pS). Fur-
ther, mCa1 exhibits completely distinct channel kinetics compared
to MiCa. Specifically, mCa1 exhibits low channel open probability
(PO = 0.053) with long closed times and brief open times, whereas
MiCa channels exhibit a high channel open probability (PO = 0.9)
due to short closed times and long-lived open times. These differ-
ences could be explained either by MiCa and mCa1 arising from
distinct channels or to differences between experimental condi-
tions including different species and cell types [44]. mCa2 shares
the same voltage dependence with mCa1, but mCa2 channels exhi-
bit a smaller unitary conductance (7.67 pS) and are insensitive to
nanomolar concentrations and only partially reduced by micromo-
lar concentration of Ru360. Spermine, which stimulates mitochon-
drial Ca2+ uptake [7], enhances both mCa1 and mCa2 channel
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Fig. 3. Representative single channel current traces of different mitochondrial Ca2+ channels. (A) Single channel current traces of MiCa recorded from a COS-7 cell mitoplast
reproduced from the original recording reported by Kirichok et al. [43] (Nature, 2004, 427:360–364, supplemental Fig. 2a) with permission from Nature Publishing Group. The
single channel activity of MiCa shows multiple conductance states ranging from 2.6 to 5.2 pS at �160 mV in symmetrical 105 mM CaCl2. At positive voltages (+140 mV), the
single channel activity of MiCa shows fast flickering with very small subconductance states, an indication of conduction block by Ca2+. (B) Single channel current trace of a
mRyR channel purified from rat heart mitochondrial inner membrane and incorporated into an artificial lipid bilayer reproduced from the original recording reported by
Altschafl et al. [12] (Biochimica et Biophysica Acta – Biomembranes, 2007, 1768:1784–1795, Fig. 7c) with permission from Elsevier. Peak unitary mRyR conductance is
between 500 and 800 pS using a 300/50 mM, cis/trans, Cs-methanesulfonate gradient and 50 lM cytosolic Ca2+. Impera toxin A, a RyR channel modulator, induces
subconductance opening of mRyR. (C) Single channel current trace of a DAG activated cation channel (DCC) recorded from a brain mitoplast reproduced from the original
report of Chinopoulos et al. [63] (Journal of Bioenergetics and Biomembranes, 2007, 37(4):237–247, Fig. 4d) with permission from Springer. The DCC current was recorded at
�50 mV in symmetrical 150 mM KCl in the presence of 10 lM cytosolic Ca2+ and 100 lM 1-oleoyl-2-acetyl-sn-glycerol (OAG), a DAG analog. (D) Single channel current trace
of mPTP, previously referred to as the multi-conductance channel (MCC), recorded from rat heart mitoplast reproduced from the original report of Kinnally et al. [71] (Journal
of Bioenergetics and Biomembranes, 24(1):99–110, Fig. 3) with permission from Springer. The mPTP activity was recorded at �60 mV in symmetrical 150 mM KCl. (E) Single
channel current traces of VDAC reproduced from the original report of Pavlov et al. [67] (Biochimica et Biophysica Acta – Bioenergetics, 2005, 1710:96–102, Fig. 2b and c) with
permission from Elsevier. (a) Typical voltage dependent channel activity of VDAC with voltage ramps between ±40 mV shows anion- or cation-selective conductance states.
(b) VDAC activity was recorded at 0 mV with 150/30 mM KCl gradient. Anion- and cation- selective states are shown with arrows. Solid line indicates the 0 current level. Scale
bars are presented with some modification from the original article.
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activity. However, dantrolene, a type 1 ryanodine receptor inhibi-
tor, does not alter mCa1 or mCa2 activity, suggesting that they
are not associated with mRyR activity (see mRyR section for de-
tails). Importantly, mCa1 and mCa2 channel activity (decreased
PO) and gating (prolonged closed times) are reduced in the failing
heart, consistent with reduced mitochondrial Ca2+ uptake in heart
failure.

Despite numerous attempts over many years, the molecular
identity of the MCU remains elusive. Ca2+-binding glycoproteins
were isolated from mitochondria in the 1970s [45,46]. Later, a
40 kDa glycoprotein was shown to form Ca2+ conducting channels
in lipid bilayers and an antibody against this glycoprotein inhibits
Ca2+ transport in liver mitoplasts [47]. Purification and reconstitu-
tion into lipid bilayers of a 2 kDa peptide of the 40 kDa glycopro-
tein shows a 20 pS ruthenium red-sensitive Ca2+ channel activity
[48]. Antibodies against a different 20 kDa protein inhibit mito-
chondrial Ca2+ uptake [49] and 103Ru360 labels an 18 kDa protein
purified from rat kidney mitochondria [50]. However, the molecu-
lar identities of these glycoproteins have not yet been identified.
More recently, Trenker and colleagues reported that uncoupling
protein 2 and 3 (UCP2/3) are fundamental for mitochondrial Ca2+

uptake based on experiments of mutants and following knock-
down with small interference RNA [51,52]. However, it remains
unclear and controversial as to whether or not UCP2/3 forms the
MCU Ca2+ conducting pore or even regulates its activity. For exam-
ple, Brookes et al. found that mitochondrial Ca2+ uptake is unaf-
fected by either UCP inhibitors, GDP and genipin, or UCP2/UCP3
deficiency, suggesting that UCPs do not function as the MCU [53].
Electrophysiological recordings of whole-mitoplast MiCa currents
from normal and UCP2/3 knock-out mice together with mutational
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studies within putative pore regions of UCP2/3 are needed to more
definitively resolve this issue.

A recent report has shown the promise of genome-wide high
throughput RNA interference (RNAi) screens in the molecular iden-
tification of novel mitochondrial Ca2+ transport proteins [54].
Using this approach, the Drosophila homologue of mammalian
Letm1 was identified as a mitochondrial H+/Ca2+ exchanger [54].
RNAi knockdown, overexpression, and liposome reconstitution of
the purified protein demonstrate that Letm1 mediates pH depen-
dent mitochondrial Ca2+ uptake and release. Although the authors
did not report the identification of MCU in this initial report, this
unbiased high throughput genome-wide screening approach could
potentially lead to the molecular identification of the MCU and
other mitochondrial ion channels and transporters in the future.

In summary, the biophysical analysis of MCU candidate chan-
nels confirms that they are highly Ca2+ selective and exhibit
strongly inward rectifying properties. However, the different single
channel conductance, gating, and pharmacological properties of
these candidate channels indicate that MCU activity may result
from a family of Ca2+ selective channels present in the mitochon-
drial inner membrane. Numerous questions regarding the MCU re-
main to be addressed. (1) What are the molecular identities of the
MCU proteins? (2) Are there tissue and/or species differences in
MCU activity and identity? (3) Is the MCU sufficient to account
for mitochondrial Ca2+ uptake in different cell types? The plasma
membrane expresses multiple subtypes of Ca2+ channels across a
wide range of different cell types. Similarly, we envision that the
cell type-specific differences in mitochondrial Ca2+ uptake likely
reflect, in part, variations in MCU activity due to differences in
the aggregate activity of multiple Ca2+ uptake channels (Fig. 2
and Table 1).
4. Rapid mode uptake (RaM)

A rapid mode of Ca2+ uptake (RaM), with kinetics hundreds of
times faster than classical MCU activity, has been reported in iso-
lated liver, heart, and brain mitochondria. Rapid mitochondrial
Ca2+ uptake kinetics were revealed in experiments using fast Ca2+

pulses within a millisecond time scale [6–9]. Interestingly, unlike
classical MCU activity, Ca2+ uptake by RaM is inhibited by increas-
ing the extra-mitochondrial Ca2+ concentration (Fig. 2). Thus, to
observe RaM, the basal extra-mitochondrial Ca2+ level between
pulses needs to drop below �100 nM for a period of time in order
to permit removal of Ca2+ from a high-affinity external binding site
[6]. RaM exhibits different characteristics between heart and liver
mitochondria. Specifically, RaM-mediated Ca2+ uptake following a
single pulse is significantly smaller in heart compared to liver
mitochondria. Additionally, the reset time for the second Ca2+

pulse is longer in heart (>60 s) than liver mitochondria (<0.3 s)
and RaM in heart mitochondria is less sensitive to blockade by
ruthenium red. Spermine activates RaM in cardiac mitochondria
but is less effective in liver. ATP and GTP activate RaM in liver
but not in heart mitochondria. Finally, unlike in liver, RaM in heart
mitochondria is activated by ADP and strongly inhibited by AMP.

Currently, RaM is only described as a kinetic mode of mitochon-
drial Ca2+ uptake. The protein(s) and molecular identity of RaM,
and its relationship to the MCU, remain unknown [6]. Interestingly,
MiCa currents measured in whole-mitoplast configuration exhibit
transient inward currents followed by a persistent steady state
current [43]. The relative amplitude of the transient current to
the total peak current at �160 mV is about 21% with current decay
exhibiting two time constants of 4 and 141 ms. This transient com-
ponent of MiCa currents may be related to RaM. However, the ex-
tra-mitochondrial Ca2+ concentrations in these patch clamp
recordings were high enough (20 lM to 105 mM) to completely in-
hibit RaM, which closes at concentrations above 100 nM Ca2+. Kiri-
chok et al. showed that this transient component was not due to
Ca2+ dependent inactivation since it was not affected by strong ma-
trix Ca2+ buffering [43]. Thus, as it is unclear whether the transient
component of MiCa current is related to RaM, it will be important
to determine if AMP, which inhibits RaM in heart mitochondria [8],
blocks the transient component of MiCa current.
5. Mitochondrial ryanodine receptor (mRyR)

A ryanodine-sensitive, rapid mitochondrial Ca2+ uptake mecha-
nism in isolated heart mitochondria was firstly identified in 2001
by Beutner and colleagues [10]. Using [3H]ryanodine binding,
immunogold labeling and Western blot analysis, a ryanodine
receptor with a molecular mass of �500 kDa was identified in
the mitochondrial inner membrane. [3H]ryanodine binding to iso-
lated heart mitochondria exhibits high affinity (Kd = 9.8 nM),
shows biphasic Ca2+ regulation, and is inhibited by Mg2+

(IC50 = 0.33 mM) and ruthenium red (IC50 = 105 nM). Interestingly,
the bell-shaped Ca2+ dependence of [3H]ryanodine binding to puri-
fied heart mitochondria exhibits half-maximal activation at
�2 lM, peak binding between 10 and 40 lM, and is inactivated
at higher Ca2+ concentrations. Considering that ryanodine binds
only to the open channel [55], the bell shaped Ca2+ dependency
of [3H]ryanodine binding demonstrates that mRyR is uniquely
optimized for the physiological Ca2+ transport between the sarco-
plasmic reticulum (SR) and mitochondria in the heart. mRyR activ-
ity in heart mitochondria is sensitive to dantrolene, consistent with
mRyR being related to the skeletal muscle type 1 RyR isoform
(RyR1), but not the cardiac isoform (RyR2) located in the SR. We
further confirmed the subtype of mRyR in heart mitochondria
being RyR1 using both subtype specific antibodies and by failure
to detect mRyR in hearts from newborn RyR1 knockout mice [11].

Recently, single mRyR channel activity was recorded from puri-
fied mRyR proteins, extracted from mitochondrial inner membrane
vesicles following incorporation in artificial planar lipid bilayers
[12] (Fig. 3B). The inner mitochondrial membrane fractions used
in these experiments exhibited robust labeling with RyR1-specific
antibodies but were free of sarco-endoplasmic reticulum Ca2+

pump (SERCA), calsequestrin, and RyR2 reactivity, consistent with
lack of SR contamination. The unitary conductance of mRyR is 500–
800 pS with symmetrical 300 mM Cs+ solution. Changing the cis
(cytosolic) Ca2+ concentration from 5 to 50 lM activates mRyR
channels by increasing both bursting frequency and mean open
time. Low micromolar concentrations of ryanodine lock mRyR
channels into a long-lived subconductance state while higher ryan-
odine concentrations completely inhibit mRyR channel activity.
These findings are classic characteristics of reconstituted ryano-
dine receptor channels [55,56]. Impera toxin A, a high affinity
RyR1 modulator, also activated mRyR by promoting subconduc-
tance gating. The absence of effect of cyclosporin A and bongkrekic
acid indicates that mRyR activity is not related to either the mPTP
or adenine nucleotide translocator (ANT). We have also recorded
ryanodine and ruthenium red sensitive single channel activities
by directly patch clamping heart mitoplasts (unpublished data of
Ryu, Kinnally, Dirksen, and Sheu). Together, these results indicate
that functional mRyRs exist in the inner membrane of heart
mitochondria.

Activation of a high conductance mRyR channel with relatively
low Ca2+ selectivity could potentially depolarize the mitochondrial
membrane potential, and thus, uncouple oxidative phosphoryla-
tion. However, Ca2+ and K+ transport through mRyR may actually
serve to stabilize mitochondrial energy metabolism for several rea-
sons. First, increased K+ permeability due to opening of large con-
ductance Ca2+ activated K+ channels enhances mitochondrial
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energetic performance by inducing moderate mitochondrial swell-
ing with a maintained membrane potential [57]. Thus, increased
mitochondrial K+ flux during mRyR activation may exert a similar
enhancement of mitochondrial energetics. Second, Ca2+ dependent
activation of several dehydrogenases in the TCA cycle and subse-
quent increase in NADH production will serve to counteract depo-
larization. Third, increased K+ flux and the bell-shaped Ca2+

dependence of mRyR activity may act as a built-in brake to regu-
late the electrochemical driving force for Ca2+ entry across the
mitochondrial inner membrane. Fourth, the expected unitary
mRyR conductance under physiological conditions will be smaller
than that recorded experimentally in bilayers where high ionic
strength solutions are used. In fact, the peak single channel con-
ductance of native mRyR channel activity is only �225 pS using
symmetrical 150 mM Cs+ (our unpublished data). Furthermore,
mRyR primarily opens to subconductance levels and physiological
concentrations of cytosolic Mg2+ will decrease channel open prob-
ability, both of which serve to significantly limit net ion flux. Final-
ly, maximal density of mRyR binding sites (Bmax) is
398.4 ± 12 fmol/mg of protein, only �10% of the level in the SR,
which will further limit the degree of mitochondrial
depolarization.

Considering the electrochemical gradient for Ca2+ flux across
the mitochondrial inner membrane, the properties and Ca2+ depen-
dence of mRyR render these channels uniquely suited for mediat-
ing fast dynamic mitochondrial Ca2+ uptake. However, under
certain situations (e.g. mitochondrial Ca2+ overload, reversal of
Ca2+ electrochemical gradient), activation of mRyR channels could
result in rapid mitochondrial Ca2+ efflux. In these conditions,
mRyR-mediated Ca2+ efflux may serve an important protective role
by reducing matrix Ca2+ and preventing activation of the more
non-specific pore mPTP and subsequent initiation of cell death.

Since our initial discovery of mRyR in 2001 [10], the idea that
more than one Ca2+ influx mechanism exists in mitochondria has
gradually gained wider recognition. Unfortunately, as of now we
are still left with limited information regarding the molecular iden-
tities of these different Ca2+ influx mechanisms. This relatively
slow progress is due to intrinsic difficulties in investigating mito-
chondrial ion channels, which is best exemplified by the fact that
even 40 years after its discovery, the molecular identity of the
MCU remains elusive. Indeed, the majority of mitochondrial ion
channels have yet to be cloned, which lies in stark contrast with ra-
pid progress in molecular identification and cloning of plasma
membrane ion channels. Of particular interest, RyRs in the cardiac
SR (RyR2) localize adjacent to mitochondria due to the physical
tethering of these two organelles. Garcia-Perez et al. showed that
crude or Percoll-purified heavy mitochondrial fractions contain
low levels of RyR2 and calsequestrin contamination [58]. In these
mitochondrial preparations, caffeine plus thapsigargin induces
mitochondrial Ca2+ uptake, consistent with intimate physical cou-
pling between SR and mitochondria. Ru360, a presumed specific
inhibitor of the MCU, blocked mitochondrial Ca2+ uptake induced
by caffeine and thapsigargin. Thus, Garcia-Perez et al. concluded
that the observed mitochondrial Ca2+ uptake is not mediated by
mRyR. For this reason, mRyR was suggested to either reflect an
SR membrane ‘‘contaminant” in the purified mitochondrial prepa-
ration or to non-specific binding of immunogold particles [59].
However, the concentration of Ru360 used in this study (10 lM)
is also known to inhibit VDAC activity in the outer membrane
[60], which would severely compromise Ca2+ transport across the
outer membrane (see discussion below). In fact, addition of
10 lM Ca2+ in the presence of Ru360 induces a significant increase
in mitochondrial Ca2+ [58], consistent with contributions of other
Ca2+ transport mechanisms in the inner membrane. Moreover, sev-
eral groups confirmed the presence of mRyR in mitochondrial cris-
tae from electron micrographs using RyR antibody conjugated
immunogold particles [10,61] and the absence of mRyR in purified
mitochondria from RyR1 knock-out mice [11]. Resolution of these
controversies will require further studies using RyR knock-out and
knock-in mice to determine the molecular identity and functional
significance of the mRyR.

Important future approaches/directions in mRyR research will
include addressing several currently unresolved questions includ-
ing: How is mRyR targeted to mitochondria? How do mRyR precur-
sor proteins interact with protein import machineries in the outer
and inner membrane? What are the important mRyR molecular
regulators and binding partners? How is mRyR expression con-
trolled? What are the implications of RyR1-linked diseases on
mRyR and cardiac function? Does altered mRyR function contrib-
ute to cardiac abnormalities previously reported in individuals
with RYR1 gene mutations linked to malignant hyperthermia [62]?
6. Other Ca2+-permeable mitochondrial channels

Diacylglycerol (DAG), which is generated by phospholipase C
following PIP2 hydrolysis, induces Ca2+ release from Ca2+-loaded
mitochondria. Patch clamp studies of brain mitoplasts demon-
strate that DAG activates a novel La3+-sensitive cation channel in
the mitochondrial inner membrane [63]. The single channel con-
ductance of the novel DAG-activated cation-selective channel
(DCC) is �202 pS in symmetrical 150 mM KCl (Fig. 3C). DCC is
not mediated by either the MCU, mRyR or mPTP since it is not
inhibited by ruthenium red, bongkrekic acid, or cyclosporin A.
Since DCC channel activity is not observed in membrane patches
from pure lipid vesicles, DAG does not directly form these chan-
nels. The identification of mitochondrial DCCs is particularly
intriguing since this data suggest mitochondrial Ca2+ handling is
modulated by a second messenger, DAG, following activation of
multiple G-protein (Gq) coupled cell surface receptors.

Voltage dependent anion-selective channels (VDACs), located in
the mitochondrial outer membrane, provide an access route into
the intermembrane space for Ca2+ and various cellular metabolites
including ATP and ADP [64,65]. The mitochondrial outer mem-
brane was originally considered not to act as a significant barrier
for the Ca2+ transport. However, over-expression of VDAC enhances
ER-mitochondrial Ca2+ transport [66], consistent with the mito-
chondrial outer membrane serving a barrier function limiting
mitochondrial Ca2+ transport. Furthermore, this finding suggests
that VDAC provides a regulated pathway for Ca2+ transit across
the outer membrane. VDAC is reported to exhibit both cation and
anion selective conductance states [67] (Fig. 3E), with a cationic
closed state paradoxically exhibiting greater Ca2+ permeability
than the full open state [64,65]. The permeability ratio of VDAC
for Ca2+ over Cl� (PCa2þ=PCl� ) is 0.02–0.38 [64]. Both VDAC cationic
and anionic conductance states are blocked by ruthenium red and
lanthanides [60,68]. Ruthenium compounds block by interacting
with a Ca2+ binding site formed by two glutamate residues, E72
and E202, in the cytosolic loops of VDAC [69]. Ca2+ not only perme-
ates but also regulates VDAC gating by inducing a prolonged fully
open state that promotes increased metabolite exchange [70].
Thus, Ca2+ uptake is coordinated by a complex interplay between
Ca2+-permeable channels in both the mitochondrial inner and out-
er membranes.
7. Conclusions

Mitochondrial Ca2+ handling plays a key physiological role in
the control of many cellular functions. Dysfunction in proper mito-
chondrial Ca2+ homeostasis contributes to several pathological
conditions. Mitochondrial Ca2+ channels provide the gateway for
Ca2+ conduction across the mitochondrial outer and inner
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membranes (Fig. 1), enabling mitochondria to regulate the cyto-
solic Ca2+ signals, energy metabolism, ROS generation, and cell
death. Remarkably, the unique Ca2+ dependence of MCU, RaM,
and mRyR activities suggest their specific roles in various cytosolic
Ca2+ environments (Fig. 2). Future studies are destined to provide
new and exciting discoveries regarding the diversity in function,
mechanisms of modulation/control, molecular identity/structure,
and (patho)physiological roles of the mitochondrial Ca2+ channels.
These findings will undoubtedly provide new insights into poten-
tial therapeutic targets for disorders as diverse as cancer, heart fail-
ure, myopathy, and neurodegenerative diseases.
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