
Theoretical Computer Science 134 (1994) 559-565

Elsevier

Note

559

Asymptotic optimal HEAPSORT
algorithm

Gu Xunrang and Zhu Yuzhang
Department of Computer Science, Shanghai University of Science and Technology, Shanghai 201800,
People’s Republic of China

Communicated by M. Nivat

Received June 1992

Abstract

Gu, X. and Y. Zhu, Asymptotic optimal HEAPSORT algorithm, Theoretical Computer Science 134

(1994) 559-565.

Heapsort algorithm HEAPSORT runs in a higher efficiency way. It has been improved to re&ee

constant factor of the complexity. An asymptotic optimal heapsort algorithm is given in this
6”’

aper.

When the efficiency becomes the lowest, the constant factor ofits complexity will not be more, han $.
1

1. Introduction

Heapsort algorithm HEAPSORT was created by Williams in the 1960s and it was
improved by Floyd. It requires O(n) comparisons to set up the original heap, and
requires O(nlogn) [3] comparisons to rearrange the heap. (All logarithms in this
paper are to the base 2.) Its worst case time complexity is T(n) = 2n log n + O(n).

It has been theoretically proved that any algorithm for sorting n elements requires
at least log(n!) comparisons. And we know,

log n! xn log n - 1.44 n +log &+ 1.325.

Correspondence to: Gu Xunrang, Department of Computer Science, Shanghai University of Science and

Technology, Shanghai 201800, People’s Republic of China.

0304-3975/94/%07.00 0 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(94)00113-w

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82215717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

560 X. Cu, Y. Zhu

Some people modified this algorithm on rearranging the heap and the complexity

reduces to 4 IZ log n + O(n) [4], and g n log n + O(n) [S]. We notice that when rearrang-

ing the heap, the root is removed and it becomes vacant. By comparing its leftson with

the rightson once, the larger one can move up one level. Repeat this action until the

vacant node appears at 5 of the height of the current heap. Therefore, the algorithm

will have the asymptotic optimal performance if the procedure runs recursively on the

progressively increasing fraction value of the height of the current subheap.

2. Definition

If the binary tree T is a heap [4], the subtree whose root can be any node in T is

called the subheap of T.

It is clear that the subheap whose root is the root of T is the heap itself.

3. Algorithm

3.1. The way to design the algorithm

num

S(,lum)=& (mm 2 1)

num can take the value 6,5,4,3,2,1; accordingly. S(num) has the value

The value of num is ought to be taken large enough. For sorting problem on

n elements, num = Llog(log n) J. Once num is set, it will remain unchanging in the whole

process of heapsort.

The process of rearranging the heap is implemented recursively. When rearranging

the current subheap with height k, by one comparison the leftson with the rightson,

the larger can move up one level. Repeat this process until it reaches at S(num)k of the

current subheap. Suppose at this point the current vacant node is i. The next step is to

compare the element at leaf node, which is outside the current heap and to be sorted,

with the element at the father’s node of the vacant node i. If the latter is smaller, the

former is shifted to node i, and by one comparison with its father’s several times it will

move up to the proper position of the current subheap. If the latter is greater, the

recursive procedure will be carried out, When it reaches at the maximum depth, the

element at leaf node which is outside the current heap and to be sorted will be shifted

to the current vacant node, and it will move down along certain path.

3.2. Algorithm

(1) Set up the original heap [l. 41

Asymptotic optimal HEAPSORT algorithm 561

procedure HEAPFIFY (i j);

{Arrange elements A[i] - A[j] of array A into a heap }

if i is not a leaf

and a son of i contains an element which is larger than i

then begin

Let k be a son of i with the larger element;

interchange A[i] and Ark];

HEAPFIFY (k, j)

end:

procedure BUILDHEAP;

for i:=Ln/2 J step -1 until 1 do HEAPFIFY (i, n);

(2) Rearranging the heap

procedure RE-UPORDOWN (i, num, j);

begin
2”““- 1

hz:= m-11 ;

i I
count := 1;

while count d h2 do

{The process of comparing the leftson with the rightson once

and the larger moving up one level stops at height 2”““- 1/(2num - 1)

of the current subheap.}

begin

Let I be a son of i with the larger element;

A [i]:= A [r];

i:= r;

count:= count + 1

end;

if A[j+ l]>A[Li/2 J]

then {A[j+ l] moves up to the proper position of the current subheap}

begin

A[i]:=A[j+ 11;

while A[i] > A[Li/2 J] do

begin

interchange A[i] and A[Li/2J];

i:=Li/21

end

end

else if num> 1

then begin

562 X. Gu. Y. Zhu

hI := h, -h,; {Get the height of the subheap.}

RE-UPORDOWN(i, num- 1,j)

{Rearranging the current subheap recursively.)

end

else begin

end;

A[i]:=A[j+l];

HEAPFIFY(i,j)

end

(3) Heap sorting

Input: array of elements A [i] (1 d i < n) to be sorted. We define the dummy element

A [0], which is large enough, in case it is out of bound during the comparisons.

Output: the sorted array A.

procedure ASYMPTOTIC-OPTIMAL-HEAPSORT;

begin

BUILDHEAP;

Find the value of num; {say num=Llog(logn)l}

for j:=n step - 1 until 2 do

begin

temp:= A [11;

h,:=Llog(j- l)]; {Get the height of the current heap)

i:= 1; {Starting from the first node}

RE-UPORDOWN (i, num, j- 1);

A [j]:= temp

end

end:

4. Analysis of the complexity

We consider the elements ranging from node i to node j. Suppose h is the height of

the subheap whose root is i. Therefore we have the following lemma.

Lemma. The number of comparisons that the recursive procedure takes is

T(num, h) = 2S(num)h.

Proof. The process of rearranging the heap is correct. This can be proved by

induction on the recursion depth.

When rearranging the current subheap, first by one comparison the leftson with the

rightson of the vacant node, the larger can move up one level. Repeat this process until

Asymptotic optimal HEAPSORT algorithm 563

it reaches S(num)h of the current subheap and totally it needs S(num)h comparisons.
The next step is to compare the element A[j+ I] at leaf node, which is outside the
current heap and to be sorted, with the element at the father’s node of the vacant node
i. At the worst case, either A [j+ l] moves up to the root of the current subheap and it
takes S(num)h comparisons, or A[j+ l] is searched for the position in the subheap
whose root is i and the height is (1 -S(num))h. So we have the following recursion
equation.

[T(num, h) = (2S(num)h
S(num)h + T(num - 1, (1 - S(num))h)

I T(1, h)=2h

S(num)=2”Um-1/(2n”m- I), if the recursion depth is k, so OGkdnum- 1.
(1) When k = 0, we directly have T(num, h) = 2S(num) h.
(2) Now we consider 0 < k < num - 1.

If A[j+ l] moves up in the current subheap, at the worst case,

T(num, h)=S(num)h+S(num- l)(l -S(num))h+...

+2S(num-k)(l -S(num))(l -S(num- l))..(l -S(num-k+ 1))h

2mrm-1

=-----h+
plum-2 yllm - 1

2 num -1 2num-l-1’
-‘A+...

2num_1

2num-k pum-1-l 2num-2-l 2wm-k+l _ 1

+2 num-k+l_l’ 2num_1 ‘2”~m-l_1”“‘2”~m-k+2_1 h

yum-k- 1 pum-1-l 2m4m-2_ 1 2wm - k

i-2
-1

. yum-k_ 1 2num_1 ’ yum-1-l “‘.’ ym-k+l_l h

2num- 1 2mdm- 2

z-----h+---

2”“” - 1 yum-k- 1

2num__ 1 2num__ 1
A+...+ ~h+2. 2”u,n_1 h

=~[2”“-l+pUm-1+...+2”Ym-k +21. pm-k-l]

h
=---

2”“” - 1
2”“rn

= 2S(num) h.

If A[j+ l] moves down in the current subheap, the recursion depth will be
increased by 1.

564 X. Gu, Y. Zhu

(3) When k = num - 1, the recursion depth becomes the top value, at the worst case,

T(izum, h)=S(num)h+S(num- l)(l -S(num))h

+S(num-2)((1 -S(num))(l -S(num- 1))h

+...+S(2)(1-S(nurn))(l-S(num-l)).-. . & . $k

+2S(l)(l-S(num))(l-S(num-I))... . & $ ih

2”““- 1
=------h+

2”“” - 2 *“urn- 1 -1
h

2 ““WI -1 2”“” - 1 -1 2”““-1

7nmI - 3

+2 num-z_l

pan-1-l yum-2_1h

. 2 num-_1 . ynn-l_l

2 p!Jm-l_l yum-2-1

+“‘+5 . 2”“” -1 pm-t
_l.A . +h

+2 .
yum-l-1 ym-2-l

2 nllm -1 pun - 1
_1 A. $. +h

= --&--[pm-l+pm-2+ +7um-3+...+21+211
2

h pm
zz---

2 num- 1

= 2S(num)h. 0

Theorem. The worst case time complexity of the algorithm ASYMPTOTIC-OPTI-
MAL -HEAPSORT is

T(n) = & n log II + O(n).

Proof. The correctness of the heapsort algorithm can be proved by induction on the

number of times that the “FOR” loop has been executed.

The complexity of the algorithm consists of two parts:

(1) Setting up the original heap by calling BUILDHEAP.

It takes time O(n) [2,4]

(2) The time it requires for the FOR loop to perform. Since the height of the heap

with j- 1 elements is h=Llog(j- l)J, so according to the above lemma, we have

T’(n)= c T(num, Llog(j- 1) J)= C [2S(num) . Llog(j- 1) J]
z<jcn Z$j<n

=ZS(num) C Llog(j- 1) J
2Cj<n

pm

=2S(num)nlogn=~
2 -1

nlogn

Asymptotic optimal HEAPSORT algorithm 565

The total complexity of ASYMPTOTIC-OPTIMAL-HEAPSORT is

T(n)=&nlogn+O(n). 0

5. Discussion

(1) In fact, when rearranging the current heap. once the recursive procedure is

executed, A [j+ 11 and A [L i/2 J] compares once, totally it requires num comparisons

at most. Hence, heap sorting will have another II ’ num (n times num) comparisons.

Normally, num = L log (log n) J, so that,

T(n) = ~nlogn+O(nlog(logn))+O(n).

(2) When n-tco, log(logn)+co, i.e., num-+co. We notice that

2 ll”rn

.l!lKJ 2”“” - 1
-----1,

hence T(n) = n log n + O(n log (log n)) + O(n). So we can conclude that the algorithm is

of asymptotic optimal performance.

(3) The condition to call the recursive procedure RE-UPORDOWN to rearrange

the heap is num> 1, i.e. Llog(logn) J> 1, i.e., n2 16. It is advisable to use the revised

heapsort algorithm [4] if the number of elements to be sorted is less than sixteen.

(4)When n3 16, Llog(logn)]B2, i.e., num32, but

Min {S(num)} =3,
turn>2

so from the revised heapsort algorithm, we know that the constant factor of the

complexity is not more than $ and it depends on the num value in (1, :].

References

[l] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms (Ad-

dison-Wesley, Reading, MA, 1975).

[2] S. Baase, Computer Algorithms: Introduction to Design and Analysis (Addison-Wesley, Reading, MA,
1978).

[3] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms (Computer Science Press, 1978).

[4] X. Gu and Y. Zhu, A new HEAPSORT algorithm and the analysis of its complexity, Computer .I. 33 (3)
(1990) 281-282.

[S] I. Wegener, A simple modification of Xunrang and Yuzhang’s heapsort variant improving its complex-

ity significantly, FB Informatik, University of Dortmund, Germany, 1992.

