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Abstract 

Gu, X. and Y. Zhu, Asymptotic optimal HEAPSORT algorithm, Theoretical Computer Science 134 

(1994) 559-565. 

Heapsort algorithm HEAPSORT runs in a higher efficiency way. It has been improved to re&ee 

constant factor of the complexity. An asymptotic optimal heapsort algorithm is given in this 
6”’ 

aper. 

When the efficiency becomes the lowest, the constant factor ofits complexity will not be more, han $. 
1 

1. Introduction 

Heapsort algorithm HEAPSORT was created by Williams in the 1960s and it was 
improved by Floyd. It requires O(n) comparisons to set up the original heap, and 
requires O(nlogn) [3] comparisons to rearrange the heap. (All logarithms in this 
paper are to the base 2.) Its worst case time complexity is T(n) = 2n log n + O(n). 

It has been theoretically proved that any algorithm for sorting n elements requires 
at least log(n!) comparisons. And we know, 

log n! xn log n - 1.44 n +log &+ 1.325. 
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Some people modified this algorithm on rearranging the heap and the complexity 

reduces to 4 IZ log n + O(n) [4], and g n log n + O(n) [S]. We notice that when rearrang- 

ing the heap, the root is removed and it becomes vacant. By comparing its leftson with 

the rightson once, the larger one can move up one level. Repeat this action until the 

vacant node appears at 5 of the height of the current heap. Therefore, the algorithm 

will have the asymptotic optimal performance if the procedure runs recursively on the 

progressively increasing fraction value of the height of the current subheap. 

2. Definition 

If the binary tree T is a heap [4], the subtree whose root can be any node in T is 

called the subheap of T. 

It is clear that the subheap whose root is the root of T is the heap itself. 

3. Algorithm 

3.1. The way to design the algorithm 

num 

S(,lum)=& (mm 2 1) 

num can take the value . . . . 6,5,4,3,2,1; accordingly. S(num) has the value 

The value of num is ought to be taken large enough. For sorting problem on 

n elements, num = Llog(log n) J. Once num is set, it will remain unchanging in the whole 

process of heapsort. 

The process of rearranging the heap is implemented recursively. When rearranging 

the current subheap with height k, by one comparison the leftson with the rightson, 

the larger can move up one level. Repeat this process until it reaches at S(num)k of the 

current subheap. Suppose at this point the current vacant node is i. The next step is to 

compare the element at leaf node, which is outside the current heap and to be sorted, 

with the element at the father’s node of the vacant node i. If the latter is smaller, the 

former is shifted to node i, and by one comparison with its father’s several times it will 

move up to the proper position of the current subheap. If the latter is greater, the 

recursive procedure will be carried out, When it reaches at the maximum depth, the 

element at leaf node which is outside the current heap and to be sorted will be shifted 

to the current vacant node, and it will move down along certain path. 

3.2. Algorithm 

(1) Set up the original heap [l. 41 
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procedure HEAPFIFY (i j); 

{Arrange elements A[i] - A[j ] of array A into a heap } 

if i is not a leaf 

and a son of i contains an element which is larger than i 

then begin 

Let k be a son of i with the larger element; 

interchange A[i] and Ark]; 

HEAPFIFY (k, j ) 

end: 

procedure BUILDHEAP; 

for i:=Ln/2 J step -1 until 1 do HEAPFIFY (i, n); 

(2) Rearranging the heap 

procedure RE-UPORDOWN (i, num, j); 

begin 
2”““- 1 

hz:= m-11 ; 

i I 
count := 1; 

while count d h2 do 

{The process of comparing the leftson with the rightson once 

and the larger moving up one level stops at height 2”““- 1/(2num - 1) 

of the current subheap.} 

begin 

Let I be a son of i with the larger element; 

A [i]:= A [r]; 

i:= r; 

count:= count + 1 

end; 

if A[j+ l]>A[Li/2 J] 

then {A[j+ l] moves up to the proper position of the current subheap} 

begin 

A[i]:=A[j+ 11; 

while A[i] > A[Li/2 J] do 

begin 

interchange A[i] and A[Li/2J]; 

i:=Li/21 

end 

end 

else if num> 1 

then begin 
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hI := h, -h,; {Get the height of the subheap.} 

RE-UPORDOWN(i, num- 1,j) 

{Rearranging the current subheap recursively.) 

end 

else begin 

end; 

A[i]:=A[j+l]; 

HEAPFIFY(i,j) 

end 

(3) Heap sorting 

Input: array of elements A [i] (1 d i < n) to be sorted. We define the dummy element 

A [0], which is large enough, in case it is out of bound during the comparisons. 

Output: the sorted array A. 

procedure ASYMPTOTIC-OPTIMAL-HEAPSORT; 

begin 

BUILDHEAP; 

Find the value of num; {say num=Llog(logn)l} 

for j:=n step - 1 until 2 do 

begin 

temp:= A [ 11; 

h,:=Llog(j- l)]; {Get the height of the current heap) 

i:= 1; {Starting from the first node} 

RE-UPORDOWN (i, num, j- 1); 

A [j ]:= temp 

end 

end: 

4. Analysis of the complexity 

We consider the elements ranging from node i to node j. Suppose h is the height of 

the subheap whose root is i. Therefore we have the following lemma. 

Lemma. The number of comparisons that the recursive procedure takes is 

T(num, h) = 2S(num)h. 

Proof. The process of rearranging the heap is correct. This can be proved by 

induction on the recursion depth. 

When rearranging the current subheap, first by one comparison the leftson with the 

rightson of the vacant node, the larger can move up one level. Repeat this process until 
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it reaches S(num)h of the current subheap and totally it needs S(num)h comparisons. 
The next step is to compare the element A[j+ I] at leaf node, which is outside the 
current heap and to be sorted, with the element at the father’s node of the vacant node 
i. At the worst case, either A [j+ l] moves up to the root of the current subheap and it 
takes S(num)h comparisons, or A[j+ l] is searched for the position in the subheap 
whose root is i and the height is (1 -S(num))h. So we have the following recursion 
equation. 

[ T(num, h) = (2S(num)h 
S(num)h + T(num - 1, (1 - S(num))h) 

I T(1, h)=2h 

S(num)=2”Um-1/(2n”m- I), if the recursion depth is k, so OGkdnum- 1. 
(1) When k = 0, we directly have T(num, h) = 2S(num) h. 
(2) Now we consider 0 < k < num - 1. 

If A[j+ l] moves up in the current subheap, at the worst case, 

T(num, h)=S(num)h+S(num- l)(l -S(num))h+... 

+2S(num-k)(l -S(num))(l -S(num- l))..(l -S(num-k+ 1))h 

2mrm-1 

=-----h+ 
plum-2 yllm - 1 

2 num -1 2num-l-1’ 
-‘A+... 

2num_1 

2num-k pum-1-l 2num-2-l 2wm-k+l _ 1 

+2 num-k+l_l’ 2num_1 ‘2”~m-l_1”“‘2”~m-k+2_1 h 

yum-k- 1 pum-1-l 2m4m-2_ 1 2wm - k 

i-2 
-1 

. yum-k_ 1 2num_1 ’ yum-1-l “‘.’ ym-k+l_l h 

2num- 1 2mdm- 2 

z-----h+--- 

2”“” - 1 yum-k- 1 

2num__ 1 2num__ 1 
A+...+ ~h+2. 2”u,n_1 h 

=~[2”“-l+pUm-1+...+2”Ym-k +21. pm-k-l] 

h 
=--- 

2”“” - 1 
2”“rn 

= 2S(num) h. 

If A[j+ l] moves down in the current subheap, the recursion depth will be 
increased by 1. 
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(3) When k = num - 1, the recursion depth becomes the top value, at the worst case, 

T(izum, h)=S(num)h+S(num- l)(l -S(num))h 

+S(num-2)((1 -S(num))(l -S(num- 1))h 

+...+S(2)(1-S(nurn))(l-S(num-l)).-. . & . $k 

+2S(l)(l-S(num))(l-S(num-I))... . & $ ih 

2”““- 1 
=------h+ 

2”“” - 2 *“urn- 1 -1 
h 

2 ““WI -1 2”“” - 1 -1 2”““-1 

7nmI - 3 

+2 num-z_l 

pan-1-l yum-2_1h 

. 2 num-_1 . ynn-l_l 

2 p!Jm-l_l yum-2-1 

+“‘+5 . 2”“” -1 pm-t 
_l. . . ..A . +h 

+2 . 
yum-l-1 ym-2-l 

2 nllm -1 pun - 1 
_1 . . . . . A. $. +h 

= --&--[pm-l+pm-2+ +7um-3+...+21+211 
2 

h pm 
zz--- 

2 num- 1 

= 2S(num)h. 0 

Theorem. The worst case time complexity of the algorithm ASYMPTOTIC-OPTI- 
MAL -HEAPSORT is 

T(n) = & n log II + O(n). 

Proof. The correctness of the heapsort algorithm can be proved by induction on the 

number of times that the “FOR” loop has been executed. 

The complexity of the algorithm consists of two parts: 

(1) Setting up the original heap by calling BUILDHEAP. 

It takes time O(n) [2,4] 

(2) The time it requires for the FOR loop to perform. Since the height of the heap 

with j- 1 elements is h=Llog(j- l)J, so according to the above lemma, we have 

T’(n)= c T( num, Llog( j- 1) J)= C [2S(num) . Llog( j- 1) J] 
z<jcn Z$j<n 

=ZS(num) C Llog( j- 1) J 
2Cj<n 

pm 

=2S(num)nlogn=~ 
2 -1 

nlogn 
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The total complexity of ASYMPTOTIC-OPTIMAL-HEAPSORT is 

T(n)=&nlogn+O(n). 0 

5. Discussion 

(1) In fact, when rearranging the current heap. once the recursive procedure is 

executed, A [j+ 11 and A [L i/2 J] compares once, totally it requires num comparisons 

at most. Hence, heap sorting will have another II ’ num (n times num) comparisons. 

Normally, num = L log (log n) J, so that, 

T(n) = ~nlogn+O(nlog(logn))+O(n). 

(2) When n-tco, log(logn)+co, i.e., num-+co. We notice that 

2 ll”rn 

.l!lKJ 2”“” - 1 
-----1, 

hence T(n) = n log n + O(n log (log n)) + O(n). So we can conclude that the algorithm is 

of asymptotic optimal performance. 

(3) The condition to call the recursive procedure RE-UPORDOWN to rearrange 

the heap is num> 1, i.e. Llog( logn) J> 1, i.e., n2 16. It is advisable to use the revised 

heapsort algorithm [4] if the number of elements to be sorted is less than sixteen. 

(4)When n3 16, Llog(logn)]B2, i.e., num32, but 

Min {S(num)} =3, 
turn>2 

so from the revised heapsort algorithm, we know that the constant factor of the 

complexity is not more than $ and it depends on the num value in (1, :]. 
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